[go: up one dir, main page]

JPS62115379A - Logical lsi testing circuit - Google Patents

Logical lsi testing circuit

Info

Publication number
JPS62115379A
JPS62115379A JP25524585A JP25524585A JPS62115379A JP S62115379 A JPS62115379 A JP S62115379A JP 25524585 A JP25524585 A JP 25524585A JP 25524585 A JP25524585 A JP 25524585A JP S62115379 A JPS62115379 A JP S62115379A
Authority
JP
Japan
Prior art keywords
circuit
units
stage delay
delay time
delay circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25524585A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sasaki
勝弘 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25524585A priority Critical patent/JPS62115379A/en
Publication of JPS62115379A publication Critical patent/JPS62115379A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/26Functional testing
    • G06F11/273Tester hardware, i.e. output processing circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

PURPOSE:To perform discriminating test of accurate highest working frequency in the state of a wafer of low cost by providing an M-stage delay circuit and an N-stage delay circuit made by connecting M units and N units of basic gates having any equal load in series. CONSTITUTION:To make speed test of an LSI, an M-stage delay circuit 300 made by connecting M(>=1) units of basic gates 100-1-100-M having any equal load in series and an N-stage delay circuit 301 made by connecting N(>M) units of basic gates 101-1-101-N in series are connected in parallel to an input circuit 50, and output circuits 200, 201 are connected respectively to output side of circuits 300, 301, and incorporated in a logical LSI as a testing circuit. When any digital signals are inputted to an input terminal 10, the signals are passed through the circuit 50 and circuits 200, 201 and outputted to output terminals 11, 12 delaying respectively by transmission delay time tauM, tauN, Difference in transmission delay time of N-M units of basic gates, and accordingly, transmission delay time tauF per unit basic gate can be obtained by a specified expression.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は論理LSI試験回路に関し特に高速で更用され
る論理IIIの試験回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to logic LSI test circuits, and particularly to logic III test circuits that are updated at high speed.

〔従来の技術〕[Conventional technology]

従来、この種の論理LSIでは、LSI試験回路として
、基本ゲートの伝達遅延時間を測定する回路を含まない
構成となっていた。その結果、設計したLSIの動作周
波数が、ウエノ・−スの状態で行う試験周波数よりも高
い場合、ウエノ・−状態での最高動作周波数の試験が不
可能であった。そのため、従来最高動作周波数の良品・
不良品判別試験の方法として、ウェノ・−状態に2いで
ある入力端子と出力端子間の伝達遅延時間を規定するこ
とによって良品を判別する方法や1組立て後に実際に動
作試験を行うことによって良品を判別する方法がある。
Conventionally, this type of logic LSI has a configuration that does not include a circuit for measuring the transmission delay time of the basic gate as an LSI test circuit. As a result, if the operating frequency of the designed LSI was higher than the test frequency conducted in the unused state, it was impossible to test the highest operating frequency in the unused state. Therefore, we have developed a high-quality product with the highest operating frequency.
Defective product discrimination testing methods include determining non-defective products by specifying the transmission delay time between the input terminal and output terminal, which is 2 in the - state, and determining non-defective products by actually conducting an operation test after assembly. There is a way to determine.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前者の試験方法では、LSI試験の同一
の機種間に存在するバラツキによる誤差や、試験機の有
する測定値の誤差のために、正確な伝達遅延時間を測定
することができない。その丸め、規格をある一点に設け
ることにより良品・不良品を判別する現在の試験方法で
は、良品を不良品と判定したり、不良品と判定してしま
う。その結果、製品の歩留りが低下するため、製品コス
トが高くなるという欠点がある。また、後者の試験方法
では、ウェハーの状態で良品・不良品の判別試験を行な
っ九場合に比べて1組立て後の原価が高くなった状態を
行うため、不良品の発生に比例してLSIのコストが高
くなるという欠点を有している。また、試験周波数の低
い試験機では伝達遅延時間が測定できない場合には試験
周波数が高く、測定分解の良い試験機の開発中導入によ
り。
However, with the former testing method, it is not possible to accurately measure the transmission delay time due to errors due to variations in LSI test models of the same type and errors in measurement values of the testing machine. In the current testing method, which distinguishes between good and defective products by rounding and setting a standard at a certain point, good products are judged to be defective or defective. As a result, the yield of the product decreases, resulting in a disadvantage that the product cost increases. In addition, in the latter test method, the test is conducted on the wafer to determine whether it is a good product or a defective product, and the cost after one assembly is higher than in the case of wafers. It has the disadvantage of high cost. In addition, if the propagation delay time cannot be measured using a tester with a low test frequency, we will introduce a tester with a high test frequency and good measurement resolution during development.

最高動作周波数の試験を行うことになるので、多額の開
発費・設備費が必要となる欠点がある。
Since the highest operating frequency must be tested, there is a drawback that a large amount of development and equipment costs are required.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の論理LSI試験回路は、LSI試験回路として
、任意の等しい負荷を有する基本ゲートをM個直列に接
続したM段遅延回路と、前記基本ゲートをN個直列に接
続したN段遅延回路と前記M段遅延回路の入力と前記N
段遅延回路の入力とを並列に接続した入力回路と、M段
遅延回路の出力と接続した出力回路と、N段遅延回路の
出力と接続した出力回路とを含む。
The logic LSI test circuit of the present invention includes, as an LSI test circuit, an M-stage delay circuit in which M basic gates having arbitrary equal loads are connected in series, and an N-stage delay circuit in which N basic gates are connected in series. The input of the M-stage delay circuit and the N
The circuit includes an input circuit connected in parallel to the input of the stage delay circuit, an output circuit connected to the output of the M stage delay circuit, and an output circuit connected to the output of the N stage delay circuit.

〔実施例〕〔Example〕

以乍図面を参照して本発明を説明する。 The present invention will now be described with reference to the drawings.

第1図は本発明のブロック因である。入力端子10に、
任意のデジタル信号を入力すると、入力信号は、入力回
路50とM段の基本ゲー)100−1〜100−M と
出力回路200を通って、伝達遅延時間τMだけ遅れて
出力端子11に出力される。同時に、前記入力信号は入
力回路50とN段の基本ゲー)101−1〜101−M
と出力回路201を通って伝達遅延時間τMだけ遅れて
出力端子12に出力される。ここで、入力回路50とN
段遅延回路300のM段の基本ゲートと出力回路201
とから生じる伝達遅延時間は、信号が同一構成の素子を
通ることから前記τMと等しいとすることができる。す
なわち、N段遅延回路301による伝達時間とM段遅延
回路300による伝達遅延時間との差(τN−τM)は
基本ゲー)(N−M)鑓の伝達遅延時間になる。
FIG. 1 shows the block factors of the present invention. To the input terminal 10,
When an arbitrary digital signal is input, the input signal passes through the input circuit 50, M-stage basic gates (100-1 to 100-M), and the output circuit 200, and is output to the output terminal 11 with a delay of the transmission delay time τM. Ru. At the same time, the input signal is connected to the input circuit 50 and the N-stage basic games) 101-1 to 101-M.
It passes through the output circuit 201 and is output to the output terminal 12 with a delay of the transmission delay time τM. Here, input circuit 50 and N
M-stage basic gate of stage delay circuit 300 and output circuit 201
Since the signals pass through elements having the same configuration, the transmission delay time caused by .tau.M can be equal to .tau.M. That is, the difference (τN-τM) between the transmission time by the N-stage delay circuit 301 and the transmission delay time by the M-stage delay circuit 300 is the transmission delay time of the basic game (N-M).

したがって、基本ゲート1段あたりの伝達遅延時間τF
は次式より求めることができる。
Therefore, the transmission delay time τF per stage of basic gate
can be obtained from the following formula.

これは、従来より試作LSIIC$ける伝達遅延時間側
回路として便用されている。
This has conventionally been conveniently used as a transmission delay time side circuit in prototype LSI ICs.

先に等しいとした出力回路200と201の伝達遅延時
間は測定系の端子系の端子間での入力容量の差や入力イ
ンピーダンスの差などにより完全には一致しない。ま九
、測定した伝達遅延時間自体にも試験機による誤差を含
んでいる。これらの差をすべて誤差7eとすると、前記
7Fにはre/(N−M)  の誤差が含まれること(
でなる。したがって、(N−M)の値る大きく選ぶこと
により、τFに含まれる誤差を無視し得る値にすること
ができ、さらに。
The transmission delay times of the output circuits 200 and 201, which were previously assumed to be equal, do not completely match due to differences in input capacitance and input impedance between the terminals of the terminal system of the measurement system. Also, the measured propagation delay time itself includes errors due to the testing equipment. If all these differences are defined as error 7e, then 7F includes an error of re/(N-M) (
It becomes. Therefore, by choosing a large value of (N-M), the error included in τF can be made negligible.

LSI試験機の試験周波数や測定分解能が低い場合にも
 遅延段数Mを大きくとることで試験機の測定可能な範
囲までτMの値を大きくすることができる。
Even when the test frequency and measurement resolution of the LSI tester are low, by increasing the number of delay stages M, it is possible to increase the value of τM up to the measurable range of the tester.

例えばLSI回路設計時に、基本ゲート1段あたりの伝
達遅延時間が最悪Tmax以内なら、最高動作周波数を
満足するような設計になっている場合、LSIの最高動
作周波数の試験に2いて、試験時に測定した伝達遅延時
間τFが前記τmax以下であれば合格という規格にす
れば良い。すなわち、正確な伝達遅延時間の測定により
、最高動作周波数の試験を行なりことができる。
For example, when designing an LSI circuit, if the design satisfies the maximum operating frequency if the propagation delay time per basic gate stage is within Tmax in the worst case, then test the maximum operating frequency of the LSI and measure it during the test. If the transmission delay time τF is less than or equal to the above-mentioned τmax, the standard may be set to pass. That is, the highest operating frequency can be tested by accurately measuring the propagation delay time.

また、セミ−カスタムLSIVcBいても本発明による
回路をブロック・ライブラリーとして準備する、あるい
はあらかじめ、基本構成要素として組み込むことによっ
て同様に、最高動作周波数の試験を行うことができる。
Further, even in the case of a semi-custom LSIVcB, the highest operating frequency can be similarly tested by preparing the circuit according to the present invention as a block library or incorporating it as a basic component in advance.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、論理LSIの同一チップ
上に、LSI速度試験回路として、ある任意の基本ゲー
トの伝達遅延時間を測定する回路を含み、その回路を用
いて、伝達遅延時間を測定することにより、従来に比べ
′て正確な最高動作周波数の判別試験を行うことができ
る。すなわち。
As explained above, the present invention includes a circuit for measuring the propagation delay time of an arbitrary basic gate as an LSI speed test circuit on the same chip of a logic LSI, and uses the circuit to measure the propagation delay time. By doing so, it is possible to perform a test for determining the highest operating frequency more accurately than in the past. Namely.

組立て後に比べて、原価が安いウェハーの状態で。In the form of a wafer, which costs less than after assembly.

従来より正確な最高動作周波数の判別試験が行なえるの
で、製品のコストを下げる効果がある。また、廉価な低
速度の試験機や既に導入されている試験機を部用して、
最高動作周波数の判別試験が行なえるので、設備費を安
くできるという効果もある。
Since it is possible to perform a test to determine the highest operating frequency more accurately than before, it has the effect of lowering product costs. In addition, by using inexpensive low-speed testing machines and testing machines that have already been introduced,
Since the highest operating frequency can be tested, it also has the effect of reducing equipment costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のブロック図である。 300・・・・・・M段遅延回路、301・−・・・・
N段遅延回路210・・・・・・入力端子、11.12
・・・・・・出力端子、50・・・・・・入力回路、1
00−1〜100−M。 101−1〜101−N・・・・・・基本ゲート、20
0゜201・・・・・・出力回路。 代理人 弁理士  内 原   音4  \1.) (、レー1パ・
FIG. 1 is a block diagram of the present invention. 300...M-stage delay circuit, 301...
N-stage delay circuit 210...Input terminal, 11.12
...Output terminal, 50...Input circuit, 1
00-1 to 100-M. 101-1 to 101-N・・・Basic gate, 20
0゜201...Output circuit. Agent Patent Attorney Oto Uchihara 4 \1. ) (, le 1 pa・

Claims (1)

【特許請求の範囲】[Claims] 論理LSIにおいて、LSIの速度試験を行うために、
任意の等しい負荷を有する基本ゲートをM(≧1)個直
列に接続したM段遅延回路と、前記基本ゲートをN(>
M)個直列に接続したN段遅延回路と、前記M段遅延回
路の入力と前記N段遅延回路の入力とを並列に接続した
入力回路と、M段遅延回路の出力と接続した出力回路と
、N段遅延回路の出力と接続した出力回路とを含み、試
験回路として論理LSI内部に組み含むことを特徴とし
た論理LSI試験回路。
In logic LSI, in order to perform LSI speed test,
An M-stage delay circuit in which M (≧1) basic gates having arbitrary equal loads are connected in series, and the basic gates are connected in series with N (>
M) N-stage delay circuits connected in series, an input circuit in which the input of the M-stage delay circuit and the input of the N-stage delay circuit are connected in parallel, and an output circuit connected to the output of the M-stage delay circuit. , an output circuit connected to the output of an N-stage delay circuit, and is incorporated into a logic LSI as a test circuit.
JP25524585A 1985-11-13 1985-11-13 Logical lsi testing circuit Pending JPS62115379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25524585A JPS62115379A (en) 1985-11-13 1985-11-13 Logical lsi testing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25524585A JPS62115379A (en) 1985-11-13 1985-11-13 Logical lsi testing circuit

Publications (1)

Publication Number Publication Date
JPS62115379A true JPS62115379A (en) 1987-05-27

Family

ID=17276054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25524585A Pending JPS62115379A (en) 1985-11-13 1985-11-13 Logical lsi testing circuit

Country Status (1)

Country Link
JP (1) JPS62115379A (en)

Similar Documents

Publication Publication Date Title
KR100237504B1 (en) Process monitoring circuit and its monitoring method
US4146835A (en) Testing the differential response times of a plurality of circuits
US5177440A (en) Testing of integrated circuits using clock bursts
JP3262281B2 (en) Test method and test equipment for electronic circuits
JP2760284B2 (en) Semiconductor integrated circuit device
US3781670A (en) Ac performance test for large scale integrated circuit chips
US7080302B2 (en) Semiconductor device and test system therefor
US5867033A (en) Circuit for testing the operation of a semiconductor device
US4876501A (en) Method and apparatus for high accuracy measurment of VLSI components
US5796260A (en) Parametric test circuit
US20200182933A1 (en) Circuit applied to multiple scan modes for testing
JPH0989980A (en) Semiconductor integrated circuit and its evaluation method
JPS62115379A (en) Logical lsi testing circuit
JP2985056B2 (en) IC test equipment
JPS645461B2 (en)
US5999013A (en) Method and apparatus for testing variable voltage and variable impedance drivers
WO1988001060A1 (en) Integrated circuits and method of testing same
Wang Yield, overall test environment timing accuracy, and defect level trade-offs for high-speed interconnect device testing
JP2591849B2 (en) Test circuit
JP4209561B2 (en) Semiconductor test program execution method for semiconductor test equipment
JP2003084045A (en) Test device and method for semiconductor integrated circuit
JP3465257B2 (en) IC tester
JP2002350509A (en) Semiconductor device
EP0286920A2 (en) Method and apparatus for high accuracy measurement of VLSI components
JP3140090B2 (en) Semiconductor device