[go: up one dir, main page]

JPS62113701A - Production of chlorine - Google Patents

Production of chlorine

Info

Publication number
JPS62113701A
JPS62113701A JP60253646A JP25364685A JPS62113701A JP S62113701 A JPS62113701 A JP S62113701A JP 60253646 A JP60253646 A JP 60253646A JP 25364685 A JP25364685 A JP 25364685A JP S62113701 A JPS62113701 A JP S62113701A
Authority
JP
Japan
Prior art keywords
hydrogen chloride
catalyst
oxygen
reaction
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60253646A
Other languages
Japanese (ja)
Other versions
JPH0615402B2 (en
Inventor
Tadamitsu Kiyoura
清浦 忠光
Yasuo Kogure
小暮 靖雄
Tokio Nagayama
時男 永山
Kazuo Kanetani
金谷 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60253646A priority Critical patent/JPH0615402B2/en
Priority to CN85109387.6A priority patent/CN1003504B/en
Priority to DE8585308746T priority patent/DE3583218D1/en
Priority to EP85308746A priority patent/EP0184413B1/en
Priority to KR1019850009066A priority patent/KR890005057B1/en
Publication of JPS62113701A publication Critical patent/JPS62113701A/en
Priority to US07/132,665 priority patent/US4828815A/en
Priority to US07/759,630 priority patent/US5147624A/en
Publication of JPH0615402B2 publication Critical patent/JPH0615402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To produce chlorine from hydrogen chloride at a high space velocity in high efficiency and high low-temperature catalytic activity, by oxidizing hydrogen chloride with an oxygen-containing gas in the presence of a specific catalyst. CONSTITUTION:1mol of chromic anhydride (CrO3) is added to an aqueous solution containing 6-20mol of hydrochloric acid and made to react with each other at room temperature -100 deg.C for 10min-20hr. The obtained aqueous solution is added with ammonia to adjust the pH to nearly neutral state. The precipitated chromium compound is collected by filtration, washed with water, extruded and formed in the form of pellet, dried at room temperature -120 deg.C and calcined at 400-800 deg.C. The catalyst produced by the above process is packed in a reaction tube and heated at 300-400 deg.C. A gaseous mixture of hydrogen chloride and an oxygen-containing gas is supplied to the reaction tube at a rate of 200-1,800Nl/HCl/Hr.kg.Cat. The amount of oxygen is excess to hydrogen chloride by 5-200 equivalent %.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は塩素の製造方法、より詳細には塩化水素ガスを
含酸素ガスて酸化し塩素を製造する方法の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing chlorine, and more particularly to an improvement in a method for producing chlorine by oxidizing hydrogen chloride gas with an oxygen-containing gas.

(従来の技術および発明か解決しようとする問題点)塩
素は食塩電解により大規模に製造されており、塩素の需
要は近年大巾に増大するにもかかわらず、食塩電解の際
に同時に生成する苛性ソーダの需要の増加は塩素のそれ
よりも、少ないためにその不均衡をうまく調整するのは
困難な情況が生じている。
(Prior art and the problem to be solved by the invention) Chlorine is produced on a large scale by salt electrolysis, and although the demand for chlorine has increased dramatically in recent years, it is produced simultaneously during salt electrolysis. The increase in demand for caustic soda is less than that for chlorine, making it difficult to properly balance the imbalance.

一方、符機化合物の塩素化反応またはホスゲンを用いる
反応の際には大計の塩化水素が副生じており、副生塩化
水素の川は、塩酸の需要1dより大巾に多いために、大
計の塩化水素が未利用のままで無駄に廃棄されている。
On the other hand, a large amount of hydrogen chloride is produced as a by-product during the chlorination reaction of a chemical compound or a reaction using phosgene, and the river of by-product hydrogen chloride is larger than the demand for hydrochloric acid by 1 d. The amount of hydrogen chloride in the tank remains unused and is wasted.

また廃棄のための処理コストも心安となる。Also, the processing costs for disposal can be reduced.

上記の如く大計に廃棄されている塩化水素から効率よぐ
塩素を回収出来れば、t−Y性ソーダ生産htとの不均
衡を生じることなく、塩素の需要を満たずことが出来る
If chlorine can be efficiently recovered from hydrogen chloride, which is largely discarded as described above, the demand for chlorine can be met without creating an imbalance with the production of t-Y soda.

塩化水素を酸化して塩素を製造する反応は。What is the reaction that produces chlorine by oxidizing hydrogen chloride?

古くからDeacon反応としてン名である。1868
年D c a C(l 11の発明になる銅系の触媒が
、従来最も優れた活性を示す触媒とされ、塩化鋼、’l
シ化カリに第三成分として種々な化な物を添加した触媒
が多数提案されている。しかしながら、これらの触媒を
用いてL業的に充分な反応速度て塩化水素を酸化するた
めには、反応温度を400℃以ヒにする必要があり、触
媒成分の飛散に伴なう触媒寿命の低丁等が問題となる。
It has long been known as the Deacon reaction. 1868
A copper-based catalyst invented in 1996 was considered to be the catalyst with the most excellent activity, and it was used in chloride steel, 'l
Many catalysts have been proposed in which various chemicals are added as third components to potassium silicide. However, in order to oxidize hydrogen chloride at a reaction rate sufficient for industrial use using these catalysts, it is necessary to raise the reaction temperature to 400°C or higher, and the life of the catalyst may be shortened due to the scattering of catalyst components. Low height etc. become a problem.

更に塩化水素の酸化反応には。Furthermore, for the oxidation reaction of hydrogen chloride.

・ト衡があり、高温になるほど、塩素の生成量が減少す
るので出来るだけ低温活性な触媒が望ましく、低温はど
装置の腐蝕面で有利となる。
・Since the amount of chlorine produced decreases as the temperature increases, it is desirable to use a catalyst that is active at as low a temperature as possible, which is advantageous in terms of corrosion of low-temperature gas equipment.

以ヒの観点から、銅系以外の触媒として、鉄系その他が
提案されているが、末だ充分実用的性能を示す触媒は知
られていない。酸化クロムは銅系触媒等に比較すると、
高温に対する安定生、耐久性があるため、酸化クロムを
塩化水素の酸化触媒として用いる提案もあるが、未だ充
分な活性を示す結果は報告されていない。例えば、英国
特許第584.790号には、無水クロム酸または硝酸
クロム水溶液を′Jl!I当な担体に含浸させて熱分解
した触媒Eに塩化水素を400℃前後で流通させ、塩素
を発生させ、触媒が失活した後、塩化水素の供給を停止
し、空気を流通させ触媒を再生後、空気の流通を断って
、ふたたび、塩化水素を流通させる方法が記載されてい
る。また、同じく英国特許第676.667 号には、
重クロム酸塩または暗緑色の酸化クロムを担体ヒに担持
した触媒を用い、塩化水素と含酸素ガスを420〜43
0℃の反応温度で空間速度38011r”で反応させ、
下衡値の67.4!にの塩化水素の転化率を、空間速度
68011r”では63主の塩化水素転化率を得ている
。反応温度340℃でも反応は認められるが、この場合
には空間速度を6511r”といった低い値に保って、
52%の転化率を得ているにすぎない。
From this point of view, iron-based and other catalysts have been proposed as catalysts other than copper-based, but no catalyst is known that exhibits sufficient practical performance. Compared to copper-based catalysts, chromium oxide has
Because of its stability and durability against high temperatures, there have been proposals to use chromium oxide as an oxidation catalyst for hydrogen chloride, but no results have yet been reported showing sufficient activity. For example, British patent no. Hydrogen chloride is passed through catalyst E, which has been thermally decomposed by impregnating it on a suitable carrier, at around 400°C to generate chlorine, and after the catalyst is deactivated, the supply of hydrogen chloride is stopped and air is passed through to decompose the catalyst. After regeneration, a method is described in which the air flow is cut off and hydrogen chloride is allowed to flow again. Also, in British Patent No. 676.667,
Using a catalyst containing dichromate or dark green chromium oxide on a carrier, hydrogen chloride and oxygen-containing gas are
React at a reaction temperature of 0°C and a space velocity of 38011r'',
The bottom price is 67.4! At a space velocity of 68,011r'', the conversion rate of hydrogen chloride was 63%.The reaction was observed even at a reaction temperature of 340°C, but in this case, the space velocity was set to a low value of 6,511r''. keep it,
A conversion rate of only 52% was obtained.

この様に、酸化クロムを触媒に用いても、従来公知の方
法は反応温度も高く、空間速度も低いので、T業的な操
業に耐え得る状態にはない。すなわち、従来報告されて
いる酸化クロム触媒は、銅系触媒に比較して特に優れた
性能を示すものではない。
As described above, even if chromium oxide is used as a catalyst, the conventionally known method has a high reaction temperature and a low space velocity, so it is not in a state where it can withstand commercial operation. That is, conventionally reported chromium oxide catalysts do not exhibit particularly superior performance compared to copper-based catalysts.

したがって、本発明の目的は低温活性であり。Therefore, the object of the present invention is low temperature activity.

高空間速度でかつ高転化率で塩化水素を処理することが
できる触媒を用いて塩化水素から塩素を効率よく製造す
る方法を提供することにある。
An object of the present invention is to provide a method for efficiently producing chlorine from hydrogen chloride using a catalyst that can process hydrogen chloride at a high space velocity and high conversion rate.

〔問題点を解決するためのL段) 本発明者らは、塩化水素の酸化による塩素の製造方法、
特に酸化反応に用いる触媒に関し、種々研究した結果、
塩化水素の酸化の反応に関しては従来報告されたことの
ない、触媒のgJ整方法に従って製造した酸化クロム触
媒を用いると反応温度も従来既知の触媒より低く、従来
方法よりもはるかに高い空間速度のドで、高い転化率で
塩化水素から塩素を製造できることを見出し、本発明を
完成するに至った。
[L stage for solving the problem] The present inventors have proposed a method for producing chlorine by oxidizing hydrogen chloride,
In particular, as a result of various studies regarding catalysts used in oxidation reactions,
Regarding the oxidation reaction of hydrogen chloride, using a chromium oxide catalyst produced according to the catalyst gJ preparation method, which has never been reported before, allows the reaction temperature to be lower than that of conventionally known catalysts, and the space velocity to be much higher than that of the conventional method. The inventors discovered that chlorine can be produced from hydrogen chloride at a high conversion rate using a hydrogen chloride method, and completed the present invention.

すなわち、本発明の要旨とするところは、塩化水素を含
酸素ガスで酸化し塩素を製造するに際し、無水クロム酸
と塩酸水溶液とを反応させた後、得られた水溶液にアン
モニアを反応させることにより生成するクロム化合物か
ら調整される触媒、あるいは、ヒ記のクロム化合物と硅
素の化合物とから成る混合物から調整した触媒の存在F
に反応させることにある。
That is, the gist of the present invention is that when hydrogen chloride is oxidized with an oxygen-containing gas to produce chlorine, chromic anhydride is reacted with an aqueous hydrochloric acid solution, and then the resulting aqueous solution is reacted with ammonia. Presence of a catalyst prepared from the produced chromium compound, or a catalyst prepared from a mixture consisting of the chromium compound and silicon compound described above F
The purpose is to react to the

本発明の方法に用いられる原料の塩化水素は、通常、+
f機機台合物塩素化反応の際に副生する塩化水素または
ホスゲンと有機化合物の反応の際に副生ずる塩化水素等
の副生塩酸が多用される。塩化水′素の酸化剤は含酸素
ガスであって、酸素ガスまたは空気が多用される。反応
器の形式が流動床式の場合には酸素ガスが、固定床式の
場合には、空気が用いられる場合が多い。反応に供する
塩化水素と、含酸素ガス中の酸素のモル比は塩化水素1
そルに対し酸素174モル(当量)航後であり、通常、
酸素を当量の5〜200を過剰に用いる場合が多い。触
媒床に供給する塩酸の慴は、200〜180ONj/H
r、にg cat、の範囲が適している。反応温度は3
00〜400℃、特に330〜380℃が多用される。
The raw material hydrogen chloride used in the method of the present invention is usually +
Hydrogen chloride produced as a by-product during the compound chlorination reaction or hydrochloric acid produced as a by-product such as hydrogen chloride produced as a by-product during the reaction of phosgene with an organic compound are often used. The oxidizing agent for hydrogen chloride is an oxygen-containing gas, and oxygen gas or air is often used. Oxygen gas is often used when the reactor is a fluidized bed type, and air is often used when the reactor is a fixed bed type. The molar ratio of hydrogen chloride used for the reaction and oxygen in the oxygen-containing gas is hydrogen chloride 1
This is after 174 moles (equivalents) of oxygen to that gas, and normally,
Oxygen is often used in an excess of 5 to 200 equivalents. The amount of hydrochloric acid supplied to the catalyst bed is 200 to 180 ONj/H.
A range of g cat is suitable for r. The reaction temperature is 3
00 to 400°C, especially 330 to 380°C is frequently used.

本発明の方法に用いる触媒は以Fの方法でコ4製する。The catalyst used in the method of the present invention is prepared by the following method.

無水クロム酸、CrO3を塩酸水溶液中に添加し反応さ
せる。あるいは、(:r03を水に溶解させた溶液中に
塩化水素を吹き込む等の方法で反応させる。CrO3と
塩化水素との反応は室温乃至!00℃の温度範囲で実施
する。(:r03と塩化水素の所要量は、Cry;、1
モルに対しlIC1が6乃至20モルの範囲が多用され
る。反応に要する時間は10分乃至20時間の範囲であ
る。次いでF記の水溶液中にアンモニアを添加し水溶液
のPl+を中性近傍にしてクロム化合物を沈殿させる。
Chromic anhydride and CrO3 are added to an aqueous hydrochloric acid solution and reacted. Alternatively, the reaction is carried out by blowing hydrogen chloride into a solution of (:r03 dissolved in water).The reaction between CrO3 and hydrogen chloride is carried out in the temperature range from room temperature to !00°C. The required amount of hydrogen is Cry;, 1
A range of 6 to 20 moles of lIC1 is often used. The time required for the reaction ranges from 10 minutes to 20 hours. Next, ammonia is added to the aqueous solution described in F to make Pl+ in the aqueous solution near neutral, thereby precipitating a chromium compound.

アンモニア源としては通常アンモニア水が多用されるか
、アンモニアガス、液体アンモニア、あるいは尿素の如
くアンモニアを発生する化合物を用いることも出来る。
As the ammonia source, aqueous ammonia is usually used, or ammonia gas, liquid ammonia, or a compound that generates ammonia such as urea can also be used.

クロム化合物と硅素化合物とから成る触媒の場合には、
上記のクロム化合物の沈殿に硅素化合物、例えばシリカ
ゾル、あるいは硅酸エチル等を混合し、以Fに述べる方
法に依り触媒とする。あるいは無水クロム酸と塩酸の水
溶液中にシリカゾルの硅素化合物をあらかじめ添加し、
そこにアンモニアを添加しクロム化合物と硅素化合物と
の混合物を得る。クロムと硅素の割合はCr203・4
0〜95WLL 5i02・5〜6 ON L!にの範
囲が好ましい。
In the case of a catalyst consisting of a chromium compound and a silicon compound,
A silicon compound, such as silica sol or ethyl silicate, is mixed with the precipitate of the chromium compound, and a catalyst is prepared by the method described below. Alternatively, a silicon compound of silica sol is added in advance to an aqueous solution of chromic anhydride and hydrochloric acid,
Ammonia is added thereto to obtain a mixture of a chromium compound and a silicon compound. The ratio of chromium and silicon is Cr203.4
0~95WLL 5i02・5~6 ON L! A range of is preferred.

クロム化合物、あるいはクロム化合物と硅素化合物との
混合物を常法に依り水洗しろ別後、押出し成形等の方法
でペレット状にし、室温〜120℃て乾燥後、焼成して
固定床用の触媒とする。焼成温度は400〜800℃の
範囲が適している。クロム化合物、あるいはクロム化合
物と硅素化合物との混合物から成るスラリーを、スプレ
ードライヤーにより、球状の微粉末にし、次いで400
〜800℃で焼成したものは、流動床用の触媒として用
いるのに適する。
A chromium compound or a mixture of a chromium compound and a silicon compound is washed with water and separated using a conventional method, then made into pellets by a method such as extrusion molding, dried at room temperature to 120°C, and then calcined to produce a fixed bed catalyst. . A suitable firing temperature is in the range of 400 to 800°C. A slurry consisting of a chromium compound or a mixture of a chromium compound and a silicon compound is made into a fine spherical powder using a spray dryer, and then
Those calcined at ~800°C are suitable for use as catalysts for fluidized beds.

すなわち、本発明の方法で用いられる触媒は、無水クロ
ム酸と塩化水素とを反応させてからアンそニアを反応さ
せて得られるクロム化合物の沈殿から調製される触媒で
あり、無水クロム酸を直接熱分解した触媒、あるいは無
水クロム酸とアンモニアとの反応物を熱分解した触媒は
、高活性にはならない。また、無水クロム酸と塩化水素
との反応物に反応させる試薬 はアンモニアの使用が必
須であって、アンモニアの代りに苛性ソーダ、炭酸ソー
ダ等のアルカリを用いた場合には活性な触媒は得られな
い。
That is, the catalyst used in the method of the present invention is a catalyst prepared from the precipitation of a chromium compound obtained by reacting chromic anhydride with hydrogen chloride and then reacting with anthonia. Catalysts that have been thermally decomposed or catalysts that have thermally decomposed a reaction product of chromic anhydride and ammonia do not have high activity. Additionally, it is essential to use ammonia as a reagent for reacting the reaction product of chromic anhydride and hydrogen chloride, and if an alkali such as caustic soda or soda carbonate is used instead of ammonia, an active catalyst cannot be obtained. .

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、従来法よりも低い温度、すなわ
ち300〜360℃程度の温度で、塩酸の空間速度70
0〜1800Hr”と従来法よりはるかに高い塩化水素
の処理量を得ることが出来、得られる転化率も、平衡転
化率のloo$に達する。すなわち、本発明は従来既知
の如何なる触媒系よりもはるかに高空間速度で高い塩化
水素の転化率を得られるので、塩化水素から効率よく塩
素を製造出来るL業的に有利な塩素の製造方法を提供す
るものである。
According to the method of the present invention, the space velocity of hydrochloric acid is 70.
0 to 1800 Hr'', which is much higher than the conventional method, and the resulting conversion rate reaches the equilibrium conversion rate of LOOO$. Since a high conversion rate of hydrogen chloride can be obtained at a much higher space velocity, it is possible to efficiently produce chlorine from hydrogen chloride, thereby providing a method for producing chlorine that is advantageous for commercial production.

実施例1 無水クロム酸500gを、35を塩酸31中に添加溶解
し65℃で1時間攪拌しながら反応させた。反応路7’
?&70℃でL記反応液中に窒素ガスを10分間バブリ
ングさせてから、放冷し、イオン交換水を加え全■を6
Lに希釈した。次いで充分攪拌しながら2896アンモ
ニア水1.91を3時間をかけて注入した。
Example 1 500 g of chromic anhydride was added to dissolve 35 in hydrochloric acid 31, and the mixture was reacted with stirring at 65° C. for 1 hour. Reaction path 7'
? Bubble nitrogen gas into the reaction solution L at 70°C for 10 minutes, let it cool, add ion-exchanged water, and reduce the total volume to 6.
Diluted to L. Next, 1.91 g of 2896 ammonia water was injected over 3 hours while stirring thoroughly.

生成した沈殿をろ別して水洗後、ニーグーでペースト状
とし押出し成形した。100℃で5時間乾燥後、250
℃3時間、600℃で3時間焼成し4m/mφx 5 
m/mllの触媒を、J5I製した。
The generated precipitate was filtered and washed with water, and then made into a paste using Nigu and extruded. After drying at 100℃ for 5 hours, 250℃
℃3 hours, 600℃ for 3 hours, 4m/mφx 5
m/ml catalyst was manufactured by J5I.

本触媒100gを内径1インチのハステロイ−C製反応
管に充填し、外部から砂7AE動浴で触媒床を340℃
に加熱した。塩化水素ガス80t/llr、酸素301
/firの混合ガスを反応管に供給し、生成ガス中の塩
素を分析した。塩化水素の転化率80%で塩素が生成し
た。
100 g of this catalyst was packed into a Hastelloy-C reaction tube with an inner diameter of 1 inch, and the catalyst bed was heated to 340°C using a sand 7AE moving bath from the outside.
heated to. Hydrogen chloride gas 80t/llr, oxygen 301
A mixed gas of /fir was supplied to the reaction tube, and chlorine in the generated gas was analyzed. Chlorine was produced at a conversion rate of hydrogen chloride of 80%.

実施例2 無水クロム酸500gを、35%塩酸31に添加溶解し
、 70℃で30分間攪拌しながら反応させた。反応路
γ後70℃でE記反応液に空気を10分間バブリングさ
せてから放冷し、イオン交換水を加え全社を71に希釈
した。次いで充分攪拌しながら28tアンモニア水1.
9Aを3時間を要して注入した。
Example 2 500 g of chromic anhydride was added and dissolved in 31% 35% hydrochloric acid, and reacted at 70° C. for 30 minutes with stirring. After reaction path γ, air was bubbled into the E reaction solution at 70° C. for 10 minutes, then allowed to cool, and ion-exchanged water was added to dilute the solution to 71. Next, add 28t ammonia water 1. while stirring thoroughly.
9A was injected over a period of 3 hours.

生成した沈殿を水洗ろ別し、シリカゾル(Sin、 2
0WL96) 750gを添加しよく攪拌して均一のス
ラリーとした。スラリー濃度を約6.5tに調製し、ス
プレードライヤーで微小球状に97.燥造粒した。次い
て250℃211rs、500℃で3 Hrs空気中で
焼成し流動床用の微少球状触媒を調製した。触媒の゛F
均粒径は65μ、充填密度1.2て耐岸耗性も良好な微
小球が得られた。
The generated precipitate was washed with water and filtered, and silica sol (Sin, 2
0WL96) was added and stirred thoroughly to form a uniform slurry. Adjust the slurry concentration to about 6.5t, and use a spray dryer to shape it into microspheres. It was dried and granulated. Next, the mixture was calcined in air at 250° C. for 211 rs and at 500° C. for 3 Hrs to prepare a microspherical catalyst for a fluidized bed.゛F of catalyst
Microspheres with an average particle diameter of 65 μm, a packing density of 1.2, and good shore abrasion resistance were obtained.

本触媒を内径2inchの流動床反応器に350g充填
し塩化水g 240t/fir 、酸素904/llr
を触媒床に導入し外部を340℃に加熱し反応させた。
A fluidized bed reactor with an inner diameter of 2 inches was filled with 350 g of this catalyst, and 240 g/fir of chloride water and 904 g/llr of oxygen were charged.
was introduced into the catalyst bed, and the outside was heated to 340°C to cause a reaction.

触媒床温度は370℃で塩化水素の転化率7696で塩
素が生成した。
The catalyst bed temperature was 370°C, and chlorine was produced at a hydrogen chloride conversion rate of 7696.

比較例1 実施例1と同様の方法で無水クロム酸と塩化水素とを反
応させて得られた化合物に1oqbR性ソーダ水溶液を
添加し混合物のpl+を7.5とした。生じた沈殿を洗
浄、ろ別し、ニーダ−で混錬しペースト状にして、押出
し成形した。成形物を100℃5時間乾燥、250℃2
Hrs、次いで600℃で3時間焼成し、直径4n+n
+、高さ5ffI11の触媒を調製した。
Comparative Example 1 In the same manner as in Example 1, 1 0qb R sodium aqueous solution was added to a compound obtained by reacting chromic anhydride and hydrogen chloride, and the pl+ of the mixture was adjusted to 7.5. The resulting precipitate was washed, filtered, kneaded in a kneader to form a paste, and extruded. Dry the molded product at 100°C for 5 hours, then dry at 250°C2
Hrs, then baked at 600℃ for 3 hours, diameter 4n+n
+, height 5ffI11 catalyst was prepared.

得られた触媒を実施例1と同様の反応方法で反応に供し
、塩化水素の転化率を測定した結果は、塩化水素の転化
率34tで塩素が生成した。
The obtained catalyst was subjected to a reaction in the same manner as in Example 1, and the conversion rate of hydrogen chloride was measured. As a result, chlorine was generated at a conversion rate of hydrogen chloride of 34t.

比較例2〜4 無水クロム酸、クロム酸アンモニウム、および重クロム
酸アンモニウムを100℃〜600℃まで7時間で昇温
しながら空気を吹き込み流動状態で焼成した。得られた
分解物を比較例1と同様の方法て押し出し成形し、比較
例1の反応方法で活性を測定した、得られた結果を表1
に示す。
Comparative Examples 2 to 4 Chromic anhydride, ammonium chromate, and ammonium dichromate were heated to 100° C. to 600° C. over 7 hours, and air was blown into them to sinter them in a fluidized state. The obtained decomposed product was extruded using the same method as Comparative Example 1, and the activity was measured using the reaction method of Comparative Example 1. The obtained results are shown in Table 1.
Shown below.

表1Table 1

Claims (2)

【特許請求の範囲】[Claims] (1)塩化水素を含酸素ガスで酸化し塩素を製造するに
際し、無水クロム酸と塩酸水溶液とを反応させ、得られ
た水溶液にアンモニアを反応させることにより生成する
クロム化合物からなる触媒の存在下に反応させることを
特徴とする塩素の製造方法。
(1) When producing chlorine by oxidizing hydrogen chloride with oxygen-containing gas, in the presence of a catalyst consisting of a chromium compound produced by reacting chromic anhydride with an aqueous hydrochloric acid solution and reacting the resulting aqueous solution with ammonia. A method for producing chlorine, which comprises reacting with.
(2)触媒が前記クロム化合物と硅素の化合物とからな
るものである特許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the catalyst comprises the chromium compound and a silicon compound.
JP60253646A 1984-12-03 1985-11-14 Chlorine production method Expired - Fee Related JPH0615402B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60253646A JPH0615402B2 (en) 1985-11-14 1985-11-14 Chlorine production method
CN85109387.6A CN1003504B (en) 1984-12-03 1985-11-28 Chlorine gas preparation method
DE8585308746T DE3583218D1 (en) 1984-12-03 1985-12-02 METHOD FOR PRODUCING CHLORINE.
EP85308746A EP0184413B1 (en) 1984-12-03 1985-12-02 Process for the production of chlorine
KR1019850009066A KR890005057B1 (en) 1984-12-03 1985-12-03 Production process of chlorine
US07/132,665 US4828815A (en) 1984-12-03 1987-12-10 Production process of chlorine
US07/759,630 US5147624A (en) 1984-12-03 1991-09-16 Production process of chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60253646A JPH0615402B2 (en) 1985-11-14 1985-11-14 Chlorine production method

Publications (2)

Publication Number Publication Date
JPS62113701A true JPS62113701A (en) 1987-05-25
JPH0615402B2 JPH0615402B2 (en) 1994-03-02

Family

ID=17254217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60253646A Expired - Fee Related JPH0615402B2 (en) 1984-12-03 1985-11-14 Chlorine production method

Country Status (1)

Country Link
JP (1) JPH0615402B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501760A (en) * 2003-08-08 2007-02-01 ビーエーエスエフ アクチェンゲゼルシャフト Chlorine production method
WO2009014229A1 (en) 2007-07-23 2009-01-29 Sumitomo Chemical Company, Limited Method for activating catalyst for chlorine production
WO2010021407A1 (en) 2008-08-22 2010-02-25 住友化学株式会社 Method for producing chlorine and catalyst
WO2010050546A1 (en) 2008-10-30 2010-05-06 住友化学株式会社 Process for producing chlorine
DE112010002611T5 (en) 2009-05-29 2012-08-23 Sumitomo Chemical Company, Limited Method for activating a catalyst for chlorine production and method for producing chlorine
WO2021199633A1 (en) 2020-04-01 2021-10-07 住友化学株式会社 Molding catalyst and method for producing halogen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501760A (en) * 2003-08-08 2007-02-01 ビーエーエスエフ アクチェンゲゼルシャフト Chlorine production method
WO2009014229A1 (en) 2007-07-23 2009-01-29 Sumitomo Chemical Company, Limited Method for activating catalyst for chlorine production
WO2010021407A1 (en) 2008-08-22 2010-02-25 住友化学株式会社 Method for producing chlorine and catalyst
WO2010050546A1 (en) 2008-10-30 2010-05-06 住友化学株式会社 Process for producing chlorine
DE112010002611T5 (en) 2009-05-29 2012-08-23 Sumitomo Chemical Company, Limited Method for activating a catalyst for chlorine production and method for producing chlorine
WO2021199633A1 (en) 2020-04-01 2021-10-07 住友化学株式会社 Molding catalyst and method for producing halogen

Also Published As

Publication number Publication date
JPH0615402B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
KR890005057B1 (en) Production process of chlorine
US4803065A (en) Production process of chlorine
US5707919A (en) Catalyst for preparing chlorine from hydrogen chloride
RU2005140141A (en) Catalyst for the oxidation of methanol to formaldehyde
KR960010775B1 (en) Cerium chloride-chromium oxide catalyst for producing chlorine by oxidation of hydrochloric acid and method for manufacture thereof
CN100571870C (en) A kind of step-by-step co-precipitation method for preparing potassium-containing catalyst for hydrogen chloride oxidation
JPS62113701A (en) Production of chlorine
JPH0596B2 (en)
JP2003010691A (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JPH0366241B2 (en)
JPH0568401B2 (en)
JPS62270405A (en) Production of chlorine
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JPS62270404A (en) Production of chlorine
JP3031688B2 (en) Catalyst activity stabilization method
KR930002246B1 (en) Regeneration method of catalyst
JP2988999B2 (en) Catalyst regeneration method
JP3788530B2 (en) Catalyst regeneration method
JPH0367961B2 (en)
JP3270670B2 (en) Catalyst for the production of chlorine from hydrogen chloride
JPS62191403A (en) Production of chlorine
JPH0568402B2 (en)
JP2003164762A (en) Method for manufacturing composite oxide catalyst
JPH053403B2 (en)
JPS6354941A (en) Manufacturing method of composite oxide catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees