JPS62113104A - Mirror for high luminance radiant light - Google Patents
Mirror for high luminance radiant lightInfo
- Publication number
- JPS62113104A JPS62113104A JP60252721A JP25272185A JPS62113104A JP S62113104 A JPS62113104 A JP S62113104A JP 60252721 A JP60252721 A JP 60252721A JP 25272185 A JP25272185 A JP 25272185A JP S62113104 A JPS62113104 A JP S62113104A
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- substrate
- silicon carbide
- radiation
- beryllia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Particle Accelerators (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、シンクロトロン放射光、干渉性放射光等の高
輝度放射光用ミラーに係り、特に発光点の近くで使用さ
れる前置反射鏡に好適な高輝度放射光用ミラーに関する
。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a mirror for high-intensity synchrotron radiation, coherent radiation, etc., and particularly to a front reflector used near a light emitting point. The present invention relates to a mirror for high-intensity synchrotron radiation suitable for.
シンクロトロン放射光、干渉性放射光等の高輝度放射光
源にて光学素子として頻繁に使用される反射鏡は大きな
熱負荷及び放射線負荷に十分耐えうろことが要求される
。たとえば、30W/(ミリラジアン)2の輝度を持つ
放射光に於て1発光点より1m地点での熱流量は3kW
/adに達する。Reflectors, which are frequently used as optical elements in high-brightness radiation sources such as synchrotron radiation and coherent radiation, are required to be able to withstand large heat loads and radiation loads. For example, in synchrotron radiation with a brightness of 30W/(miraradian)2, the heat flow at a point 1m from one emission point is 3kW.
/ad is reached.
特に、前置偏向鏡のように、放射光が最初に入射する反
射鏡では、熱歪・放射線損傷等による反射率の低下、・
光軸の狂いが大きな問題となる。In particular, in reflective mirrors, such as front deflector mirrors, where synchrotron radiation first enters, the reflectance may decrease due to thermal distortion, radiation damage, etc.
Misalignment of the optical axis becomes a major problem.
熱伝導率が大きく、熱膨張率が小さいものほど。The higher the thermal conductivity and the lower the coefficient of thermal expansion.
熱歪が小さく、より大きな熱負荷に耐えられるので、放
射光用反射鏡の基板材料として適している。It has low thermal strain and can withstand larger heat loads, making it suitable as a substrate material for synchrotron radiation reflectors.
さらに、熱・放射線に対して安定で、がっ高精度の鏡面
に加工できるものである必要がある。Furthermore, it must be stable against heat and radiation, and must be able to be processed into a mirror surface with high precision.
従来、放射光用反射鏡としては、銅・合成石英・人造黒
鉛基板上に炭化硅素を化学蒸着したもの・構造材用炭化
硅素基板上に炭化硅素を化学蒸着したもの等およびこれ
らを基板として、鏡面に金。Conventionally, reflective mirrors for synchrotron radiation have been made by chemical vapor deposition of silicon carbide on a copper, synthetic quartz, or artificial graphite substrate, or by chemical vapor deposition of silicon carbide on a silicon carbide substrate for structural materials, and using these as substrates. Gold on mirror surface.
白金等を蒸1着したものが用いられてきた。(たとえば
、オプティカル エンジニアリング(OPTICALE
NGINEERING) 、 17巻、504〜511
頁、及びプロシーディンゲス オブ ニス・ピー・アイ
・イー(Proceedings of 5PIE)
、 315巻、123〜130頁において論じられてい
る。)これらの熱伝導率、熱膨張率を第1表に示す。Materials coated with platinum or the like have been used. (For example, optical engineering
NGINEERING), vol. 17, 504-511
Pages, and Proceedings of 5PIE
, vol. 315, pp. 123-130. ) Their thermal conductivity and thermal expansion coefficient are shown in Table 1.
第1表
銅は、熱伝導率が極めて大きいことが特徴であるが、熱
膨張率も大きいために、熱歪が生じやすいという欠点を
持つ。合成石英は、高精度な鏡面が容易に得られること
が特徴である。しかし、熱伝導率が小さいために熱歪が
生じやすく、またガラス質であるために大量の熱・放射
線照射に対して、物理的・化学的に不安定である、とい
う欠点を持つ。人造黒鉛・構造材用炭化硅素は、物理的
・化学的に安定であるが、熱伝導率は銅の1/6〜1/
2であるために、大量の熱・放射線照射を浴びるミラー
においては、熱歪を生じて、反射率の低下・光軸の狂い
をひき起こすという欠点を持つ、すなわち、従来の放射
光用反射鏡材料では、高熱伝導性・低熱膨張性・耐放射
線性を同時に十分満たすものは存在しなかった。Copper in Table 1 is characterized by extremely high thermal conductivity, but also has a high coefficient of thermal expansion, so it has the disadvantage of being susceptible to thermal strain. Synthetic quartz is characterized by the fact that a highly accurate mirror surface can be easily obtained. However, it has the drawbacks of being susceptible to thermal distortion due to its low thermal conductivity, and being physically and chemically unstable when exposed to large amounts of heat and radiation due to its glassy nature. Artificial graphite and silicon carbide for structural materials are physically and chemically stable, but their thermal conductivity is 1/6 to 1/1 that of copper.
2, mirrors that are exposed to large amounts of heat and radiation have the disadvantage of causing thermal distortion, resulting in a decrease in reflectance and misalignment of the optical axis. There has been no material that simultaneously satisfies high thermal conductivity, low thermal expansion, and radiation resistance.
本発明の目的は、上記従来技術の欠点を解決し、高輝度
放射光源に対応できる高熱伝導性・低熱膨張性・耐放射
線性を合わせもつ高輝度放射光用ミラーを提供すること
にある。An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide a mirror for high-brightness synchrotron radiation that has high thermal conductivity, low thermal expansion, and radiation resistance and can be used with high-brightness radiation light sources.
本発明は、ベリリア(BeO)を添加して焼結した高熱
伝導炭化硅素セラミックスを基板に用いることを特徴と
する高輝度放射光用ミラーを要旨とするものである。The gist of the present invention is a mirror for high-intensity synchrotron radiation, characterized in that a highly thermally conductive silicon carbide ceramic sintered with beryllia (BeO) added thereto is used as a substrate.
一般に高輝度放射光用ミラーは、高熱伝導性・低熱膨張
性・耐放射線性を有しなくてはならない。Generally, mirrors for high-brightness synchrotron radiation must have high thermal conductivity, low thermal expansion, and radiation resistance.
一般に、セラミックスは、物理的・化学的に安定なため
耐放射線性に優れ、また、低熱膨張性を有することで良
く知られている。本発明は、ベリリアを添加して焼結し
た高熱伝導炭化硅素セラミックスを基板に用いた放射光
用ミラーに関するものである。すなわち、ベリリアを添
加して焼結した高熱伝導炭化硅素セラミックスの熱伝導
率は270W/m・℃と人造黒鉛に比べ1.6倍、構造
材用炭化硅素に比べ4倍であり、熱膨張率は3.7 X
10−81/’Cと小さく、放射光用ミラー基板とし
て極めて有効である。In general, ceramics are physically and chemically stable, have excellent radiation resistance, and are well known for having low thermal expansion. The present invention relates to a synchrotron radiation mirror whose substrate is made of highly thermally conductive silicon carbide ceramics sintered with the addition of beryllia. In other words, the thermal conductivity of high thermal conductivity silicon carbide ceramics sintered with the addition of beryllia is 270 W/m・℃, which is 1.6 times higher than that of artificial graphite and 4 times higher than that of silicon carbide for structural materials, and the coefficient of thermal expansion is 270 W/m・℃. is 3.7X
It is as small as 10-81/'C and is extremely effective as a mirror substrate for synchrotron radiation.
ベリリヤを添加して焼結した高熱伝導炭化硅素セラミッ
クスは、相対密度98%以上の緻密性を持つため、ダイ
ヤモンドラッピング等の研磨法により、放射光を全反射
させるのに十分な鏡面を得ることが可能である。さらに
緻密な鏡面を得るためには、ベリリア添加炭化硅素の表
面に化学蒸着法により炭化硅素を形成させてから鏡面研
磨することが有効である。Highly thermally conductive silicon carbide ceramics sintered with the addition of beryllya have a relative density of 98% or more, so polishing methods such as diamond lapping can be used to obtain a mirror surface sufficient to completely reflect the radiation. It is possible. In order to obtain a more precise mirror surface, it is effective to form silicon carbide on the surface of beryllia-doped silicon carbide by chemical vapor deposition and then mirror polish it.
また、反射率の波長依存性、入射角依存性は、反射面元
素に大きく依存する。たとえば、波長数Å以下のxBを
除去するフィルタとしてミラーを用いる場合は軽元素が
有利であり、逆に、波長数Å以下のX線の反射率を高め
るためには、重元素が有利である。従って、使用目的に
応じて、重元素の蒸着膜を鏡面上に50〜11000n
形成して使用することが有効である。Further, the wavelength dependence and the incident angle dependence of reflectance largely depend on the reflective surface element. For example, when using a mirror as a filter to remove xB with a wavelength of several angstroms or less, light elements are advantageous, and conversely, in order to increase the reflectance of X-rays with a wavelength of several angstroms or less, heavy elements are advantageous. . Therefore, depending on the purpose of use, a vapor-deposited film of heavy elements can be deposited on a mirror surface with a thickness of 50 to 11,000 nm.
It is effective to form and use it.
以下1本発明の実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図はシンクロトロン放射光を反射するために放射光
用ミラーを前置鏡として用いた実施例を示す。電子蓄積
リング6より放射される放射光7を放射光用ミラー2に
より反射させ、実験装置8に放射光を導くものである。FIG. 1 shows an embodiment in which a synchrotron radiation mirror is used as a front mirror to reflect synchrotron radiation. The synchrotron radiation 7 emitted from the electron storage ring 6 is reflected by the synchrotron mirror 2, and is guided to the experimental apparatus 8.
基板1は高熱伝導炭化硅素セラミックスであり、2%の
ベリリアを添加した炭化珪素粉を真空中、300 kg
/cnfの加圧条件下で2050℃×1時間の焼結を行
って作成した。この状態での基板の相対密度は98%以
上でありほとんど気孔は存在しない。The substrate 1 is made of high thermal conductivity silicon carbide ceramics, and 300 kg of silicon carbide powder added with 2% beryllia is packed in a vacuum.
It was created by sintering at 2050° C. for 1 hour under pressure conditions of /cnf. In this state, the relative density of the substrate is 98% or more, and there are almost no pores.
鏡面2はダイヤモンド研磨により、表面粗さ10Å以下
に研磨したものである。The mirror surface 2 is polished to a surface roughness of 10 Å or less by diamond polishing.
この基板の室温における熱伝導度は270W/m・℃熱
膨張率は3.7X10−81/’Cであった。The thermal conductivity of this substrate at room temperature was 270 W/m·°C, and the coefficient of thermal expansion was 3.7×10 −81/′C.
このようにして製作したミラーで波長1.2nmの放射
光の入射角89度での反射率を測定した結果1反射率7
7%の高反射率を示し、放射光用ミラーとして好適であ
ることが立証された。The reflectance of the thus manufactured mirror at an incident angle of 89 degrees for synchrotron radiation with a wavelength of 1.2 nm was measured and the results were 1 reflectance 7
It showed a high reflectance of 7% and was proved to be suitable as a mirror for synchrotron radiation.
本実施例のミラーによれば、熱伝導率が大きく、熱膨張
率が小さいために、高輝度放射光源にて長時間にわたっ
て使用しても、ミラーの変形が極く微量に抑えられる。According to the mirror of this embodiment, since the thermal conductivity is high and the coefficient of thermal expansion is low, deformation of the mirror can be suppressed to a very small amount even if it is used for a long time with a high-intensity radiation light source.
同時に、放射線照射による鏡面の劣化を防ぐことも可能
である。また、鏡面には、蒸着膜を使用していないため
に、熱・放射線による蒸着膜の剥離脱離の恐れもない。At the same time, it is also possible to prevent deterioration of the mirror surface due to radiation irradiation. Furthermore, since no vapor deposited film is used on the mirror surface, there is no fear of the vapor deposited film peeling off due to heat or radiation.
前記実施例に於ては1反射鏡面の主な元素は硅素と炭素
であり、これらは原子番号がそれぞれ。In the above embodiment, the main elements of one reflecting mirror surface are silicon and carbon, which have different atomic numbers.
14と6という軽元素である。反射面の元素として、他
の元素(たとえば、金、白金等の重元素)が好ましい使
用用途の場合には、第2図に示される断面図のように、
高熱伝導炭化硅素セラミックス基板鏡面の上に、その元
素を50 ”1000n m蒸着して使用する。They are light elements 14 and 6. In cases where other elements (for example, heavy elements such as gold and platinum) are preferred as the elements of the reflective surface, as shown in the cross-sectional view shown in FIG.
The element is deposited in a thickness of 50"1000 nm onto a mirror surface of a highly thermally conductive silicon carbide ceramic substrate.
反射鏡面として、さらに緻密なものを必要とする時には
、第3図の断面図に示すように、高熱伝導炭化硅素セラ
ミックスの表面にさらに炭化硅素を300〜1000μ
m化学蒸着させてから、ダイヤモンドラッピング等によ
り鏡面研磨したもの、もしくは、第4図に示すように、
この化学蒸着炭化硅素の鏡面にさらに重元素を50〜1
1000n蒸着したものを使用することもできる。When a more dense reflective surface is required, as shown in the cross-sectional view of Figure 3, silicon carbide is further coated with an additional layer of 300 to 1000 μm on the surface of the high thermal conductivity silicon carbide ceramic.
m chemical vapor deposition and mirror polishing by diamond lapping, or as shown in Figure 4.
Further, 50 to 1 heavy elements are added to the mirror surface of this chemical vapor deposited silicon carbide.
It is also possible to use a material deposited with a thickness of 1000 nm.
本発明によれば、熱伝導率が大きく、熱膨張率が小さく
、耐放射線性の良好な高輝度放射光用ミラーが製作でき
るので、発光点に近い前置鏡にも好適に使用でき1反射
放射光の安定性、ミラーの長寿命化にも極めて有効であ
る。According to the present invention, a mirror for high-intensity synchrotron radiation with high thermal conductivity, low coefficient of thermal expansion, and good radiation resistance can be manufactured, so it can be suitably used for a front mirror near the light emitting point and can be used for one reflection. It is also extremely effective in stabilizing synchrotron radiation and extending the life of mirrors.
Claims (1)
した高熱伝導炭化硅素(SiC)セラミックスを基板と
することを特徴とする高輝度放射光用ミラー。 2、特許請求の範囲第1項記載のものにおいて、上記基
板上に重元素蒸着膜からなる反射鏡面を設けたことを特
徴とする高輝度放射光用ミラー。 3、特許請求の範囲第1項記載のものにおいて、上記基
板上に化学蒸着炭化硅素膜を設けたことを特徴とする高
輝度放射光用ミラー。 4、特許請求の範囲第3項記載のものにおいて、上記化
学蒸着炭化硅素膜の表面に重元素蒸着膜からなる反射鏡
面を設けたことを特徴とする高輝度放射光用ミラー。[Claims] 1. A mirror for high-intensity synchrotron radiation, characterized in that the substrate is made of highly thermally conductive silicon carbide (SiC) ceramics sintered with 1 to 10% by weight of beryllia (BeO) added thereto. 2. A mirror for high-intensity radiation according to claim 1, characterized in that a reflecting mirror surface made of a heavy element vapor-deposited film is provided on the substrate. 3. A high-intensity synchrotron radiation mirror according to claim 1, characterized in that a chemical vapor deposited silicon carbide film is provided on the substrate. 4. A mirror for high-intensity radiation according to claim 3, characterized in that a reflective mirror surface made of a heavy element vapor-deposited film is provided on the surface of the chemical vapor-deposited silicon carbide film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60252721A JPS62113104A (en) | 1985-11-13 | 1985-11-13 | Mirror for high luminance radiant light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60252721A JPS62113104A (en) | 1985-11-13 | 1985-11-13 | Mirror for high luminance radiant light |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62113104A true JPS62113104A (en) | 1987-05-25 |
Family
ID=17241335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60252721A Pending JPS62113104A (en) | 1985-11-13 | 1985-11-13 | Mirror for high luminance radiant light |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62113104A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413103A (en) * | 1990-05-07 | 1992-01-17 | Toshiba Ceramics Co Ltd | Production of reflecting mirror for synchrotron radiation light |
-
1985
- 1985-11-13 JP JP60252721A patent/JPS62113104A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413103A (en) * | 1990-05-07 | 1992-01-17 | Toshiba Ceramics Co Ltd | Production of reflecting mirror for synchrotron radiation light |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4142006A (en) | Method of making a high power laser mirror | |
TW382069B (en) | Protective overcoat for replicated diffraction gratings | |
TW548336B (en) | Protective overcoat for replicated diffraction gratings | |
JP4068496B2 (en) | Mirror surface base material, mirror body using the same, and optical device using the mirror body | |
US5106687A (en) | Composite material with chemically vapor deposited layer of silicon carbide formed thereon | |
CN1066287C (en) | Lamp with IR reflecting film and light-scattering coating | |
US7986455B2 (en) | Thermally stable multilayer mirror for the EUV spectral range | |
Kurosawa et al. | Super‐polished silicon carbide mirror for high‐power operation of excimer lasers in a vacuum ultraviolet spectral range | |
TWI835896B (en) | Extreme ultraviolet mask with backside coating | |
JPS62113104A (en) | Mirror for high luminance radiant light | |
JPH06300907A (en) | Optical and X-ray parts using silicon carbide sintered body and method for manufacturing the same | |
JP3147977B2 (en) | Substrate for reflecting mirror made of sintered silicon carbide and method of manufacturing the same | |
RU2004103474A (en) | SUBSTANCE MATERIAL FOR X-RAY OPTICAL COMPONENTS | |
JPH0336402B2 (en) | ||
JPS62131518A (en) | Mirror for X-ray exposure equipment | |
JPH04114971A (en) | Composite material | |
JP2560126B2 (en) | Synchrotron radiation reflection mirror | |
JPH09142996A (en) | Reflection type mask substrate | |
JP2005302860A (en) | Optical element for extremely short ultraviolet optical system and extremely short ultraviolet exposure device | |
JP3266450B2 (en) | Wafer support member | |
JPH11194206A (en) | Mirror | |
JPH0778559B2 (en) | Synchrotron radiation. SiC mirror for X-ray reflection | |
JP2006003376A (en) | Optical reflection mirror | |
JPH0570267A (en) | X ray reflecting mirror and its manufacture | |
JP4761948B2 (en) | Sintered silicon carbide and parts for semiconductor manufacturing equipment using the same |