JPH09142996A - Reflection type mask substrate - Google Patents
Reflection type mask substrateInfo
- Publication number
- JPH09142996A JPH09142996A JP33411995A JP33411995A JPH09142996A JP H09142996 A JPH09142996 A JP H09142996A JP 33411995 A JP33411995 A JP 33411995A JP 33411995 A JP33411995 A JP 33411995A JP H09142996 A JPH09142996 A JP H09142996A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- mask
- film
- silicon carbide
- pattern
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 113
- 239000013078 crystal Substances 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims description 47
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 38
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 36
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 14
- 239000011358 absorbing material Substances 0.000 claims description 2
- 238000002441 X-ray diffraction Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 5
- 239000010409 thin film Substances 0.000 description 38
- 239000010408 film Substances 0.000 description 32
- 238000005498 polishing Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 239000006096 absorbing agent Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 230000001681 protective effect Effects 0.000 description 8
- 238000007740 vapor deposition Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910016523 CuKa Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Ceramic Products (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術的分野】本発明は、真空紫外線やX
線を露光光源とするリソグラフィー等に用いる露光用反
射型マスクに好適な基板材料および基板を提供するもの
である。TECHNICAL FIELD The present invention relates to vacuum ultraviolet rays and X-rays.
The present invention provides a substrate material and a substrate suitable for a reflective mask for exposure used in lithography or the like in which a line is used as an exposure light source.
【0002】[0002]
【従来の技術】情報処理技術分野の進展、拡大に伴いそ
の技術の根幹をなす半導体技術の向上は目覚ましいもの
がある。特に小型化・低価格化による機器のパーソナル
化は市場の急拡大をもたらした。この機能向上の原因の
一つが半導体の高密度集積化である。半導体の加工ルー
ルは、ライン幅0.5μmのDRAM16Mbit容量
の集積回路を既に実用の域にしている。研究レベルにお
いては、1Gbit容量への挑戦が進んでいる。このこ
とは半導体加工ルールの更新・改良を必然的に伴う。ラ
イン幅0.8〜0.5μm以上であれば、可視域波長領
域のレーザー光線で集積回路パターンニングが容易にで
きた。しかし、0.1μm以下のライン・スペース幅の
加工は、可視領域波長光の露光光源を使用する限り非常
に困難を伴う。従って、可視域波長よりも短波長の真空
紫外線域から、より短波長の軟X線域の波長を利用する
挑戦が進んでいる。2. Description of the Related Art As the field of information processing technology advances and expands, the improvement of semiconductor technology, which is the basis of the technology, is remarkable. In particular, personalization of equipment by downsizing and price reduction has led to a rapid expansion of the market. One of the causes of this functional improvement is high-density integration of semiconductors. According to the semiconductor processing rule, an integrated circuit with a DRAM 16 Mbit capacity and a line width of 0.5 μm has already been put into practical use. At the research level, the challenge of 1 Gbit capacity is advancing. This inevitably involves updating and improving semiconductor processing rules. If the line width is 0.8 to 0.5 μm or more, integrated circuit patterning could be easily performed with a laser beam in the visible wavelength region. However, processing of a line / space width of 0.1 μm or less is extremely difficult as long as an exposure light source of visible region wavelength light is used. Therefore, there is an ongoing challenge to use the wavelength of the soft X-ray region having a shorter wavelength from the vacuum ultraviolet region having a shorter wavelength than the visible region.
【0003】真空紫外線、または、軟X線波長領域を利
用するリソグラフィー用マスクには、透過型と反射型が
開発されてきた。透過型は透過型マスクの片面側に被加
工ウエファーを位置決め設置し、対抗面側より露光用光
線を照射する方法である。したがって、転写する回路パ
ターンは、マスク表面に露光用光線の透過部および吸収
部より成るパターンとして描画されている。一方、反射
型では、露光用光線はマスクの表面にて反射・吸収さ
れ、反射部にて反射された光線がマスク上の回路パター
ンを空間転送し、ウエファー上に達する。Transmission type and reflection type masks have been developed for lithography masks utilizing vacuum ultraviolet rays or soft X-ray wavelength regions. The transmissive type is a method in which a wafer to be processed is positioned and installed on one surface side of a transmissive mask, and an exposure light beam is irradiated from the opposite surface side. Therefore, the circuit pattern to be transferred is drawn on the mask surface as a pattern composed of the transmitting portion and the absorbing portion of the exposure light beam. On the other hand, in the reflection type, the light beam for exposure is reflected and absorbed by the surface of the mask, and the light beam reflected by the reflecting portion spatially transfers the circuit pattern on the mask and reaches the wafer.
【0004】これらのマスク基板は、多くの場合シリコ
ン単結晶板を用いる。この基板上に、反射型マスクでは
吸収および反射薄膜を微細パターン状に表面加工する。
吸収薄膜として、例えば金、タンタル、タングズテンな
どの金属、硅素などの半導体、窒化硅素、炭化硅素、窒
化タンタルなどの絶縁体が好ましく用いられる。反射薄
膜として、反射性能向上のために複数の薄膜材料を多層
に積層することがある。一方、透過型は吸収部薄膜の構
成は同様であるが、透過部は窒化シリコン、炭化シリコ
ン、炭化ボロン、ボロン添加シリコン、又は、炭素を用
いる構成とするものが多い。As the mask substrate, a silicon single crystal plate is often used. On this substrate, an absorption and reflection thin film is surface-processed into a fine pattern in a reflection type mask.
As the absorption thin film, for example, a metal such as gold, tantalum, or tungsten is used, a semiconductor such as silicon, an insulator such as silicon nitride, silicon carbide, or tantalum nitride is preferably used. As the reflective thin film, a plurality of thin film materials may be laminated in multiple layers to improve the reflective performance. On the other hand, the transmissive type has the same structure of the absorbing part thin film, but the transmissive part often uses silicon nitride, silicon carbide, boron carbide, boron-added silicon, or carbon.
【0005】前記シリコン単結晶基板材料はシリコン支
持枠に固定されている。透過型では、照射X線の通路確
保のために前記シリコン支持枠をエッチング除去しなけ
ればならない。The silicon single crystal substrate material is fixed to a silicon support frame. In the transmission type, the silicon support frame must be removed by etching in order to secure the passage of the irradiation X-ray.
【0006】[0006]
【発明が解決しようとする課題】反射型マスクの機能
は、マスク表面にて、照射光を選択反射および選択吸収
することによりパターンを発生し、空間転送することで
ある。したがって、パターンを発生するマスク表面の変
形は厳しく制限されている。従来は、マスク基板材料と
して単結晶シリコンを使用しているが、本発明では、熱
膨張率が小さく、耐熱性に優れた炭化硅素材料を基板材
料に用い、マスク作製時の環境、または、露光装置内の
熱的、化学的変化による影響を受けにくい露光精度に優
れたマスク用基板を提供する。The function of the reflective mask is to generate a pattern on the surface of the mask by selectively reflecting and selectively absorbing the irradiation light, and spatially transferring the pattern. Therefore, the deformation of the mask surface that produces the pattern is severely limited. Conventionally, single crystal silicon is used as a mask substrate material, but in the present invention, a silicon carbide material having a small coefficient of thermal expansion and excellent heat resistance is used as a substrate material, an environment at the time of mask production, or exposure. (EN) Provided is a mask substrate excellent in exposure accuracy which is hardly affected by thermal and chemical changes in the apparatus.
【0007】また、反射型マスクは、照射光を選択吸収
する吸収部、 選択反射する反射部を形成するために、
それぞれ2種の機能材料薄膜の高精度表面加工をするこ
とが必要である。本発明は、マスク基板の基板材料が吸
収機能材料よりなることにより、基板自体が吸収部を構
成し、反射型マスクが容易に作製できる基板材料および
基板を提供することである。In addition, the reflective mask has an absorbing portion that selectively absorbs irradiation light and a reflecting portion that selectively reflects irradiation light.
It is necessary to perform high-precision surface processing of two kinds of functional material thin films, respectively. It is an object of the present invention to provide a substrate material and a substrate in which the substrate itself constitutes an absorbing portion by making the substrate material of the mask substrate an absorbing functional material, and a reflective mask can be easily manufactured.
【0008】[0008]
【課題を解決するための手段】本発明は、反射型マスク
における基板材料および基板において、前記課題を解決
しようとするものである。The present invention is intended to solve the above-mentioned problems in the substrate material and the substrate in the reflection type mask.
【0009】マスク作製時の環境、または、露光装置内
の環境に影響を受けにくい基板材料として、支持基板は
焼結炭化硅素板にて作製する。焼結炭化硅素支持基板上
に炭化硅素薄膜をCVD法により成膜し、表面を鏡面研
磨することにより反射マスク基板を構成する。The supporting substrate is made of a sintered silicon carbide plate as a substrate material which is not easily influenced by the environment at the time of making the mask or the environment inside the exposure apparatus. A reflection mask substrate is formed by forming a silicon carbide thin film on a sintered silicon carbide supporting substrate by a CVD method and polishing the surface to a mirror surface.
【0010】以下本発明を図面に基づき説明する。図1
に示すように、焼結炭化硅素支持基板1上に同種材料組
成の薄膜2を成膜して基板を構成し、成膜された薄膜面
上を鏡面研磨してマスク基板とする。CVD技術により
成膜される薄膜2は、超平滑鏡面研磨に適する結晶成長
をした薄膜である。薄膜の結晶構造がβ型結晶構造をな
し、結晶膜のX線回折において(220)面の回折ピー
クが最高強度を示す(220)面配向炭化硅素薄膜2
は、被加工・研磨性に優れている。結晶配向(220)
面と共に、(111)、及び(200)の配向面を持つ
炭化硅素薄膜を焼結炭化硅素支持基板上に蒸着した基板
と、(220)面配向結晶成分が上記配向成分に対しX
線回析ピーク比99以上の薄膜を蒸着した基板との被研
磨性を比較すると、両炭化硅素膜の差は顕著であった。
尚、図5に示すように、上記X線回折ピーク比が99以
上の場合には、rms1.5Å程度の十分な表面粗度が
得られるため、照射光の基材表面からの乱反射をほぼ皆
無とすることが可能になる。従ってウエファー上に精密
な露光パターンを転写できるマスク用基材を提供する。The present invention will be described below with reference to the drawings. FIG.
As shown in, a substrate is formed by forming a thin film 2 of the same material composition on the sintered silicon carbide supporting substrate 1, and the thin film surface thus formed is mirror-polished to form a mask substrate. The thin film 2 formed by the CVD technique is a crystal-grown thin film suitable for ultra-smooth mirror polishing. The crystal structure of the thin film is a β-type crystal structure, and the diffraction peak of the (220) plane shows the highest intensity in the X-ray diffraction of the crystal film.
Has excellent workability and polishability. Crystal orientation (220)
A substrate on which a silicon carbide thin film having (111) and (200) orientation planes is vapor-deposited on a sintered silicon carbide supporting substrate, and a (220) plane oriented crystal component is X relative to the orientation component.
Comparing the abradability with the substrate on which a thin film having a linear diffraction peak ratio of 99 or more was compared, the difference between the two silicon carbide films was remarkable.
As shown in FIG. 5, when the X-ray diffraction peak ratio is 99 or more, a sufficient surface roughness of about rms 1.5Å can be obtained, so that there is almost no diffuse reflection of irradiation light from the substrate surface. It becomes possible to Therefore, a mask substrate capable of transferring a precise exposure pattern onto a wafer is provided.
【0011】炭素硅素支持基板材料1と薄膜材料2が同
一材料組成よりなり、かつ、熱膨張率が小さい材料のた
めに、露光用照射光エネルギーの繰り返し照射による熱
的繰り返し歪みに対し異種材料の複合に比較して、境界
剥離の損傷は少ない。また、マスク作製時の環境、すな
わち、EBによるパターン描画、洗浄等の基板周辺環境
変化によるパターン精度誤差の発生、または、露光装置
内の温度変動の影響を受けて、基板の熱的歪により鏡面
3上のマスクパターンが変形し、転写されるウエファー
上の電子線レジストのパターンニングに障害を生じさせ
ることはない。炭素硅素材料は熱伝導率も大きく、冷却
・加熱によるマスク寸法の変化に対応した温度制御が精
密にできる。かかる材料および材料構成のために、安定
した機能を発揮できる基板を提供する。Since the carbon silicon supporting substrate material 1 and the thin film material 2 are composed of the same material composition and have a small coefficient of thermal expansion, they are different materials against the thermal cyclic strain due to the repeated irradiation of the irradiation light energy for exposure. Compared to the composite, there is less damage due to delamination. In addition, due to the environment at the time of manufacturing the mask, that is, the pattern accuracy error caused by the change in the peripheral environment of the substrate such as the pattern drawing by EB, the cleaning, or the influence of the temperature fluctuation in the exposure apparatus, the thermal distortion of the substrate causes a mirror surface. The mask pattern on No. 3 is not deformed and does not hinder the patterning of the electron beam resist on the transferred wafer. The carbon silicon material has a large thermal conductivity, and the temperature can be precisely controlled according to the change in the mask dimension due to cooling and heating. A substrate that can exhibit stable functions is provided due to such materials and material configurations.
【0012】基板上に、真空紫外線吸収体を表面加工す
る必要のない反射型マスク構成には、真空紫外線の吸収
体である材料によって基板材料を構成する。基板材料の
表面を研磨加工し、紫外線吸収面を形成する。吸収面の
ために照射光反射ミラーほどに超平滑面に研磨する必要
はない。研磨加工された基板表面は、表面保護および次
工程の薄膜の接着性向上のために保護膜を形成する。照
射光を反射し、反射光に転写パターンを形成せしめる反
射部は、保護膜面上に電子線レジストを塗付し、微細パ
ターンをEB描画処理後、反射材料の薄膜を前記レジス
トの剥離された微細パターン部に蒸着し、形成する。し
たがって、前記基板表面の照射光吸収面上には、保護膜
を介し照射光反射微細パターンが形成され、照射光をパ
ターン状に反射・転送する。従来の反射型マスク形成の
ように、基板上に照射光吸収用薄膜を形成する必要が無
く、吸収機能を前記基板材料面が履行することにより真
空紫外線反射型マスクの作成を容易にする基板を提供す
る。For a reflective mask structure which does not require surface treatment of the VUV absorber on the substrate, the substrate material is made of a VUV absorber material. The surface of the substrate material is polished to form an ultraviolet absorbing surface. Because of the absorbing surface, it is not necessary to polish it to a super smooth surface as much as the irradiation light reflecting mirror. A protective film is formed on the polished substrate surface to protect the surface and improve the adhesion of the thin film in the next step. The reflection part that reflects the irradiation light and forms a transfer pattern on the reflection light is formed by applying an electron beam resist on the surface of the protective film, performing an EB drawing process on the fine pattern, and then removing the thin film of the reflection material from the resist. It is formed by vapor deposition on the fine pattern portion. Therefore, an irradiation light reflection fine pattern is formed on the irradiation light absorption surface of the substrate surface through the protective film, and the irradiation light is reflected and transferred in a pattern. Unlike the conventional reflective mask formation, it is not necessary to form a thin film for absorbing irradiation light on the substrate, and a substrate that facilitates the production of a vacuum ultraviolet reflective mask by the substrate material surface performing the absorbing function. provide.
【0013】図2は、真空紫外線吸収特性を有する基板
材料を用いる露光用マスクを作製する過程の一部であ
る。基板材料6としてグラッシーカーボンを使用する。
グラッシーカーボンは真空紫外線の完全吸収体である。
また、表面を研磨加工するに十分な被加工性を有してい
る。すなわち、基板材料上に薄膜処理をせずに直接表面
を研磨する。しかしながら、グラッシーカーボン表面の
耐摩耗性および表面上に形成する反射膜との接着性向上
のために紫外線波長に対し反射特性をもたない保護膜7
を全面に蒸着する。保護膜7上に上記方法にて真空紫外
線の反射薄膜をパターンニング蒸着・形成する。FIG. 2 is a part of the process of producing an exposure mask using a substrate material having a vacuum ultraviolet ray absorbing property. Glassy carbon is used as the substrate material 6.
Glassy carbon is a perfect absorber of vacuum ultraviolet light.
Further, it has workability sufficient for polishing the surface. That is, the surface is directly polished without performing thin film processing on the substrate material. However, in order to improve the abrasion resistance of the surface of the glassy carbon and the adhesiveness with the reflective film formed on the surface, the protective film 7 having no reflective property to the ultraviolet wavelength is used.
Is vapor-deposited on the entire surface. A vacuum ultraviolet ray reflective thin film is patterned and deposited on the protective film 7 by the above method.
【0014】[0014]
【作用】反射型マスク基板において、焼結炭化硅素支持
基板上に、支持基板材料と同種材料よりなる炭化硅素薄
膜をCVD法により成膜する。表面を鏡面研磨加工して
マスク基板となす。炭化硅素材料固有の熱的、化学的特
性により、マスク作製時における作業環境変化、また
は、露光装置内の環境変化に対して、熱的、化学的変化
の少ない安定な反射型マスク用基板および基板材料とな
る。In the reflective mask substrate, the silicon carbide thin film made of the same material as the supporting substrate material is formed on the sintered silicon carbide supporting substrate by the CVD method. The surface is mirror-polished to form a mask substrate. Due to the unique thermal and chemical characteristics of silicon carbide materials, a stable reflective mask substrate and substrate with little thermal or chemical changes due to changes in the working environment during mask fabrication or environmental changes in the exposure equipment It becomes a material.
【0015】炭化硅素薄膜は、鏡面研磨加工し易い炭化
硅素薄膜構造、すなわち、結晶が(220)面方向に揃
った薄膜構造を用いる。本薄膜構造膜を有するマスク基
板は研磨加工の容易で露光精度に優れたマスク用基板と
なる。As the silicon carbide thin film, a silicon carbide thin film structure which is easily mirror-polished, that is, a thin film structure in which crystals are aligned in the (220) plane direction is used. The mask substrate having the thin film structure film is a substrate for a mask that is easy to polish and has excellent exposure accuracy.
【0016】真空紫外線反射型マスク基板において、基
板材料を真空紫外線吸収材料よりなり、基板表面を研磨
することにより基板自体が真空紫外線の吸収部を構成す
る。基板材料上に改めて真空紫外線吸収膜を蒸着・処理
する必要のない反射型マスク用基板、および基板材料と
なる。In the vacuum ultraviolet ray reflection type mask substrate, the substrate material is made of a vacuum ultraviolet ray absorbing material, and the substrate itself constitutes a vacuum ultraviolet ray absorbing portion by polishing the surface of the substrate. It becomes a substrate for a reflective mask and a substrate material which does not require vapor deposition and treatment of a vacuum ultraviolet ray absorbing film on the substrate material.
【0017】[0017]
【実施例】以下に本発明の実施例を挙げて更に詳しく説
明する。 実施例1 図1に示す支持基盤は、炭化硅素粉末に炭化ホウ酸、及
び炭素元としてフェノール樹脂を混合し、板状1に粉末
焼成した炭化硅素板を用いる。薄膜2は支持基盤表面に
純粋のβ型炭化硅素膜を化学蒸着(CVD−SiC)し
たものである。化学蒸着は、蒸着条件を調整することに
よって種々の表面形態を呈し、X線回折パターンにて検
出できる。EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 The support base shown in FIG. 1 uses a silicon carbide plate obtained by mixing silicon carbide powder with boric acid carbide and a phenol resin as a carbon source, and firing the powder into a plate-like shape 1. The thin film 2 is formed by chemical vapor deposition (CVD-SiC) of a pure β-type silicon carbide film on the surface of the support substrate. Chemical vapor deposition exhibits various surface morphologies by adjusting vapor deposition conditions and can be detected by an X-ray diffraction pattern.
【0018】本実施例では、蒸着は非酸化雰囲気で行
い、蒸着温度は1350℃であった。図3に示す蒸着炭
化硅素膜のX線回折パターン図(CuKa:30KVx
30mA、フルスケール:50KCPS、スリット:1
−1−0.3、2θ:2o/min、チャート:20m
m/min、メインピーク強度:27KCPS)から明
らかなように、配向面(220)の(111)面及びそ
の他の面に対するX線回折強度比が、そのピーク強度に
おいて99以上となっている。すなわち、炭化硅素蒸着
層における結晶が面方向(220)に配向した構造をな
している。In this example, the vapor deposition was performed in a non-oxidizing atmosphere, and the vapor deposition temperature was 1350 ° C. X-ray diffraction pattern diagram (CuKa: 30KVx) of the vapor-deposited silicon carbide film shown in FIG.
30mA, full scale: 50KCPS, slit: 1
−1-0.3, 2θ: 2 o / min, chart: 20 m
As is clear from m / min and main peak intensity: 27 KCPS, the X-ray diffraction intensity ratio of the oriented plane (220) to the (111) plane and other planes is 99 or more at the peak intensity. That is, the crystal in the silicon carbide vapor deposition layer is oriented in the plane direction (220).
【0019】化学蒸着(CVD−SiC)面を超平滑面
(RMS 10Å以下)に表面研磨してX線反射面を形
成する。配向面が(220)方向に配向した構造をなる
蒸着炭化硅素表面は被研磨性において顕著な特性を有し
ている。所定の平滑度(RMS 10Å以下)に研磨す
るに要した研磨エネルギー、研磨所要時間等の労力が、
図4に示すような(220)面配向以外の結晶構造成分
を含む蒸着膜に比較して、極めて少なく、しかも、研磨
エネルギーが小さいことから、研磨面には殆ど損傷が認
められず、X線反射面として好適である。支持焼結基板
と薄膜材料が同一材料のために、両材料の接着は極めて
強固であり、高密度エネルギー光による結合境界の損
傷、また熱的、機械的歪みによる剥離は生じない。The chemical vapor deposition (CVD-SiC) surface is polished to a super smooth surface (RMS 10 Å or less) to form an X-ray reflecting surface. The vapor-deposited silicon carbide surface having a structure in which the orientation plane is oriented in the (220) direction has remarkable properties in terms of grindability. The labor such as polishing energy and polishing time required for polishing to a predetermined smoothness (RMS 10 Å or less)
Compared to the vapor-deposited film containing a crystal structure component other than the (220) plane orientation as shown in FIG. 4, the amount of polishing energy is extremely small, and the polishing surface shows almost no damage. It is suitable as a reflecting surface. Since the supporting sintered substrate and the thin film material are the same material, the adhesion between the two materials is extremely strong, and the bond boundaries are not damaged by the high-density energy light, and peeling due to thermal or mechanical strain does not occur.
【0020】図1(a)に示す炭化硅素焼結支持基板
1、炭化硅素の化学蒸着膜2および研磨鏡面3にて、既
に反射型X線マスクの反射ミラー面を構成している。従
来の反射面作製技術のように基板材料の上にX線反射用
の特別な薄膜加工処理を行う必要がなく、容易に反射型
X線マスク基板、かつ、X線反射面を作ることができ
る。The silicon carbide sintered support substrate 1, the silicon carbide chemical vapor deposition film 2 and the polishing mirror surface 3 shown in FIG. 1 (a) have already constituted the reflection mirror surface of the reflection type X-ray mask. It is possible to easily form a reflection type X-ray mask substrate and an X-ray reflection surface without the need to perform a special thin film processing treatment for X-ray reflection on the substrate material unlike the conventional reflection surface manufacturing technique. .
【0021】次に得られたマスク基板に電子線レジスト
4を塗付し、EB描画法によりX線の吸収体パターン線
部を、EB照射・感光・除去した。この上にEB蒸着に
よりX線吸収体5であるシリコン(線膨張率熱 伝導率
J/cm−s−deg)を0.1μm厚形成した後、レ
ジスト膜を剥離し、炭化硅素薄膜のX線反射面上にシリ
コンパターン5を得た。なお、上記マスク製作には、X
線吸収体としてシリコン膜を使用したが、シリコン以外
にTa、Au、W等の金属、窒化硅素、窒化タンタル等
の絶縁体を用いてもよい。Next, an electron beam resist 4 was applied to the obtained mask substrate, and the X-ray absorber pattern line portion was irradiated with EB, exposed to light and removed by an EB drawing method. Silicon (linear expansion coefficient thermal conductivity J / cm-s-deg), which is the X-ray absorber 5, was formed thereon by EB vapor deposition to a thickness of 0.1 μm, and then the resist film was peeled off to remove the X-ray of the silicon carbide thin film. A silicon pattern 5 was obtained on the reflecting surface. It should be noted that, for the above mask production, X
Although the silicon film is used as the line absorber, a metal such as Ta, Au, or W, or an insulator such as silicon nitride or tantalum nitride may be used instead of silicon.
【0022】実施例2 図2は真空紫外線反射型マスク基板である。基板材料と
してグラッシーカーボンを使用する。グラッシーカーボ
ンは多種の化学構造で存在するガラス上炭素の中の一つ
である。酸に対して強い耐久性を示し、アルカリ金属、
Bi、Te、B、Nb、Zr、Ta、W等35種類の金
属、ならびに、7種類の溶解ハロゲン化物との相溶性が
調べられているが原子炉用黒鉛との差はない。またGa
As、GaPなどIII−V族間化合物半導体、Te化
合物、MgF2、高温におけるAlやニクロムなどとも
反応しない。したがって、グラッシーカーボンよりなる
基板は、マスク作製作業中、または、露光装置内等、マ
スクを取り扱う周辺を汚染することなしに加工すること
ができる。これらの特性は、クリーンを旨とする半導体
加工用素材として好適なものである。Embodiment 2 FIG. 2 shows a vacuum ultraviolet reflection type mask substrate. Glassy carbon is used as the substrate material. Glassy carbon is one of carbon on glass that exists in various chemical structures. Shows strong durability against acid, alkali metal,
The compatibility with 35 kinds of metals such as Bi, Te, B, Nb, Zr, Ta and W, and 7 kinds of dissolved halides has been investigated, but there is no difference with graphite for reactor. Ga
It does not react with III-V group compound semiconductors such as As and GaP, Te compounds, MgF 2 , Al and nichrome at high temperatures. Therefore, the substrate made of glassy carbon can be processed without contaminating the area around the mask, such as during the mask manufacturing operation or in the exposure apparatus. These characteristics are suitable as a material for semiconductor processing for the purpose of cleanliness.
【0023】図2(a)に示す略図は、グラッシーカー
ボン基板6上に保護膜7として0.1μm厚みのTi膜
をコートしたものである。グラッシーカーボン面は完全
な真空紫外線の吸収体である、かつ比較的軟らかいため
に表面加工も容易である。The schematic diagram shown in FIG. 2A shows a glassy carbon substrate 6 coated with a 0.1 μm thick Ti film as a protective film 7. The glassy carbon surface is a perfect absorber of vacuum ultraviolet rays, and since it is relatively soft, surface processing is easy.
【0024】従来の技術のように基板上に吸収膜を薄膜
加工処理して作成するのでなく、マスク基板が吸収体を
成すために、薄膜加工の一つの工程が省略可能となり、
効率の良いマスク作製のプロセスを提供している。ま
た、エネルギー光を吸収する場合、反射面ほどの超平滑
面を必要としないこともグラッシーカーボンが利用でき
る原因の一つである。Since the mask substrate serves as an absorber instead of forming the absorption film on the substrate by thin film processing as in the prior art, one step of thin film processing can be omitted.
It provides an efficient mask manufacturing process. Further, when absorbing energetic light, one of the reasons why glassy carbon can be used is that it does not require a super-smooth surface like a reflecting surface.
【0025】同図(b)によりグラッシーカーボン基板
6上に紫外線反射部をパターンニングする過程の略図で
ある。マスク基板上に電子線レジスト8を塗付し、EB
描画法により真空紫外線の反射体パターン線部を、感光
・除去した。この上に真空紫外線反射体であるPtをE
B蒸着により0.1μ厚形成した後、レジスト膜を剥離
し、グラッシーカーボン上にPtパターン9を得た。な
お、真空紫外線の反射膜としてAuのような金属、また
は、Mo/Si等の多層膜にしてもよい。FIG. 3B is a schematic view of the process of patterning the ultraviolet reflecting portion on the glassy carbon substrate 6 according to FIG. Electron beam resist 8 is applied on the mask substrate and EB
By a drawing method, the line portion of the VUV reflector pattern was exposed and removed. On top of this, Pt, which is a vacuum ultraviolet ray reflector, is added.
After forming a film having a thickness of 0.1 μm by B vapor deposition, the resist film was peeled off to obtain a Pt pattern 9 on the glassy carbon. The vacuum ultraviolet ray reflective film may be a metal such as Au or a multilayer film such as Mo / Si.
【0026】[0026]
【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。Since the present invention is configured as described above, it has the following effects.
【0027】反射型マスク基板において、支持基板およ
び支持基板上薄膜を、それぞれ焼結炭化硅素および炭化
硅素薄膜により構成し、薄膜表面を鏡面研磨して反射型
マスク基板とするために、同種材料の積層および炭化硅
素固有の材料特性により、熱的、化学的に安定な反射型
マスク基板材料を提供できる。In the reflective mask substrate, the supporting substrate and the thin film on the supporting substrate are made of sintered silicon carbide and silicon carbide thin film, respectively, and the thin film surface is mirror-polished to form a reflective mask substrate. Due to the inherent material properties of the laminated and silicon carbide, a thermally and chemically stable reflective mask substrate material can be provided.
【0028】上記反射型マスク基板を構成する炭化硅素
薄膜が、結晶配向を(220)面方向に揃えることによ
って、鏡面研磨加工に適した被研磨性に優れかつ、露光
精度に優れた反射型マスク基板材料を提供できる。By aligning the crystal orientation of the silicon carbide thin film constituting the reflective mask substrate in the (220) plane direction, the reflective mask is excellent in abradability suitable for mirror-polishing and has excellent exposure accuracy. A substrate material can be provided.
【0029】反射型マスク基板において、基板材料表面
が照射光吸収部を構成し、この吸収部表面上に照射光反
射微細パターン薄膜を形成することにより反射型マスク
をなす構造を用いるために、照射光吸収薄膜を基板表面
に形成する必要のない反射型マスク基板を提供できる。In the reflective mask substrate, since the surface of the substrate material constitutes an irradiation light absorbing portion and a structure forming a reflective mask by forming an irradiation light reflecting fine pattern thin film on the surface of the absorbing portion is used. It is possible to provide a reflective mask substrate that does not require the formation of a light absorbing thin film on the substrate surface.
【0030】照射光吸収部を基板自体により構成する反
射型マスク基板を、グラッシーカーボンを基板材料に使
用することにより作製する。グラッシーカーボンは照射
光である真空紫外線の完全吸収体であるために、照射光
吸収部を具備した反射型マスク基板材料を提供できる。A reflection type mask substrate in which the irradiation light absorbing portion is composed of the substrate itself is produced by using glassy carbon as the substrate material. Since the glassy carbon is a complete absorber of the vacuum ultraviolet ray which is the irradiation light, it is possible to provide the reflective mask substrate material having the irradiation light absorbing portion.
【図1】X線反射型マスクの製作過程の断面略図であ
る。 (a)焼結炭化硅素支持基板、及び炭化硅素薄膜を成膜
したマスク基板である。 (b)マスク基板上にX線吸収膜をパターンニング成膜
した図である。 (c)加工過程を終えたX線反射型マスクの断面の一部
を示す図である。FIG. 1 is a schematic cross-sectional view of a manufacturing process of an X-ray reflective mask. (A) A sintered silicon carbide support substrate and a mask substrate on which a silicon carbide thin film is formed. (B) It is the figure which patterned and formed the X-ray absorption film on the mask substrate. (C) It is a figure which shows a part of cross section of the X-ray reflection type mask which finished the process.
【図2】真空紫外線反射型マスクの製作過程の断面略図
である。 (a)クラッシーカーボン基板、及び保護膜よりなる真
空紫外線反射型マスク基板である。 (b)真空紫外線反射型マスク基板上に反射膜をパター
ンニング成膜した図である。FIG. 2 is a schematic cross-sectional view of a process of manufacturing a VUV reflective mask. (A) A vacuum ultraviolet reflective mask substrate including a classy carbon substrate and a protective film. (B) It is the figure which patterned and formed the reflective film on the vacuum ultraviolet reflective mask substrate.
【図3】蒸着炭化硅素膜の面配向を(220)方向にし
たX線反射型マスク基板表面のX線回折パターン図であ
る。FIG. 3 is an X-ray diffraction pattern diagram of the surface of an X-ray reflection type mask substrate in which the plane orientation of a vapor-deposited silicon carbide film is the (220) direction.
【図4】蒸着炭化硅素膜の面配向を(220)方向以外
の結晶成分を含むX線反射型マスク基板表面のX線回折
パターン図である。FIG. 4 is an X-ray diffraction pattern diagram of the surface of an X-ray reflective mask substrate including crystal components other than the plane orientation of the vapor-deposited silicon carbide film in the (220) direction.
【図5】ピーク強度比(220)/(111)に対応す
る研磨精度を示すグラフである。FIG. 5 is a graph showing polishing accuracy corresponding to a peak intensity ratio (220) / (111).
1 焼結炭化硅素支持基板 2 蒸着炭化硅素膜 3 X線反射ミラー 4 パターンニング用レジスト膜 5 パターン化されたX線吸収体 6 クラッシーカーボン基板 7 保護膜 8 パターンニング用レジスト膜 9 パターン化された真空紫外線反射ミラー 1 Sintered Silicon Carbide Supporting Substrate 2 Evaporated Silicon Carbide Film 3 X-Ray Reflecting Mirror 4 Patterning Resist Film 5 Patterned X-ray Absorber 6 Classy Carbon Substrate 7 Protective Film 8 Patterning Resist Film 9 Patterned Vacuum UV reflection mirror
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03F 1/16 C04B 35/56 101X H01L 21/027 H01L 21/30 531M Continuation of the front page (51) Int.Cl. 6 Identification code Reference number within the agency FI Technical display location G03F 1/16 C04B 35/56 101X H01L 21/027 H01L 21/30 531M
Claims (3)
基板上に、結晶方向が(220)面に配向した炭化硅素
膜(CVD−SiC)を形成したことを特徴とする反射
型マスク基板。1. A reflective mask comprising a sintered silicon carbide plate as a support substrate, and a silicon carbide film (CVD-SiC) having a crystal orientation oriented in a (220) plane formed on the support substrate. substrate.
れ、且つ、該基板自体が真空紫外線吸収部を構成し、該
基板表面に反射部を形成することを特徴とする真空紫外
線反射型マスク用基板。2. A substrate for a vacuum ultraviolet reflective mask, wherein the substrate is made of a vacuum ultraviolet absorbing material, and the substrate itself constitutes a vacuum ultraviolet absorbing portion and a reflective portion is formed on the surface of the substrate. .
ク基板において、基板材料がグラッシーカーボンよりな
ることを特徴とする真空紫外線反射型マスク基板。3. The vacuum ultraviolet reflective mask substrate according to claim 2, wherein the substrate material is glassy carbon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33411995A JPH09142996A (en) | 1995-11-28 | 1995-11-28 | Reflection type mask substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33411995A JPH09142996A (en) | 1995-11-28 | 1995-11-28 | Reflection type mask substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09142996A true JPH09142996A (en) | 1997-06-03 |
Family
ID=18273742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33411995A Pending JPH09142996A (en) | 1995-11-28 | 1995-11-28 | Reflection type mask substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09142996A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0908932A3 (en) * | 1997-09-03 | 1999-12-22 | Nippon Pillar Packing Co., Ltd. | Semiconductor wafer holder with cvd silicon carbide film coating |
EP1553066A1 (en) * | 2002-09-13 | 2005-07-13 | National Institute for Materials Science | Oriented silicon carbide sintered compact and method for preparation thereof |
JP2014225498A (en) * | 2013-05-15 | 2014-12-04 | 凸版印刷株式会社 | Reflective mask blank and reflective mask |
JP2015018918A (en) * | 2013-07-10 | 2015-01-29 | キヤノン株式会社 | Reflection type mask, exposure method, and method of manufacturing device |
JP2015053433A (en) * | 2013-09-09 | 2015-03-19 | 凸版印刷株式会社 | Reflective mask blank and reflective mask |
WO2022118623A1 (en) * | 2020-12-02 | 2022-06-09 | 日清紡ケミカル株式会社 | Member for exposure device, manufacturing method for member for exposure device, and composite member for exposure device |
WO2024034439A1 (en) * | 2022-08-09 | 2024-02-15 | Agc株式会社 | Reflective mask blank for euv lithography, method for manufacturing same, reflective mask for euv lithography, and method for manufacturing same |
-
1995
- 1995-11-28 JP JP33411995A patent/JPH09142996A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0908932A3 (en) * | 1997-09-03 | 1999-12-22 | Nippon Pillar Packing Co., Ltd. | Semiconductor wafer holder with cvd silicon carbide film coating |
EP1553066A1 (en) * | 2002-09-13 | 2005-07-13 | National Institute for Materials Science | Oriented silicon carbide sintered compact and method for preparation thereof |
EP1553066A4 (en) * | 2002-09-13 | 2008-04-23 | Nat Inst For Materials Science | SILICON CARRIURE SINTERED PASTILLE AND MANUFACTURING METHOD THEREOF |
JP2014225498A (en) * | 2013-05-15 | 2014-12-04 | 凸版印刷株式会社 | Reflective mask blank and reflective mask |
JP2015018918A (en) * | 2013-07-10 | 2015-01-29 | キヤノン株式会社 | Reflection type mask, exposure method, and method of manufacturing device |
JP2015053433A (en) * | 2013-09-09 | 2015-03-19 | 凸版印刷株式会社 | Reflective mask blank and reflective mask |
WO2022118623A1 (en) * | 2020-12-02 | 2022-06-09 | 日清紡ケミカル株式会社 | Member for exposure device, manufacturing method for member for exposure device, and composite member for exposure device |
WO2024034439A1 (en) * | 2022-08-09 | 2024-02-15 | Agc株式会社 | Reflective mask blank for euv lithography, method for manufacturing same, reflective mask for euv lithography, and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023052147A (en) | Extreme ultraviolet mask blank with multilayer absorber and method of manufacturing the same | |
EP0279670B1 (en) | A reflection type mask | |
CN100549818C (en) | The substrate that is used for special miniature photoetching | |
TWI417647B (en) | Reflective mask blank for euv lithography and substrate with functional film for the same | |
US6797368B2 (en) | Reflective-type mask blank for exposure, method of producing the same, and reflective-type mask for exposure | |
US20120225375A1 (en) | Optical member for euv lithography | |
KR102647715B1 (en) | TA-CU alloy material for extreme ultraviolet ray mask absorber | |
JP2002222764A (en) | Substrate with multilayer film, reflection mask blank for exposure, reflection mask for exposure, method of manufacturing it and method of manufacturing semiconductor | |
CN115053180A (en) | Hard mask material of extreme ultraviolet mask blank | |
US6960412B2 (en) | Reflective-type mask blank for exposure, method of producing the same, and reflective-type mask for exposure | |
US5291536A (en) | X-ray mask, method for fabricating the same, and pattern formation method | |
JP2883100B2 (en) | Half mirror or beam splitter for soft X-ray and vacuum ultraviolet | |
US4994141A (en) | Method of manufacturing a mask support of SiC for radiation lithography masks | |
JPH09142996A (en) | Reflection type mask substrate | |
JP2004104118A (en) | Reflection mask blank and manufacturing method for reflection mask | |
JP7288959B2 (en) | Extreme UV mask with backside coating | |
US6387572B1 (en) | Low CTE substrate for reflective EUV lithography | |
JP3806711B2 (en) | REFLECTIVE MASK BLANK, REFLECTIVE MASK MANUFACTURING METHOD, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD | |
US7314688B2 (en) | Method of producing a reflection mask blank, method of producing a reflection mask, and method of producing a semiconductor device | |
US20030142785A1 (en) | X-ray-reflective mirrors exhibiting reduced thermal stress, and X-ray optical systems comprising same | |
JP7295260B2 (en) | Extreme UV mask blank with multilayer absorber and manufacturing method | |
US20220350233A1 (en) | Extreme ultraviolet mask absorber materials | |
JPH0336402B2 (en) | ||
US6884361B2 (en) | Method for making a mirror for photolithography | |
JPH11329918A (en) | Soft x-ray projection aligner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051011 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060314 |