JPS6210435B2 - - Google Patents
Info
- Publication number
- JPS6210435B2 JPS6210435B2 JP54157869A JP15786979A JPS6210435B2 JP S6210435 B2 JPS6210435 B2 JP S6210435B2 JP 54157869 A JP54157869 A JP 54157869A JP 15786979 A JP15786979 A JP 15786979A JP S6210435 B2 JPS6210435 B2 JP S6210435B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- thin film
- zns
- luminescent
- emitting layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010409 thin film Substances 0.000 claims description 24
- 239000012535 impurity Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- FWQVINSGEXZQHB-UHFFFAOYSA-K trifluorodysprosium Chemical compound F[Dy](F)F FWQVINSGEXZQHB-UHFFFAOYSA-K 0.000 claims 1
- 238000005401 electroluminescence Methods 0.000 description 22
- 230000005684 electric field Effects 0.000 description 6
- 229910052692 Dysprosium Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000013543 active substance Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000000295 emission spectrum Methods 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- -1 Si 3 N 4 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 235000019646 color tone Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Illuminated Signs And Luminous Advertising (AREA)
Description
【発明の詳細な説明】
本発明は交流電界の印加に依つて、EL
(Electro Luminescence)発光を呈する薄膜EL
素子に関するものである。[Detailed Description of the Invention] The present invention provides an EL
(Electro Luminescence) Thin film EL that emits light
It is related to the element.
従来、交流動作の薄膜EL素子に関して、発光
層に規則的に電界(106V/cm程度)を印加し、
絶縁耐圧、発光効率及び動作の安定性等を高める
ために、0.1〜2.0wt%のMn(あるいはCu、Al、
Br等)をドープしたZns、ZnSe等の半導体発光層
をY2O3、TiO2等の誘電体薄膜でサンドイツチし
た三層構造ZnS:Mn(又はZnSe:Mn)EL素子
が開発され、発光諸特性の向上が確かめられてい
る。この薄膜EL素子は数KHzの交流電界印加に
よつて高輝度発光し、しかも長寿命であるという
特徴を有している。またこの薄膜EL素子の発光
に関しては印加電圧を昇圧していく過程と高電圧
側より降圧していく過程で、同じ印加電圧に対し
て発光輝度が異なるといつたヒステリシス特性を
有していることが発見され、そしてこのヒステリ
シス特性を有する薄膜EL素子に印加電圧を昇圧
する過程に於いて、光、電界、熱等が付与される
と薄膜EL素子はその強度に対応した発光輝度の
状態に励起され、光、電界、熱等を除去して元の
状態に戻しても発光輝度は高くなつた状態で維持
されるいわゆるメモリー現象が表示技術の新たな
利用分野を開拓するに到つた。 Conventionally, for AC-operated thin-film EL devices, an electric field (about 10 6 V/cm) is regularly applied to the light emitting layer.
In order to improve dielectric strength, luminous efficiency, and operation stability, 0.1 to 2.0 wt% of Mn (or Cu, Al,
A three-layer structure ZnS:Mn (or ZnSe:Mn) EL device was developed, in which a semiconductor light-emitting layer such as Zns or ZnSe doped with Br, etc. was sandwiched with a dielectric thin film such as Y 2 O 3 or TiO 2 , and the light emitting properties were improved. Improvement in characteristics has been confirmed. This thin-film EL element emits high-intensity light when an alternating current electric field of several KHz is applied, and has a long lifespan. Furthermore, regarding the light emission of this thin film EL element, it has a hysteresis characteristic in which the light emission brightness differs for the same applied voltage in the process of increasing the applied voltage and in the process of decreasing the applied voltage from the high voltage side. was discovered, and in the process of increasing the applied voltage to a thin film EL element with this hysteresis characteristic, when light, electric field, heat, etc. are applied, the thin film EL element is excited to a state of luminance corresponding to the intensity. The so-called memory phenomenon, in which the luminance remains at a high level even after the light, electric field, heat, etc. are removed and the display returns to its original state, has opened up a new field of use for display technology.
薄膜EL素子の一例としてZnS:Mn薄膜EL素子
の基本的構造を第1図に示す。 FIG. 1 shows the basic structure of a ZnS:Mn thin film EL device as an example of a thin film EL device.
第1図に基いて薄膜EL素子の構造を具体的に
説明すると、ガラス基板1上にIn2O3、SnO2等の
透明電極2、さらにその上に積層してY2O3、
TiO2、Al2O3、Si3N4、SiO2等からなる第1の誘
電体層3がスパツタあるいは電子ビーム蒸着法等
により重畳形成されている。第1の誘電体層3上
にはZnS:Mn焼結ペツトを電子ビーム蒸着する
ことにより得られるZnS発光層4が形成されてい
る。この時蒸着用のZnS:Mn焼結ペレツトには
活性物質となMnが目的に応じた濃度に設定され
たペレツトが使用される。ZnS発光層4上には第
1の誘電体層3と同様の材質から成る第2の誘電
体層5が積層され、更にその上にAl等から成る
背面電極6が蒸着形成されている。透明電極2と
背面電極6は交流電源7に接続され、薄膜EL素
子が駆動される。 The structure of the thin film EL element will be explained in detail based on FIG. 1. A transparent electrode 2 made of In 2 O 3 , SnO 2 , etc. is placed on a glass substrate 1, and Y 2 O 3 , etc.
A first dielectric layer 3 made of TiO 2 , Al 2 O 3 , Si 3 N 4 , SiO 2 or the like is formed in an overlapping manner by sputtering or electron beam evaporation. A ZnS light-emitting layer 4 is formed on the first dielectric layer 3 by electron beam evaporation of a ZnS:Mn sintered pet. At this time, the ZnS:Mn sintered pellets used for deposition are pellets in which the concentration of Mn, which is an active substance, is set to suit the purpose. A second dielectric layer 5 made of the same material as the first dielectric layer 3 is laminated on the ZnS light emitting layer 4, and a back electrode 6 made of Al or the like is further deposited thereon. The transparent electrode 2 and the back electrode 6 are connected to an AC power source 7, and the thin film EL element is driven.
電極2,6間にAC電圧を印加すると、ZnS発
光層4の両側の誘電体層3,5間に上記AC電圧
が誘起されることになり、従つてZnS発光層4内
に発生した電界によつて伝導体に励起され且つ加
速された充分なエネルギーを得た電子が、直接
Mn発光センターを励起し、励起されたMn発光セ
ンターが基底状態に戻る際に黄色の発光を行な
う。即ち高電界で加速された電子がZnS発光層4
中の発光センターであるZnサイトに入つたMn原
子の電子を励起し、基底状態に落ちる時、略々
5850A°をピークに幅広い波長領域で、強い発光
を呈する。 When an AC voltage is applied between the electrodes 2 and 6, the above AC voltage is induced between the dielectric layers 3 and 5 on both sides of the ZnS luminescent layer 4, and therefore the electric field generated within the ZnS luminescent layer 4 Therefore, electrons that are excited and accelerated by the conductor and have obtained sufficient energy can directly
The Mn luminescent center is excited, and when the excited Mn luminescent center returns to the ground state, it emits yellow light. In other words, electrons accelerated by a high electric field reach the ZnS light emitting layer 4.
When the electron of the Mn atom that enters the Zn site, which is the luminescent center of the inside, is excited and falls to the ground state, approximately
It emits strong light in a wide wavelength range with a peak of 5850A°.
上記の如き構造を有する薄膜EL素子はスペー
ス・フアクタの利用を生かした平面薄型デイスプ
レイ・デバイスとして、文字及び図形を含むコン
ピユーターの出力表示端末機器その他種々の表示
装置に文字、記号、静止画像、動画像等の表示手
段として利用することができる。平面薄型表示装
置としての薄膜ELパネルは従来のブラウン管
(CRT)と比較して動作電圧が低く、同じ平面型
デイスプレイ・デバイスであるプラズマデイスプ
レイパネル(POP)と比較すれば重量や強度面
で優れており、液晶(LCD)に比べて動作可能
温度範囲が広く、応答速度が速い等多くの利点を
有している。また純固体マトリツクス型パネルと
して使用できるため動作寿命が長く、そのアドレ
スの正確さとともにコンピユーター等の入出力表
示手段として非常に有効なものである。 The thin film EL element having the structure described above can be used as a flat thin display device that takes advantage of the space factor, and can be used to display characters, symbols, still images, moving images, etc. on computer output display terminal equipment and various other display devices that contain characters and figures. It can be used as a means of displaying images, etc. Thin-film EL panels, used as flat flat display devices, have a lower operating voltage than conventional cathode ray tubes (CRTs), and are superior in terms of weight and strength compared to plasma display panels (POPs), which are also flat display devices. It has many advantages over liquid crystals (LCDs), such as a wider operating temperature range and faster response speed. Furthermore, since it can be used as a pure solid matrix type panel, it has a long operating life, and its address accuracy makes it very effective as an input/output display means for computers and the like.
上記従来の薄膜EL素子は黄色発光を行なうも
のであるが、黄色発光以外の発光色を得るための
技術開発も試みられている。しかしながら同一発
光層中に複数種の発光センターを導入し、それぞ
れの発光センター固有の発光を得るとともにこれ
らの発光を混合させ、混合発光を得ることは非常
に困難であつた。従つて任意の発光色特にTV画
像表示に有効な白色に発光する薄膜EL素子を単
純な構造で実現することのできる技術が開発が従
来より切望されていた。 Although the conventional thin film EL device described above emits yellow light, attempts have also been made to develop technologies to obtain light emitting colors other than yellow light. However, it has been extremely difficult to introduce a plurality of types of luminescent centers into the same luminescent layer, to obtain luminescence specific to each luminescent center, and to mix these luminescences to obtain mixed luminescence. Therefore, it has long been desired to develop a technology that can realize a thin film EL element with a simple structure that emits light of any color, especially white light, which is effective for TV image display.
本発明は上記現状に鑑み、発光層4に導入する
発光センターとして希土類のジスプロシウム
(Dy)を使用することにより、容易に発光色の白
色化を可能とした新規有用な薄膜EL素子を提供
することを目的とするものである。 In view of the above-mentioned current situation, the present invention provides a new and useful thin film EL element that can easily whiten the luminescent color by using a rare earth element dysprosium (Dy) as a luminescent center introduced into the luminescent layer 4. The purpose is to
以下、本発明の一実施例を製造工程順に詳細に
説明する。 Hereinafter, one embodiment of the present invention will be described in detail in the order of manufacturing steps.
第1図に於いて、ガラス基板1上にIn2O3等の
透明電極2を形成し、透明電極2上にSiO2、
Si3N4系の誘電体層3を約2000A°程形成する。
更に誘電体層3上に発光層4としてZnS:DyF3
を4000〜10000A°程度蒸着する。この時ZnSの発
光層4に含有されるPyF3の濃度は0.1〜2.0mol%
の範囲に選定される。ZnS:DyF3の蒸着は前述
したと同様にZnS:DyF3焼結ペレツトを電子ビ
ームに蒸着することにより行なう。蒸着のターゲ
ツトとなるZnS:DyF3焼結ペレツトには活性物
質となるDyF3が目的の濃度に応じた量だけドー
プされている。 In FIG. 1, a transparent electrode 2 made of In 2 O 3 or the like is formed on a glass substrate 1, and SiO 2 , etc. is formed on the transparent electrode 2.
A Si 3 N 4 based dielectric layer 3 is formed at a thickness of about 2000A.
Furthermore, ZnS:DyF 3 is formed as a light emitting layer 4 on the dielectric layer 3.
Deposit at about 4000~10000A°. At this time, the concentration of PyF 3 contained in the ZnS light emitting layer 4 is 0.1 to 2.0 mol%
selected within the range of The deposition of ZnS:DyF 3 is carried out by depositing sintered ZnS:DyF 3 pellets with an electron beam in the same manner as described above. ZnS:DyF 3 sintered pellets, which serve as the vapor deposition target, are doped with DyF 3 , which serves as the active substance, in an amount that corresponds to the desired concentration.
次に発光層4上にSi3N4、Al2O3系の誘電体層5
を約2000A°程度形成し、更に背面電極6として
Alを蒸着形成する。 Next, a Si 3 N 4 , Al 2 O 3 based dielectric layer 5 is formed on the light emitting layer 4.
about 2000A°, and further as a back electrode 6.
Al is formed by vapor deposition.
以上の工程を介して製作された薄膜発光素子は
交流電圧を印加すると第2図に示す発光スペクト
ルで約5000A°、5800A°及び6500A°付近に強
い発光をもつジスプロシウム特有の発光色を放射
する。この発光ピークはそれぞれ4F9/2−6H15/
2、4F9/2−6H13/2及び4F9/2−6H11/2の遷移に
対応するものと解される。このジスプロシウムに
よる発光色を色座標上にプロツトすると第3図に
示す如く黄色成分が含有された白色に近い発光色
であることがわかる。尚、第3図は国際標準色度
図上での上記実施例の薄膜発光素子の発光色位置
(図中のA領域)を示す。得られる発光輝度は
25KHzの交流駆動で約15〜40ft−L程度でつた。 When an alternating current voltage is applied to the thin film light emitting device manufactured through the above steps, it emits a luminous color unique to dysprosium with strong luminescence in the vicinity of approximately 5000 A°, 5800 A°, and 6500 A° in the emission spectrum shown in FIG. This emission peak is 4F9/2−6H15/ respectively.
2, it is understood that it corresponds to the transitions of 4F9/2-6H13/2 and 4F9/2-6H11/2. When the luminescent color due to dysprosium is plotted on the color coordinates, it can be seen that the luminescent color contains a yellow component and is close to white, as shown in FIG. Incidentally, FIG. 3 shows the emission color position (area A in the figure) of the thin film light emitting device of the above example on the international standard chromaticity diagram. The luminance obtained is
It was about 15 to 40 ft-L with 25KHz AC drive.
以上詳説した如く、発光層に添加する発光セン
ター形成用不純物として希土類ジスプロシウムを
使用することにより2種以上の発光センターを使
用しなくても白色の発光色を呈する薄膜EL素子
を容易に得ることができる。 As explained in detail above, by using the rare earth dysprosium as an impurity for forming luminescent centers added to the luminescent layer, it is possible to easily obtain a thin film EL device that emits white light without using two or more types of luminescent centers. can.
尚、発光センターを得る活性物質としてDyF3
を用いると、青緑、黄、赤の3色発光ピークを呈
するため、色フイルター等を付設してかなり広範
囲な色調の光を取り出すことができる。 In addition, DyF 3 is used as an active substance to obtain a luminescent center.
When used, it exhibits three color emission peaks of blue-green, yellow, and red, so it is possible to extract light with a fairly wide range of color tones by attaching a color filter or the like.
第1図は薄膜EL素子の構造を説明する構成図
である。第2図は本発明の一実施例に係る薄膜
EL素子の発光スペクトルを示す説明図である。
第3図は本発明の一実施例に係る薄膜EL素子の
発光色を説明する国際標準色度図である。
1……ガラス基板、3,5……誘電体層、4…
…発光層。
FIG. 1 is a block diagram illustrating the structure of a thin film EL element. FIG. 2 shows a thin film according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing the emission spectrum of an EL element.
FIG. 3 is an international standard chromaticity diagram illustrating the emission color of a thin film EL device according to an embodiment of the present invention. 1... Glass substrate, 3, 5... Dielectric layer, 4...
...Light-emitting layer.
Claims (1)
明電極と背面電極間に介設して成る薄膜EL素子
において、前記発光層を、ジスプロシウムのフツ
化物が発光センター形成用不純物として0.1〜
2.0mol%母材中にドープされた蒸着層で構成し、
EL発光を白色化したことを特徴とする薄膜EL素
子。1. In a thin-film EL device in which a light-emitting layer that emits EL light upon application of a voltage is interposed between a transparent electrode and a back electrode, the light-emitting layer is treated with dysprosium fluoride as an impurity for forming a light-emitting center in an amount of 0.1 to
Consisting of a vapor deposited layer doped in 2.0mol% base material,
A thin film EL element characterized by whitened EL emission.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15786979A JPS5680084A (en) | 1979-12-04 | 1979-12-04 | Thin film electroluminescence element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15786979A JPS5680084A (en) | 1979-12-04 | 1979-12-04 | Thin film electroluminescence element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5680084A JPS5680084A (en) | 1981-07-01 |
JPS6210435B2 true JPS6210435B2 (en) | 1987-03-06 |
Family
ID=15659176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15786979A Granted JPS5680084A (en) | 1979-12-04 | 1979-12-04 | Thin film electroluminescence element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5680084A (en) |
-
1979
- 1979-12-04 JP JP15786979A patent/JPS5680084A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5680084A (en) | 1981-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63224190A (en) | EL element | |
US4967251A (en) | Thin film electroluminescent device containing gadolinium and rare earth elements | |
JPH07211460A (en) | Method for manufacturing electroluminescent device | |
US6451460B1 (en) | Thin film electroluminescent device | |
JP3442918B2 (en) | Thin-film electroluminescence panel | |
JPH027072B2 (en) | ||
JPS6210435B2 (en) | ||
JP4711588B2 (en) | Thin film electroluminescence emitter | |
JPS6323640B2 (en) | ||
JPS5835587A (en) | Thin film el element | |
JPS598040B2 (en) | Thin film EL element | |
JPS6132798B2 (en) | ||
JPH07263147A (en) | Thin film light emitting device | |
JPH0123917B2 (en) | ||
JPH0773971A (en) | El element | |
JPH0831571A (en) | Thin film electroluminescent element and multi-color thin film electroluminescent panel | |
JPS5855636B2 (en) | Thin film EL element | |
JPS592158B2 (en) | Thin film EL element | |
KR970009736B1 (en) | White electroluminescent element | |
JPH04190588A (en) | Thin film el element | |
JP2000188182A (en) | Ultraviolet emission electroluminescent element and image display device | |
JPH01241793A (en) | Thin film EL element | |
JP2879707B2 (en) | Multi-color EL element | |
JPS6015115B2 (en) | thin film light emitting device | |
JPS61273894A (en) | Thin film el element |