JPS62102620A - Superconduction driver circuit - Google Patents
Superconduction driver circuitInfo
- Publication number
- JPS62102620A JPS62102620A JP24146785A JP24146785A JPS62102620A JP S62102620 A JPS62102620 A JP S62102620A JP 24146785 A JP24146785 A JP 24146785A JP 24146785 A JP24146785 A JP 24146785A JP S62102620 A JPS62102620 A JP S62102620A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- dcfp
- current
- magnetic flux
- quantum interference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004907 flux Effects 0.000 claims abstract description 50
- 230000008878 coupling Effects 0.000 abstract description 29
- 238000010168 coupling process Methods 0.000 abstract description 29
- 238000005859 coupling reaction Methods 0.000 abstract description 29
- 230000005540 biological transmission Effects 0.000 abstract description 28
- 238000013139 quantization Methods 0.000 abstract 2
- 230000005284 excitation Effects 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
Landscapes
- Electronic Switches (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は超電導素子を用いた電子回路に係り、特にジョ
セフソン接合を使った超高速のスイッチング回路に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an electronic circuit using a superconducting element, and particularly to an ultrahigh-speed switching circuit using a Josephson junction.
ジョセフソンデバイスを使ったスイッチング回路は当技
術分野では周知であり、ジョセフソン素子の超電導状態
から電圧状態に遷移する動作を利用する量子干渉素子や
直結型素子に代表されるものと、磁束を信号媒体として
使うDCFP回路に代表されるものがある。特にDCF
P回路はジョセフソンデバイスの電圧遷移を利用してい
ないため消費電力が極めて少なく、またブリッジ型のよ
うな接合容量の極めて少ないジョセフソン接合を使える
ため超高速度の動作が可能である。またDCFP回路は
パラメトロン回路の一種であるため高い回路利得が実現
できる。これらのDCFP回路の特性は超高速計算機に
は好適なものであって、その応用が期待されている。こ
のDCFP回路については後藤他による第1回、第2回
理化学研究所シンポジウム予稿集「ジョセフソン・エレ
クトロニクス」 (昭和59年3月16日、昭和60年
3各月1六に詳細に記述されている。Switching circuits using Josephson devices are well known in the art, and include those represented by quantum interference devices and direct-coupled devices that utilize the operation of a Josephson device to transition from a superconducting state to a voltage state, and those that use magnetic flux as a signal. A representative example is a DCFP circuit used as a medium. Especially DCF
Since the P circuit does not utilize the voltage transition of the Josephson device, its power consumption is extremely low, and since it uses a bridge-type Josephson junction with extremely low junction capacitance, it can operate at extremely high speed. Further, since the DCFP circuit is a type of parametron circuit, high circuit gain can be achieved. The characteristics of these DCFP circuits are suitable for ultra-high-speed computers, and their applications are expected. This DCFP circuit was described in detail by Goto et al. in the Proceedings of the 1st and 2nd RIKEN Symposium, "Josephson Electronics" (March 16, 1980, March 16, 1985). There is.
前述のようにDCFP回路はジョセフソンデバイスの電
圧遷移を利用していないため、原理的な回路構成では抵
抗を使わない複数個の超電導ループからできている。一
般に高速のパルス信号を伝送する時には、信号を送る配
線は有限の特性インピーダンスを持つ伝送線と見なす必
要がある。伝送線で信号を送るには、伝送線の終端に特
性インピーダンスと同じ抵抗値の終端抵抗を接続して整
合を取り、信号の反射を防ぐ事が通常行われる。As mentioned above, the DCFP circuit does not utilize the voltage transition of a Josephson device, so the basic circuit configuration is made up of multiple superconducting loops without using any resistors. Generally, when transmitting high-speed pulse signals, the wiring for transmitting the signals must be regarded as a transmission line with a finite characteristic impedance. To send a signal through a transmission line, it is common practice to connect a terminating resistor with the same resistance value as the characteristic impedance to the end of the transmission line to achieve matching and prevent signal reflection.
一方、従来から提案されたDCFP回路では抵抗を負荷
に挿入できないため伝送線を駆動する時はその伝送線を
抵抗で終端することが出来ず、直接接地に短絡した。こ
の場合、伝送線路の終端におきく揺動する。この揺動は
DCFP回路の誤動作の原因となる。また終端が接地に
短絡された伝送線は送端から見込むと誘導性に見えるが
、遠まで信号を伝送しようとすると、そのインダクタン
スは大きなものになり、DCFP回路自体のスイッチン
グ速度を遅くする欠点があった。特に集積回路チップ間
に渡って信号を伝送するには伝送線を介す必要があり、
従来技術によるDCFP回路では上記の理由により遠方
に高速で信号を送ることができなかった。On the other hand, in conventionally proposed DCFP circuits, it is not possible to insert a resistor into the load, so when driving a transmission line, the transmission line cannot be terminated with a resistor and is directly shorted to ground. In this case, there is a large swing at the end of the transmission line. This fluctuation causes malfunction of the DCFP circuit. Furthermore, a transmission line whose terminal end is short-circuited to ground appears to be inductive when viewed from the sending end, but when trying to transmit a signal over a long distance, the inductance becomes large and has the disadvantage of slowing down the switching speed of the DCFP circuit itself. there were. In particular, in order to transmit signals between integrated circuit chips, it is necessary to use transmission lines.
Due to the above-mentioned reasons, conventional DCFP circuits have been unable to send signals to long distances at high speed.
本発明の目的はDCFP回路の出力信号を整合の取れた
伝送線で遠方まで送るドライバ回路を提供することにあ
る。An object of the present invention is to provide a driver circuit that transmits the output signal of a DCFP circuit over a long distance using a well-matched transmission line.
この目的のため、本発明ではジョセフソン素子の超電導
状態から電圧状態に遷移する動作を利用する磁束結合層
量子干渉素子を使った超電導ドライバ回路を該DCFP
回路に接続した回路を新たに提供する。磁束結合層量子
干渉素子は交流電源で駆動され、有限の特性インピーダ
ンスを持つ伝送線を駆動できる。このため本発明による
ドライバ回路を用いればDCFP回路の信号を伝送線を
介して高速で遠方に送ることが可能となる。For this purpose, the present invention provides a superconducting driver circuit using a magnetic flux coupling layer quantum interference device that utilizes the operation of a Josephson device to transition from a superconducting state to a voltage state.
Provide a new circuit connected to the circuit. The magnetic flux coupling layer quantum interference device is driven by an AC power source and can drive a transmission line with a finite characteristic impedance. Therefore, by using the driver circuit according to the present invention, it becomes possible to send signals from a DCFP circuit to a long distance at high speed via a transmission line.
以下、本発明の実施例を第1図により説明する。 Embodiments of the present invention will be described below with reference to FIG.
第1図に示す回路はDCFP回路とそれに接続された超
電導ドライバ回路から構成されている。The circuit shown in FIG. 1 is composed of a DCFP circuit and a superconducting driver circuit connected thereto.
DCFP回路は電流の向き(正の方向又は負の方向)を
信号の″Q27%“1″に対応させている。In the DCFP circuit, the direction of the current (positive direction or negative direction) corresponds to the signal "Q27%"1".
一方磁束結合形量子干渉素子では電流の有無を信号の“
Q+l、1llljに対応させる。従ってDCFP回路
と磁束結合層量子干渉素子を単純に結合させただけでは
回路としての機能を十分に発揮出来ない。このため第1
図に示す回路では磁束結合層量子干渉素子を2個組み合
わせ、電流の向き(正の方向又は負の方向)を出力信号
とする、即ちDCFP回路の信号に合った信号を出力す
る超電導ドライバ回路を採用している。DCFP回路は
、二つのジョセフソン接合101,102と励振インダ
クタ103,104から成る超電導ループより構成され
ている。超電導ループには入力端千振線105に流れる
励振電流により増幅される。On the other hand, in flux-coupled quantum interference devices, the presence or absence of current is determined by the signal “
Make it correspond to Q+l, 1lllj. Therefore, simply combining the DCFP circuit and the magnetic flux coupling layer quantum interference device cannot fully demonstrate the function of the circuit. For this reason, the first
The circuit shown in the figure combines two magnetic flux coupling layer quantum interference devices and uses a superconducting driver circuit that uses the current direction (positive direction or negative direction) as an output signal, that is, outputs a signal that matches the signal of the DCFP circuit. We are hiring. The DCFP circuit is composed of a superconducting loop consisting of two Josephson junctions 101 and 102 and excitation inductors 103 and 104. The superconducting loop is amplified by the excitation current flowing through the input terminal oscillating wire 105.
DCFP回路の出力電流Isは出力線107を介してに
負荷インダクタ108に流れ出す。超電導ドライバ回路
は二つの磁束結合層量子干渉素子201.202と各々
の磁束結合層量子干渉素子をバイアスするバイアス抵抗
203,204および各々の磁束結合層量子干渉素子の
負荷抵抗205.206から構成されている。磁束結合
層量子干渉素子201,202の一端は接地されており
他端は各々バイアス抵抗203,204の一端および負
荷抵抗205,206の一端に接続されている。磁束結
合層量子干渉素子201゜202は各々バイアス抵抗2
03,204を介して電流g210,211よりバイア
スされる。この電流源210の電流は磁束結合層量子干
渉素子201、バイアス抵抗203、電流g210を経
て流れる向きである。電流源211の電流は電流g21
1、バイアス抵抗204、磁束結合層量子干渉素子20
2を経て流れる向きである。各々負荷抵抗205,20
6の一端は伝送線207の一端に接続されている。伝送
線207の他端は終端抵抗208を介して接地されてい
る。終端抵抗208の抵抗値は伝送線207の特性イン
ピーダンスと同じ値であって、伝送線207は整合終端
されているため終端における信号の反射は起らない。磁
束結合層量子干渉素子201,202にはDCFP回路
の出力線107が第1の制御線として結合している。ま
た磁束結合層量子干渉素子201.202には第2の制
御線209が結合しており、この第2の制御線209に
は電流源212から制御電流が供給される。第2の制御
線209には接地から第2の磁束結合層量子干渉素子2
02、第1の磁束結合形量子干渉201の順に制御電流
が流れる。磁束結合層量子干渉素子201.202には
第1.第2の制御線107゜209に流れる電流により
発生し、加算された磁束が鎖交する。ここで第2の制御
線209に流れる電流の向きが第1磁束結合形量子干渉
素子201と第2の磁束結合層量子干渉素子202で逆
方向になるように、第1の磁束結合層量子干渉素子20
1の制御線の設置方向を(配線の巻く方向)を第2の磁
束結合層量子干渉素子202のものと逆にしである。次
に第1図に示す回路の動作を説明する。DCFP回路の
出力電流が零の場合は超電導ドライバ回路の二つの磁束
結合層量子干渉素子201,202は何れも超電導状態
にある。The output current Is of the DCFP circuit flows out to the load inductor 108 via the output line 107. The superconducting driver circuit is composed of two magnetic flux coupling layer quantum interference devices 201 and 202, bias resistors 203 and 204 that bias each magnetic flux coupling layer quantum interference device, and load resistances 205 and 206 of each magnetic flux coupling layer quantum interference device. ing. One end of the magnetic flux coupling layer quantum interference elements 201 and 202 is grounded, and the other end is connected to one end of bias resistors 203 and 204 and one end of load resistors 205 and 206, respectively. The magnetic flux coupling layer quantum interference elements 201 and 202 each have a bias resistor 2.
It is biased by the current g210, 211 via 03, 204. The current of this current source 210 flows through the magnetic flux coupling layer quantum interference element 201, the bias resistor 203, and the current g210. The current of the current source 211 is the current g21
1. Bias resistor 204, magnetic flux coupling layer quantum interference element 20
The direction of flow is through 2. Load resistance 205, 20 respectively
One end of 6 is connected to one end of transmission line 207 . The other end of the transmission line 207 is grounded via a terminating resistor 208. The resistance value of the terminating resistor 208 is the same value as the characteristic impedance of the transmission line 207, and since the transmission line 207 is matched terminated, no signal reflection occurs at the termination. An output line 107 of the DCFP circuit is coupled to the magnetic flux coupling layer quantum interference elements 201 and 202 as a first control line. Further, a second control line 209 is coupled to the magnetic flux coupling layer quantum interference elements 201 and 202, and a control current is supplied from a current source 212 to this second control line 209. The second control line 209 connects the ground to the second magnetic flux coupling layer quantum interference element 2.
02, the control current flows in the order of the first flux-coupled quantum interference 201. The magnetic flux coupling layer quantum interference elements 201 and 202 include the first. The added magnetic flux generated by the current flowing through the second control line 107° 209 interlinks. Here, the first magnetic flux coupling layer quantum interference Element 20
The direction in which the first control line is installed (the direction in which the wiring is wound) is opposite to that of the second magnetic flux coupling layer quantum interference element 202. Next, the operation of the circuit shown in FIG. 1 will be explained. When the output current of the DCFP circuit is zero, both of the two magnetic flux coupling layer quantum interference elements 201 and 202 of the superconducting driver circuit are in a superconducting state.
DCFP回路の出力電流Isが正、即ちDCFP回路か
ら接地に向かって電流が流れる場合は、第1の磁束結合
層量子干渉素子201の制御電流による磁束は減算され
、第2の磁束結合層量子干渉素子202の制御電流によ
る磁束は加算される。When the output current Is of the DCFP circuit is positive, that is, when the current flows from the DCFP circuit toward the ground, the magnetic flux due to the control current of the first magnetic flux coupling layer quantum interference element 201 is subtracted, and the second magnetic flux coupling layer quantum interference The magnetic fluxes due to the control current of element 202 are added.
このため第1の磁束結合層量子干渉素子201は超電導
状態に止まり、第2の磁束結合層量子干渉素子202は
電流状態にスイッチする。このため終端抵抗208には
バイアス抵抗204、負荷抵抗205、伝送線207を
介して電流g211から電流が流れる。この場合終端抵
抗208には伝送1/1A207から接地に向けた方向
(正の方向)に負荷電流工、が流れる。一方、DCFP
回路の出力電流Isが負、即ち接地よりDCFP回路に
向かって電流が流れる場合は、第1の磁束結合層量子干
渉素子201の制御電流による磁束は加算され、第2の
磁束結合層量子干渉素子202の制御電流による磁束は
減算される。このため第2の磁束結合層量子干渉素子2
02は超電導状態に止まり、第2の磁束結合層量子干渉
素子201は電流状態にスイッチする。このため終端抵
抗208には伝送線207、負荷抵抗206、バイアス
抵抗203を介して電流111210から電流が流れる
。Therefore, the first magnetic flux coupling layer quantum interference device 201 remains in the superconducting state, and the second magnetic flux coupling layer quantum interference device 202 switches to the current state. Therefore, a current flows from the current g211 to the terminating resistor 208 via the bias resistor 204, the load resistor 205, and the transmission line 207. In this case, a load current flows through the terminating resistor 208 from the transmission 1/1A 207 in the direction toward the ground (positive direction). On the other hand, DCFP
When the output current Is of the circuit is negative, that is, when the current flows from the ground toward the DCFP circuit, the magnetic flux due to the control current of the first magnetic flux coupling layer quantum interference device 201 is added, and the magnetic flux is added to the second magnetic flux coupling layer quantum interference device 201. The magnetic flux due to the control current 202 is subtracted. Therefore, the second magnetic flux coupling layer quantum interference element 2
02 remains in the superconducting state, and the second magnetic flux coupling layer quantum interference element 201 switches to the current state. Therefore, a current flows from the current 111210 to the terminating resistor 208 via the transmission line 207, the load resistor 206, and the bias resistor 203.
この場合終端抵抗208には接地から伝送線207に向
けた方向(負の方向)に負荷電流IL−が流れる。以上
の説明より、DCFP回路の出方信号に対応して超電導
ドライバ回路は正又は負の信号を伝送線の負荷抵抗に流
す、ドライバ回路としての動作を行うことは明らかであ
る。第1に示す超電導ドライバ回路は背定信号を出力す
る回路である゛が、他に第2の制御線209の電流の向
きを反対にすれば否定信号を出力するいわゆるインバー
タドライバ回路を構成できる事も明らかである。磁束結
合層量子干渉素子として何等規定していないが、この素
子として磁束結合形2接合量子干渉素子、磁束結合形3
接合量子干渉素子等の磁束結合形素子が使えることは明
らかである。In this case, a load current IL- flows through the terminating resistor 208 in a direction from the ground toward the transmission line 207 (negative direction). From the above explanation, it is clear that the superconducting driver circuit operates as a driver circuit that sends a positive or negative signal to the load resistance of the transmission line in response to the output signal of the DCFP circuit. The first superconducting driver circuit is a circuit that outputs a negative signal, but if the direction of the current in the second control line 209 is reversed, a so-called inverter driver circuit that outputs a negative signal can be constructed. is also clear. Although there is no specification as a flux-coupled layer quantum interference device, this device may be a flux-coupled two-junction quantum interference device or a flux-coupled three-junction quantum interference device.
It is clear that flux-coupled devices such as junction quantum interference devices can be used.
以上本実施例によればDCFP回路間を伝送線で結合で
き、遠(離れ位置にあるDCFP回路に高速で信号を送
ることが出来る。As described above, according to this embodiment, DCFP circuits can be connected via a transmission line, and signals can be sent to distant DCFP circuits at high speed.
本発明によれば、DCFP回路間を伝送線で高速に信号
を伝送できるようになる。このことは負荷の大きい、例
えば集積回路間における伝送等も高速伝送が可能である
ことを示しており、DCFP回路を多数使った論理シス
テム作製が可能となる。このため高速かつ大規模の論理
システムをDCFP回路で構成できようになり、DCF
P回路の特徴である、高速、低消費性能を発揮できる。According to the present invention, signals can be transmitted at high speed between DCFP circuits via a transmission line. This shows that high-speed transmission is possible even with a large load, such as transmission between integrated circuits, and it becomes possible to create a logic system using a large number of DCFP circuits. This makes it possible to construct high-speed, large-scale logic systems with DCFP circuits, and
It can demonstrate the high-speed, low-consumption performance that characterizes the P circuit.
このため従来に無い高性能の計算機を作ることができ、
本発明の効果は極めて大きい。For this reason, it is possible to create a computer with unprecedented high performance,
The effects of the present invention are extremely large.
第1図は本発明の実施例を示す図である。
101.102・・・ジョセフソン接合、103゜10
4・・・励振インダクタ、105・・・励振線、106
・・・入力端子、107・・・出力線、108・・・負
荷インダクタ、201,202・・・磁束結合層量子干
渉素子、203,204・・・バイアス抵抗、205,
206・・・負荷抵抗、207・・・伝送線、208・
・・終端抵抗、209・・・制御線、210゜211,
212・・・電流源FIG. 1 is a diagram showing an embodiment of the present invention. 101.102...Josephson junction, 103°10
4... Excitation inductor, 105... Excitation line, 106
... Input terminal, 107 ... Output line, 108 ... Load inductor, 201, 202 ... Magnetic flux coupling layer quantum interference element, 203, 204 ... Bias resistance, 205,
206...Load resistance, 207...Transmission line, 208...
...Terminal resistor, 209...Control line, 210°211,
212...Current source
Claims (1)
磁束結合形量子干渉素子と該二つの磁束結合形量子干渉
素子の二つの負荷抵抗の一端を各々接続し出力端子とし
た構成のドライバ回路であって、該第一の磁束結合形量
子干渉素子と該第二の磁束結合形量子干渉素子の電流バ
イアス方向が逆方向であって、該二つの磁束結合形量子
干渉素子の第二の制御線に流れる制御電流の方向が互い
に逆方向であることを特徴とする超電導ドライバ回路。1. Two flux-coupled quantum interference devices with the output line of the DCFP circuit as the first control line, and one end of each of the two load resistors of the two flux-coupled quantum interference devices connected to each other to form an output terminal. A driver circuit, wherein the current bias directions of the first flux-coupled quantum interference device and the second flux-coupled quantum interference device are opposite directions, and the second flux-coupled quantum interference device of the two flux-coupled quantum interference devices is A superconducting driver circuit characterized in that the directions of control currents flowing through the control lines are opposite to each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24146785A JPS62102620A (en) | 1985-10-30 | 1985-10-30 | Superconduction driver circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24146785A JPS62102620A (en) | 1985-10-30 | 1985-10-30 | Superconduction driver circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62102620A true JPS62102620A (en) | 1987-05-13 |
Family
ID=17074745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24146785A Pending JPS62102620A (en) | 1985-10-30 | 1985-10-30 | Superconduction driver circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62102620A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0441299A2 (en) * | 1990-02-06 | 1991-08-14 | Fujitsu Limited | Superconducting circuit having an output conversion circuit |
US5146119A (en) * | 1989-01-13 | 1992-09-08 | Hitachi, Ltd. | Switching circuit and its signal transmission method |
-
1985
- 1985-10-30 JP JP24146785A patent/JPS62102620A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5146119A (en) * | 1989-01-13 | 1992-09-08 | Hitachi, Ltd. | Switching circuit and its signal transmission method |
EP0441299A2 (en) * | 1990-02-06 | 1991-08-14 | Fujitsu Limited | Superconducting circuit having an output conversion circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090002014A1 (en) | Ultra fast differential transimpedance digital amplifier for superconducting circuits | |
US6483339B1 (en) | Single flux quantum series biasing technique using superconducting DC transformer | |
SE512591C2 (en) | Digital information device and method | |
Suzuki et al. | Characteristics of driver and receiver circuits with a passive transmission line in RSFQ circuits | |
JPS62102620A (en) | Superconduction driver circuit | |
US4672244A (en) | Josephson logic integrated circuit | |
US5146119A (en) | Switching circuit and its signal transmission method | |
JPS60254923A (en) | Josephson logic circuit bus transmitter/receiver circuit | |
JP2000261307A (en) | Superconducting NOR circuit | |
JP2550587B2 (en) | The Josephson Gate | |
JPS60124123A (en) | Josephson driver circuit | |
JPS6334656B2 (en) | ||
JP2783032B2 (en) | Josephson reverse current prevention circuit | |
JPH08111634A (en) | Constant current pulse supply circuit | |
JP2802452B2 (en) | Superconducting threshold logic | |
JPH0378008B2 (en) | ||
JP2846967B2 (en) | Superconducting circuit | |
JP2856535B2 (en) | Superconducting circuit | |
JPH0754900B2 (en) | Josephson resistor-coupling negation circuit | |
JPH0357654B2 (en) | ||
JPS6334657B2 (en) | ||
JPS6052734U (en) | High frequency signal switching device | |
JPH0577352B2 (en) | ||
JPS6038928A (en) | Josephson receiver circuit | |
JPS59103430A (en) | Josephson circuit |