[go: up one dir, main page]

JPS6197193A - Reaction tube for reduced pressure hot wall cvd - Google Patents

Reaction tube for reduced pressure hot wall cvd

Info

Publication number
JPS6197193A
JPS6197193A JP24132585A JP24132585A JPS6197193A JP S6197193 A JPS6197193 A JP S6197193A JP 24132585 A JP24132585 A JP 24132585A JP 24132585 A JP24132585 A JP 24132585A JP S6197193 A JPS6197193 A JP S6197193A
Authority
JP
Japan
Prior art keywords
tube
reaction
gas
reaction tube
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24132585A
Other languages
Japanese (ja)
Inventor
Ryokichi Takahashi
亮吉 高橋
Takemi Soda
曾田 竹美
Hiroo Tochikubo
栃久保 浩夫
Akira Kanai
明 金井
Masahiko Kogirima
小切間 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24132585A priority Critical patent/JPS6197193A/en
Publication of JPS6197193A publication Critical patent/JPS6197193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain an epitaxial film having uniform film thickness and good quality with high efficiency but without causing deposition of pulverized fine particles by arranging an internal tube in the low temp. section and an internal tube in the high temp. section so as to permit exchange by pulling the both tubes to the outside and performing crystal growth in such reaction tube. CONSTITUTION:An internal tube 15 in the low temp. section is arranged to a zone between an inlet side of gas and neighbourhood of set position of a substrate 6 in the inside of a quartz reaction tube 2 and a jig housing tube 3 of a reaction tube for a reduced pressure hot wall CVD process, so as to permit exchange of the internal tube in the low temp. section by pulling out said tube, and an internal tube 16 in the high temp. section is arranged to the neighborhood of a set position of the substrate 6 so as to permit pulling out. A jig 5 mounting many silicon substrates are set in the reaction tube 2 at the center of an electric furnace 1, to which reaction gas, carrier gas, doping gas are fed through a gas feeding line 7 to cause epitaxial reaction growing an epitaxial film uniformly. By pulling out and exchanging the internal tube 15, 16 deposited with reaction products after several times of the reaction, an epitaxial film having good quality with no deposition of powdery body is obtd. with + or -5% precision of film thickness and + or -10% precision of specific resistance.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は主としてシリコン・エピタキシアル結晶を形成
させる減圧ホントウオールCVD装置の反応管に関する
ものであるが1本発明の反応管の構造は多結晶シリコン
、シリコン酸化膜等を形成させる減圧ホットウォールC
VDにも適用が可能である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention mainly relates to a reaction tube of a reduced pressure real wall CVD apparatus for forming silicon epitaxial crystals. , reduced pressure hot wall C to form a silicon oxide film, etc.
It can also be applied to VD.

〔発明の背景〕[Background of the invention]

シリコン・エピタキシはこれまで高周波加熱法がよく用
いられてきた。この場合シリコン基板が局部的に加熱さ
れ基板界面でエピタキシアル反応が起るが、反応管壁は
コールドウオールになっており反応生成物は管壁には殆
んど付着しない。しかしシリコン基板を加熱板上に2次
元的にしか置けないので、大量装填ができず、生産効率
が良くなかった。
Until now, high-frequency heating has often been used for silicon epitaxy. In this case, the silicon substrate is locally heated and an epitaxial reaction occurs at the substrate interface, but the reaction tube wall is a cold wall and hardly any reaction products adhere to the tube wall. However, since silicon substrates could only be placed two-dimensionally on the heating plate, mass loading was not possible and production efficiency was poor.

これに対し、電気炉により反応管の外側より加熱するホ
ントウオール方式では1反応管の中に基板を立体的に大
量装填できる利点があるが1反応管の管壁に反応生成物
が析出する。この管壁析出物は、基板を搭載した治具を
電気炉内部の高温反応帯に搬入または引出しのため往復
移動させると粉化し、舞上って基板表面に付着してエピ
タキシアル結晶を不良化する。この対策としては基板冶
具に車をつける方法、管壁をスライドしないで目的場所
まで反応管内中空を移動させるソフトランディング法な
どが試みられている。また管壁析出物をHCQで気相エ
ッチして管壁をクリーニングする方法もあるが、低温管
壁のクリーニングが十分でない。さらに内管を挿入し、
エピタキシアル反応後外部に取り出し洗滌する方法もあ
るが、内管が長い場合反応管との嵌め合い、取扱いなど
に難点を生じている(特開昭55−110033号、特
開昭55−153323号、特開昭59−50093号
)。
On the other hand, the true wall method in which the reaction tube is heated from the outside using an electric furnace has the advantage of being able to load a large amount of substrates three-dimensionally into one reaction tube, but reaction products are deposited on the walls of each reaction tube. These tube wall precipitates become powder when the jig carrying the substrate is transported back and forth to the high-temperature reaction zone inside the electric furnace or taken out, and fly up and adhere to the substrate surface, causing defects in the epitaxial crystal. do. As a countermeasure to this problem, attempts have been made to use a method of attaching a wheel to the substrate jig, and a soft landing method in which the reactor is moved within the hollow space of the reaction tube to the desired location without sliding on the tube wall. There is also a method of cleaning the tube wall by vapor-phase etching the tube wall precipitates with HCQ, but this method does not sufficiently clean the low-temperature tube wall. Insert the inner tube further,
There is also a method of taking it outside and washing it after the epitaxial reaction, but if the inner tube is long, it causes difficulties in fitting with the reaction tube and handling (Japanese Patent Application Laid-open No. 55-110033, JP-A No. 55-153323). , Japanese Patent Publication No. 59-50093).

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題点を解消するためになされたもので
、減圧ホットウォールCVD装置において、反応管内部
に複数に分割された内管を設け、基板搭載治具の移動通
路にあり、かつ温度が低いため軟質の管壁付着物が生成
しやすく、またHCa気相エッチによるクリーニングが
不完全である部分を一つの短かく分割された内管(低温
部内管と呼ぶ)で区切り、外部への取出しを容易にして
頻繁な洗滌を実施することにより、粉化微粒子によるエ
ピタキシアル結晶の不良化を防止し生産効率を高揚させ
ることを目的としている。
The present invention has been made in order to solve the above-mentioned problems, and in a reduced pressure hot wall CVD apparatus, an inner tube divided into a plurality of parts is provided inside the reaction tube, and the inner tube is disposed in the movement path of the substrate mounting jig, and Because of the low temperature, soft tube wall deposits are likely to form, and the areas where cleaning by HCa vapor phase etching is incomplete are divided into one short inner tube (called the low-temperature section inner tube), and the areas that are exposed to the outside are separated. The purpose is to prevent epitaxial crystals from becoming defective due to powdered fine particles and to increase production efficiency by facilitating removal and frequent washing.

また、別に分割された内管(高温部内管と呼ぶ)には、
ドーピング用ノズル管を内側に溶接させ。
In addition, the separately divided inner tube (referred to as the high temperature inner tube) has
Weld the doping nozzle tube inside.

細いノズル管の支持、補強を兼ねるほか反応管から分離
できる構造とすることにより、反応管の製作、ノズルの
取付け、修理などの加工を容易にすることも目的として
いる。
In addition to supporting and reinforcing the thin nozzle tube, the structure allows it to be separated from the reaction tube, making it easier to manufacture the reaction tube, install the nozzle, and repair it.

〔発明の概要〕[Summary of the invention]

減圧ホットウォール・シリコン・エピタキシアル反応操
作は、電気炉内に挿入された石英製反応管の管軸方向中
央部の所定高温帯にエピタキシアル基板を置き、反応ガ
スを減圧の下で流通させることにより行なわれる。この
場合反応管の管軸方向に常温より所定高温帯に至る温度
勾配が形成される。反応ガスは基板の上でエピタキシア
ル反応を行なうが、同時に反応管内側の管壁にも反応化
1゜ 酸物を析出する。この゛管壁析出物は基板の上流におい
て約400℃の管壁温度から生成を始め高温部に至るま
で反応管の内側に付着する。管壁析出物の存在はホット
ウォール方式の欠点であり、管壁の付着は反応ガスの濃
度落差を招くため成長速度の変化すなわちエピタキシア
ル膜厚の不均一化の原因となるほか、基板を搭載した治
具の移動に際し管壁析出物が粉化し、エピタキシアル結
晶を不良化するJ)に囚にもなる。
The reduced pressure hot wall silicon epitaxial reaction operation involves placing the epitaxial substrate in a predetermined high temperature zone in the axial center of a quartz reaction tube inserted into an electric furnace, and flowing the reaction gas under reduced pressure. This is done by In this case, a temperature gradient is formed in the axial direction of the reaction tube from room temperature to a predetermined high temperature zone. The reaction gas performs an epitaxial reaction on the substrate, and at the same time, a reacted 1° acid is deposited on the inner wall of the reaction tube. This tube wall precipitate begins to form at a tube wall temperature of about 400° C. upstream of the substrate and adheres to the inside of the reaction tube up to the high temperature section. The presence of precipitates on the tube wall is a drawback of the hot wall method.Adhesion on the tube wall causes a drop in the concentration of the reactant gas, which causes changes in the growth rate, that is, non-uniformity in the epitaxial film thickness. When the jig is moved, the tube wall precipitates are powdered and become trapped in J), which makes the epitaxial crystal defective.

基板のセットされる高温反応帯における管壁析出物は比
較的硬質で粉化しがたく、またMCl1による気相エッ
チ法で除去が可能である。これに反し基板上流の低温部
に付着する管壁析出物はSix Hyの複雑な形で非常
に軟質である上、種々の不純ガスを吸着しやすい性質が
認められる。低温析出物は一見煙道中の煤のようにたと
えられ、一部は流通するガスによっても飛散する。さら
に低温析出物は基板搭載治具の移動M擦により特に粉化
しやすく、反応管内粉体の大部分を占めることが判った
。この析出物は低温管壁に付着しているので、HCAに
よる気相エッチを行なっても除去が困難である。
Precipitates on the tube wall in the high temperature reaction zone where the substrate is set are relatively hard and difficult to powder, and can be removed by vapor phase etching using MCl1. On the other hand, the tube wall precipitates that adhere to the low-temperature area upstream of the substrate have a complex Six Hy shape and are very soft, and are also known to have the property of easily adsorbing various impurity gases. At first glance, low-temperature precipitates can be compared to soot in a flue, and some of them are also dispersed by the circulating gas. Furthermore, it was found that the low-temperature precipitates were particularly easily powdered by the movement of the substrate mounting jig, and accounted for most of the powder in the reaction tube. Since this precipitate adheres to the low-temperature tube wall, it is difficult to remove it even by vapor phase etching using HCA.

したがって本発明では低温析出物が付着している区間を
対象に分割した内管(低温部内管)を設け、その短い内
管部を外部に取出し洗滌できるよう構成した。洗滌は一
回のエピタキシアル反応毎に行なっても良いが、4〜5
回の反応に一度の取出し洗滌でも十分である。
Therefore, in the present invention, an inner tube (low-temperature section inner tube) is provided which is divided into sections where low-temperature precipitates are attached, and the short inner tube section is configured to be taken out to the outside and cleaned. Washing may be performed after each epitaxial reaction, but 4 to 5 times
It is sufficient to take out and wash once for every reaction.

一方、前述の内管とは別に分割されたもう一つノ内管(
高温部内管)にはドーピングガス供給用のノズル管が取
り付けられる。
On the other hand, there is another inner tube (
A nozzle pipe for supplying doping gas is attached to the high temperature section inner pipe).

減圧ホットウォール方式の特徴は、反応管内部の空間を
利用し多数枚の基板を密に装填することにより生産効率
を上げることにあり、減圧はシリコン・ソースガスの拡
散を促進、気相熱分解の抑制の効果を持っている。多数
枚の基板をチャージした場合、反応ガスはエピタキシア
ル膜に転化するため消耗し、ガス流れ方向に濃度変化を
起し、膜厚、比抵抗に不均一化をもたらす。したがって
反応ガスの濃度低下を補正する何等から処置が必要であ
る。
The characteristic of the reduced pressure hot wall method is that it increases production efficiency by utilizing the space inside the reaction tube and densely loading a large number of substrates. It has the effect of suppressing When a large number of substrates are charged, the reaction gas is converted into an epitaxial film and is consumed, causing a concentration change in the gas flow direction, resulting in non-uniformity in film thickness and resistivity. Therefore, it is necessary to take some measures to correct the decrease in the concentration of the reactant gas.

膜厚の均一化については、シリコン・ソースガスの中途
補給を行ない、管式ノズルの挿入、内側に多孔ノズルを
持った二重管式反応管などの型式による方法があるが、
いずれもソースガスが高温の管壁側を通過する構造とな
り、気相熱分解によるソースガスの消耗、流路の閉塞な
どトラブルの原因となる。良好な別法としては、反応機
構が界面反応律速であることを利用し、ガス流れ方向に
温度勾配を設ける方法がある。
To make the film thickness uniform, there are methods such as replenishing silicon source gas midway, inserting a tube nozzle, and using a double tube reaction tube with a porous nozzle inside.
In either case, the structure is such that the source gas passes through the high-temperature tube wall side, which causes problems such as consumption of the source gas and blockage of the flow path due to gas-phase thermal decomposition. A good alternative method is to utilize the fact that the reaction mechanism is interfacial reaction rate-determining, and to provide a temperature gradient in the gas flow direction.

一方、エピタキシアル膜抵抗率の均一化は、ドーピング
ガスの補給に依存しなければならない。
On the other hand, uniformization of the epitaxial film resistivity must depend on replenishment of doping gas.

ドーピングガスは単独では高温管壁への析出がなく、ソ
ースガスの供給とは別個の配管とすることにより補給が
可能である。ドーピングガスのみを二重管式反応管の内
側多孔壁より噴出させる方法もあるが、細孔の径、数お
よびその加工、均一なガス噴出に関し問題が多い0本願
の発明者等の実験的検討によれば数個のノズル孔を有す
る管を用いてドーピングガスを注入するのが最良である
ことを見出した。しかし小径の長い管であるので熱歪曲
しやすく支持法に返点があった。そこで本発明において
は1分割内管法を用いドーピングガス補給用ノズル管を
もう一つの内管(高温部内管)内側に溶接することによ
りノズル管の補強を行なったにのドーピングノズル管材
の内管は反応管から分離可能の構造であるので、製作、
外部へ取り出して修理も簡便である。ノズル管の本数は
4〜12本程度で、管と管の間に間隔を設けることによ
り、基板搭載治具の移動を可能にする構造となっている
・ 〔発明の実施例〕 以下、本発明を実施例によって詳細に説明する。
If the doping gas is used alone, it will not be deposited on the high-temperature tube wall, and it can be supplied by using a separate piping from that for supplying the source gas. There is also a method in which only the doping gas is ejected from the inner porous wall of a double-tube reaction tube, but there are many problems with the diameter and number of pores, their processing, and uniform gas ejection. found that it is best to inject the doping gas using a tube with several nozzle holes. However, since it is a long tube with a small diameter, it is easily distorted by heat, and the support method had some drawbacks. Therefore, in the present invention, the nozzle tube is reinforced by welding the doping gas replenishment nozzle tube to the inside of another inner tube (high temperature section inner tube) using the one-split inner tube method. Because it has a structure that can be separated from the reaction tube, it is easy to manufacture,
It is also easy to take it outside for repair. The number of nozzle pipes is about 4 to 12, and the structure is such that the board mounting jig can be moved by providing a space between the pipes. [Embodiments of the Invention] Hereinafter, the present invention will be described. will be explained in detail using examples.

第1図は本発明に係る減圧ホットウォール・シリコン・
エピタキシアル装置の構成説明図である。
Figure 1 shows the reduced pressure hot wall silicone according to the present invention.
FIG. 2 is an explanatory diagram of the structure of an epitaxial device.

図において、1は電気抵抗式加熱炉(電気炉)、2は石
英製反応管、3は治具収納管、4は治具移動用の密閉式
オートローダ−15は反応ガスとの接触先端にガス整流
器を備えた基板搭載冶具、6は基板、7はガス供給配管
、8はドーピングガス供給配管、9は反応管の排気尾管
、10.11は接手、12は連絡管、13はドーピング
ガスノズル管のマニホールド、14は多管式のノズル管
、15は低温部内管、16は高温部内管、17は逆拡散
防止リングである。
In the figure, 1 is an electric resistance heating furnace (electric furnace), 2 is a quartz reaction tube, 3 is a jig storage tube, 4 is a closed autoloader for moving the jig, and 15 is a gas at the tip that contacts the reaction gas. A board mounting jig equipped with a rectifier, 6 a board, 7 a gas supply pipe, 8 a doping gas supply pipe, 9 an exhaust tail pipe of a reaction tube, 10, 11 a joint, 12 a connecting pipe, 13 a doping gas nozzle pipe 14 is a multi-tubular nozzle pipe, 15 is a low temperature section inner tube, 16 is a high temperature section inner tube, and 17 is a back diffusion prevention ring.

主要部の構造・寸法の一例を示すと次の通りである。An example of the structure and dimensions of the main parts is as follows.

電気炉1に挿入され管の外側より加熱される反応管2の
本体は、内径140+nn+φ、長さ2200mmであ
る。反応管2に接続される治具収納管3は、内径140
nuaφ、長さ600n+iである。反応管2、治具収
納管3に挿入される低温部内管15及び高温部内管16
は、いずれも外径136+smφ、肉厚3+am、長さ
1400mmの石英管である。高温部内管16の内側に
取付けられるノズル管14は外径61φの石英管である
The main body of the reaction tube 2, which is inserted into the electric furnace 1 and heated from the outside of the tube, has an inner diameter of 140+nn+φ and a length of 2200 mm. The jig storage tube 3 connected to the reaction tube 2 has an inner diameter of 140 mm.
nuaφ and length 600n+i. A low temperature section inner tube 15 and a high temperature section inner tube 16 inserted into the reaction tube 2 and the jig storage tube 3
Both are quartz tubes with an outer diameter of 136+smφ, a wall thickness of 3+am, and a length of 1400 mm. The nozzle tube 14 installed inside the high temperature section inner tube 16 is a quartz tube with an outer diameter of 61φ.

本装置を用いてシリコン・エピタキシアル成長を行なう
操作を説明する。
The operation of silicon epitaxial growth using this apparatus will be explained.

シリコン基板6を多数枚(本実施例では4インチ基板を
50枚)背中合せに搭載した治具5を、ガス供給配管7
よりN2ガスを流しなから治具収納管3にセットし密封
してからエピタキシ操作を開始する。まず反応系は排気
され、さらにN2ガスを流通させることにより、反応管
や排気系に残存するHCl1や0□を十分放逐する。そ
の後オートローダ−4を作動し、箔板搭載冶具5を電気
炉1の中央へと運ぶ、炉中央部の温度は920℃から9
80℃までの温度勾配が設けられ、エピタキシアル膜厚
均一化の役目を果している。
A jig 5 mounting a large number of silicon substrates 6 (50 4-inch substrates in this example) back to back is connected to a gas supply pipe 7.
Without flowing N2 gas, set the jig in the jig storage tube 3 and seal it, then start the epitaxy operation. First, the reaction system is evacuated, and by further circulating N2 gas, HCl1 and 0□ remaining in the reaction tube and the exhaust system are sufficiently removed. After that, the autoloader 4 is activated and the foil plate mounting jig 5 is transported to the center of the electric furnace 1.
A temperature gradient of up to 80° C. is provided, which serves to make the epitaxial film thickness uniform.

高温部にセットされた基板は、減圧下H2流通の下で表
面を7ニールされ自然酸化膜が除去される。
The surface of the substrate set in the high-temperature section is annealed seven times under reduced pressure and H2 flow to remove the native oxide film.

エピタキシアル反応は、反応ガスSiH,CQ、、ジャ
リヤガスH2、ドーピングガスPH,をガス供給配管系
7を通じて供給することにより行なわれる。また、ドー
ピングガスPH3(H,稀釈)を配管8を通して反応管
2の後尾から導入し、多管式ノズル管14より噴出させ
ることにより多数枚基板上のエピタキシアル膜の抵抗率
均一化を計っている。抵抗率はほとんどノズルから噴出
するドーピングガスにより支配され、ノズル噴出口より
風下は通常のドーピングが行なわれるが、風上もドーピ
ングガスの逆拡散によりほとんど均一に結品がドーピン
グされる。基板の上流より供給されるPH,はむしろ抵
抗率の微少補正の役目を負っている。本実施例における
ガス流量はHt ” 2 Q /win、 SiH,C
a、= 2 Q /win、主流P H,=0.I Q
/win (Hz稀釈で4 ppm) 、ノズルP H
3=0.4 Q /wlinで、反応管内圧力は0.3
Torrとした。そのときエピタキシアル膜の成長速度
は0.347sinであった・ 第2図は内管とドーピングガス用ノズル管の詳細説明図
である。反応管2の内壁に近接する内管が二つに分割さ
れ、低温部の内管15と高温部の内管16より成ってい
る。数個の噴出口を持ったノズル管14は本実施例の場
合4本より成り、高温部内管16に熔接されて熱歪曲に
対し補強されている。
The epitaxial reaction is carried out by supplying reaction gases SiH, CQ, Jarya gas H2, and doping gas PH through the gas supply piping system 7. In addition, doping gas PH3 (H, diluted) is introduced from the rear of the reaction tube 2 through the pipe 8, and is ejected from the multi-tube nozzle pipe 14 to make the resistivity of the epitaxial film on multiple substrates uniform. There is. The resistivity is mostly controlled by the doping gas ejected from the nozzle, and although normal doping is performed on the leeward side of the nozzle outlet, the crystals are doped almost uniformly on the upwind side due to back diffusion of the doping gas. Rather, the PH supplied from upstream of the substrate plays the role of slight correction of resistivity. The gas flow rate in this example is Ht ” 2 Q /win, SiH,C
a, = 2 Q /win, mainstream P H, = 0. IQ
/win (4 ppm at Hz dilution), nozzle P H
3=0.4 Q/wlin, the pressure inside the reaction tube is 0.3
Torr. At that time, the growth rate of the epitaxial film was 0.347 sin. Figure 2 is a detailed explanatory diagram of the inner tube and the doping gas nozzle tube. The inner tube close to the inner wall of the reaction tube 2 is divided into two parts, consisting of an inner tube 15 as a low temperature section and an inner tube 16 as a high temperature section. In this embodiment, the nozzle pipe 14, which has several ejection ports, consists of four pipes, and is welded to the high-temperature section inner pipe 16 to be reinforced against thermal distortion.

13はノズル管のマニホールドであるとともに、ガス流
れの後方整流器も兼ねている。18はマニホールド支持
棒である。第1図に示したように、マニホールド13は
連絡管12により反応管の排気尾管9を貫通して外部か
らの配管8と接続される。接手lOは尾管9と連絡管1
2の密閉を、接手11は連絡管12と配管8の接続を行
なっている。また反応管の尾管9には排気系の不純物ガ
スが反応管内に逆拡散するのを防止するために狭い流路
で作られたリング17が置かれている。ノズル管14を
熔接した内管16は接手1O111により反応管から分
離し1反応管のガス入口側より外部に取出せる構造にな
っている。内管16に設けられた小孔19は内管の引出
用である。
13 is a manifold for the nozzle pipe, and also serves as a rear rectifier for the gas flow. 18 is a manifold support rod. As shown in FIG. 1, the manifold 13 is connected to a pipe 8 from the outside by a connecting pipe 12 that passes through the exhaust tail pipe 9 of the reaction tube. Joint lO connects tail pipe 9 and communication pipe 1
2, and the joint 11 connects the communication pipe 12 and the piping 8. Further, a ring 17 made of a narrow flow path is placed in the tail pipe 9 of the reaction tube to prevent impurity gases from the exhaust system from diffusing back into the reaction tube. The inner tube 16 to which the nozzle tube 14 is welded can be separated from the reaction tube by a joint 1O111 and taken out from the gas inlet side of the reaction tube. A small hole 19 provided in the inner tube 16 is for drawing out the inner tube.

第3図は第2図のA−A’線における平面に沿って切断
した矢印方向に見た断面図で、ノズル管14と基板搭載
治具5、基板6の間の位置関係を示したものである。治
具が移動する場合ノズル管に接触せず内管の四壁上を運
行する構造になっている。高温帯はこのノズル管14近
辺にあるので、管壁析出物はHCQ気相エッチ法でクリ
ーニングが可能であり、高温部内管16の引出し頻度は
少ない。
FIG. 3 is a sectional view taken along the plane taken along line A-A' in FIG. 2 and seen in the direction of the arrow, showing the positional relationship between the nozzle pipe 14, the board mounting jig 5, and the board 6. It is. When the jig moves, it moves on the four walls of the inner tube without touching the nozzle tube. Since the high temperature zone is located near the nozzle tube 14, tube wall deposits can be cleaned by HCQ vapor phase etching, and the high temperature section inner tube 16 is pulled out less frequently.

一方もう一つの内管15は低温部にあり、軟質の管壁析
出物が付着するとともに、MCI!気相エッチによって
も除去困難であるので、数回のエピタキシアル反応後反
応管のガス入口端より引出し、交換後洗滌する。
On the other hand, the other inner tube 15 is in a low temperature section, and soft tube wall deposits adhere to it, and MCI! Since it is difficult to remove even by gas phase etching, it is pulled out from the gas inlet end of the reaction tube after several epitaxial reactions, replaced, and washed.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明の反応管構造物を使用して、エピタ
キシアル反応操作を行なうことにより、多数の基板上に
粉体の付着しない良質のエピタキシアル膜を、膜厚精度
±5%、比抵抗精度±10%の範囲で製造することを得
、生産効率の向上がはかられる。
By performing an epitaxial reaction operation using the reaction tube structure of the present invention as described above, a high quality epitaxial film with no powder adhesion can be formed on a large number of substrates with a film thickness accuracy of ±5% and a specific resistance. It is possible to manufacture with an accuracy of ±10%, which improves production efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る減圧ホットウォール・シリコン・
エピタキシアル装置の構成説明図、第2図は内管とドー
ピングガス用ノズル管の詳細説明図、第3図は第2図の
A−A’線における平面に沿って切断した矢視図である
。 1・・・電気炉      2・・・反応管3・・・治
具収納管    4・・・オートローダ−5・・・基板
搭載治具   6・・・基板7・・・ガス供給配管 8・・・ドーピングガス供給配管 9・・・反応管の排気尾管 13・・・ドーピングノズル管のマニホールド14・・
・多管式のノズル管 15・・・低温部内管16・・・
高温部内管
Figure 1 shows the reduced pressure hot wall silicone according to the present invention.
FIG. 2 is a detailed explanatory diagram of the inner tube and doping gas nozzle pipe, and FIG. 3 is a view taken along the plane taken along the line A-A' in FIG. 2. . 1... Electric furnace 2... Reaction tube 3... Jig storage tube 4... Autoloader 5... Board mounting jig 6... Board 7... Gas supply piping 8... Doping gas supply pipe 9...Exhaust tail pipe 13 of the reaction tube...Manifold 14 of the doping nozzle pipe...
・Multi-tube nozzle pipe 15...low temperature section inner pipe 16...
High temperature section inner tube

Claims (1)

【特許請求の範囲】[Claims]  内部に挿入した少なくとも2つ以上に分割された内管
を備え、ガス入口側より基板のセット位置上流付近まで
の部分に設けられた低温部内管は引出し交換可能に配置
され、さらに上記基板のセット位置周辺にはドーピング
ガスを流通させるための多管式ノズルを内側に設けた高
温部内管を少なくとも1つ備えたことを特徴とする減圧
ホットウォールCVD用反応管。
The low-temperature section inner tube is provided with an inner tube inserted into the interior and divided into at least two parts, and the low-temperature section inner tube provided from the gas inlet side to the vicinity upstream of the substrate setting position is arranged to be drawn out and replaceable, and furthermore, the inner tube of the low temperature section is arranged so as to be able to be pulled out and replaced. A reaction tube for reduced pressure hot wall CVD, characterized in that the reaction tube is equipped with at least one high-temperature section inner tube having a multi-tube nozzle inside for circulating doping gas around the position.
JP24132585A 1985-10-30 1985-10-30 Reaction tube for reduced pressure hot wall cvd Pending JPS6197193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24132585A JPS6197193A (en) 1985-10-30 1985-10-30 Reaction tube for reduced pressure hot wall cvd

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24132585A JPS6197193A (en) 1985-10-30 1985-10-30 Reaction tube for reduced pressure hot wall cvd

Publications (1)

Publication Number Publication Date
JPS6197193A true JPS6197193A (en) 1986-05-15

Family

ID=17072613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24132585A Pending JPS6197193A (en) 1985-10-30 1985-10-30 Reaction tube for reduced pressure hot wall cvd

Country Status (1)

Country Link
JP (1) JPS6197193A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36328E (en) * 1988-03-31 1999-10-05 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus including temperature control mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE36328E (en) * 1988-03-31 1999-10-05 Kabushiki Kaisha Toshiba Semiconductor manufacturing apparatus including temperature control mechanism

Similar Documents

Publication Publication Date Title
JPS62158874A (en) Multi-layered structure of thin film and its formation
JPS63119226A (en) Chemical evaporation system
JPS6197193A (en) Reaction tube for reduced pressure hot wall cvd
JPS63316425A (en) Manufacturing apparatus for semiconductor device
TW201015738A (en) Atomic layer deposition apparatus
JPH0658880B2 (en) Vapor phase epitaxial growth system
CN221918225U (en) Supporting device and hot furnace
TWI262548B (en) Vapor-phase growth apparatus
JP3077195B2 (en) Structure of vertical process tube for semiconductor heat treatment
JPH02306619A (en) Impurity diffusing equipment
CN103014664B (en) Chemical vapor deposition apparatus
JPS6063370A (en) Apparatus for manufacturing amorphous silicon hydride
JP2581093Y2 (en) Semiconductor heat treatment equipment
JP3057716B2 (en) Thin film formation method
CN118653135A (en) An air intake structure of chemical vapor deposition equipment and chemical vapor deposition equipment
JPH07193009A (en) Vapor growth device and vapor growth method using vapor growth device
JPH0321013A (en) Apparatus for forming thin film
JPS62163314A (en) Thin-film multilayer structure and forming method thereof
JPS6225256B2 (en)
JPH02268433A (en) Manufacture of semiconductor device
CN119082875A (en) Silicon carbide crystal deposition device and control method for inhibiting micropowder formation
JP3231312B2 (en) Vapor phase growth equipment
JPH0544823B2 (en)
JPH0448721A (en) Vapor growth device
JPS5919316A (en) Method of doping in decompressed hot wall device