JPS6196721A - Film forming method - Google Patents
Film forming methodInfo
- Publication number
- JPS6196721A JPS6196721A JP21638884A JP21638884A JPS6196721A JP S6196721 A JPS6196721 A JP S6196721A JP 21638884 A JP21638884 A JP 21638884A JP 21638884 A JP21638884 A JP 21638884A JP S6196721 A JPS6196721 A JP S6196721A
- Authority
- JP
- Japan
- Prior art keywords
- film
- ion
- substrate
- ions
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は基体の表面に被膜を形成する方法に関し、更に
詳しくは、基体との付着力が大きい硬質被膜を短時間で
形成できる被膜形成方法に関する。Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method of forming a film on the surface of a substrate, and more particularly, to a method of forming a film that can form a hard film with high adhesion to the substrate in a short time. .
[発明の技術的背景とその問題点]
近年、各種基体の表面を金属窒化物、金属酸化物などの
硬質物質の被膜で被覆した切削工具、耐庁耗工具等いわ
ゆるコーティング工具が急速に普及している。[Technical background of the invention and its problems] In recent years, so-called coated tools such as cutting tools and wear-resistant tools in which the surfaces of various substrates are coated with a film of hard substances such as metal nitrides and metal oxides have rapidly become popular. ing.
この被膜形成方法には、大別して化学蒸着法又は物理蒸
着法がある。This film forming method can be broadly classified into chemical vapor deposition method and physical vapor deposition method.
これらの方法のうちの1つであるイオンブレーティング
法は、良質な被膜が得られること、被膜の形成速度が大
きいこと、などの実用上の利点を有しているので広く適
用されている。The ion blating method, which is one of these methods, is widely applied because it has practical advantages such as being able to obtain a high-quality film and having a high film formation rate.
しかしながら、イオンプレースイング法で形成された被
膜は、基体との密着性が充分ではなく。However, the coating formed by the ion spray swing method does not have sufficient adhesion to the substrate.
切削工具のように被膜そのものに大きな機械的外力が加
わるような用途分野にあっては、該被膜9が基体から剥
離してしまうという現象パ生ずる。In applications such as cutting tools where a large external mechanical force is applied to the coating itself, a phenomenon occurs in which the coating 9 peels off from the base.
被膜の基体への付着力を高めるために種々の対策が提案
されているが、その1つの方法としてイオンミキシング
法が知られている。この方法は。Various measures have been proposed to increase the adhesion of the film to the substrate, one of which is known as an ion mixing method. This method is.
基体の表面に予めある物質の被膜を形成しておき、そこ
に例えばイオン化した希カスのような非金属イオンを所
定のイオン加速エネルギーで照射するという方法である
。This is a method in which a film of a certain substance is previously formed on the surface of a substrate, and non-metal ions such as ionized diluted scum are irradiated onto the film at a predetermined ion acceleration energy.
この場合、被膜を構成する原子は、照射イオンとの衝突
によって反跳して基体の内部にまで侵入し、2!体の原
子との間で新たな層を形成する。したがって、この方法
によれば、基体と被膜とは、上記した新たな層を媒介と
して強固な付着力を実現することになる。In this case, the atoms constituting the film recoil due to collision with the irradiated ions and penetrate into the interior of the substrate, resulting in 2! Forms a new layer with the atoms of the body. Therefore, according to this method, the substrate and the coating achieve strong adhesion through the above-described new layer.
しかしながら、このイオンミキシング法の場合、照射イ
オンはそれ自体が新たな被膜を形成するものではなく、
あくまでも基体と、既に存在する被膜との間のイオンミ
キシング効果を可能にするにすぎない、また、イオンミ
キシング効果の大小は、照射イオンの種類、加速エネル
ギーと基体の種類によっても異なってくるが、照射点か
ら約0.05〜0.1JLI6程度の深さのところで発
現するので、この効果は’IRMがあまり厚いときには
被膜と基体との界面で起ることなく、被膜の中で照射イ
オンが徒らに消費されて両者の付着力の向上に資するこ
とはない。However, in the case of this ion mixing method, the irradiated ions do not themselves form a new film;
It merely enables the ion mixing effect between the substrate and the already existing coating, and the magnitude of the ion mixing effect varies depending on the type of irradiated ions, acceleration energy, and type of substrate. Since this effect occurs at a depth of about 0.05 to 0.1 JLI6 from the irradiation point, this effect does not occur at the interface between the coating and the substrate when the IRM is too thick, and the irradiated ions are wasted inside the coating. It is consumed further and does not contribute to improving the adhesion between the two.
ト
[発明の目的J
本発明は、イオンブレーティング法とイオンミキシング
効果併用することにより1両者の有する長所を同時に発
現せしめ、もって基体表面との付着力が大きい硬質膜を
大きな堆積速度で形成することを可能にした新規な被膜
形成方法の提供を目的とする。[Purpose of the Invention J] The present invention uses the ion blating method and the ion mixing effect in combination to simultaneously bring out the advantages of both methods, thereby forming a hard film with high adhesion to the substrate surface at a high deposition rate. The purpose of the present invention is to provide a novel film forming method that makes it possible to do this.
[発明の概要]
本発明者らは、上記目的を達成すべく鋭意研究を重ねた
結果、イオンブレーティング法で基体表面に被膜を形成
し始めてから該被膜の厚みがイオンミキシング効果の及
ぶ範囲にまで成長する間に、該被膜表面を非金属イオン
で照射すれば、基体と被膜との付着力が強化されて該被
膜が基体にいわばしっかりと”根付く”こと、そしてそ
の後は、この被膜の上に目的とする被膜形成物質をイオ
ンブレーティング法で堆積せしめれば、大きな堆積速度
で目的被膜が形成できること、を着想し1本発明方法を
開発するに到った。[Summary of the Invention] As a result of extensive research aimed at achieving the above object, the present inventors have discovered that after starting to form a film on the surface of a substrate using the ion blating method, the thickness of the film falls within the range within which the ion mixing effect can be achieved. If the surface of the coating is irradiated with non-metal ions while it grows, the adhesion between the substrate and the coating will be strengthened, and the coating will firmly "root" on the substrate, so to speak. The inventors came up with the idea that the desired film could be formed at a high deposition rate if the desired film-forming substance was deposited by ion blasting, and the method of the present invention was developed.
すなわち、本発明方法は、基体表面に、イオンブレーテ
ィング法で被膜形成物質を被着せしめると同時又は交互
に、該被膜に非金属イオンを注入することを特徴とする
。That is, the method of the present invention is characterized in that when a film-forming substance is deposited on the surface of a substrate by an ion-blating method, nonmetallic ions are implanted into the film simultaneously or alternately.
未発明方法にあって、まず基体としては、セラミックス
、Mi硬合金、サーメット又は各種の金属若しくは合金
など何であってもよく、その材質は問わないが、基体そ
のものがイオンブレーティング法における負極を構成す
るという関係から電気伝導体であることが好ましい、し
かし、基体が電気絶縁体であったとしても、その表面に
常法により電気伝導体の薄膜を形成して用いればよい。In the uninvented method, first, the substrate may be made of any material such as ceramics, Mi hard alloy, cermet, or various metals or alloys, and the material itself does not matter, but the substrate itself constitutes the negative electrode in the ion blating method. For this reason, it is preferable that the substrate be an electrical conductor. However, even if the substrate is an electrical insulator, a thin film of an electrical conductor may be formed on the surface by a conventional method.
基イトの表面に被着せしめる被膜形成物質としては、用
途目的との関係で適宜に選定すればよいが、具体的には
1周期律表rVa 、Va 、 Via族の金属の炭化
物、窒化物、ホウ化物、酸化物、硫化物若しくはこれら
の相互固溶体;ケイ素の炭化物、窒化物;アルミニウム
の窒化物、ホウ化物、酸化物ニホウ素の炭化物、窒化物
などをあげることができる。The film-forming substance to be deposited on the surface of the substrate may be appropriately selected depending on the purpose of use, but specifically, carbides and nitrides of metals in groups rVa, Va, and Via of the periodic table, Examples include borides, oxides, sulfides, or mutual solid solutions thereof; silicon carbides and nitrides; aluminum nitrides, borides, oxides, and diboron carbides and nitrides.
これらはそれぞれ単独の被膜として形成されてもよいし
、または、これら物質が2種以上適宜に混妊して成る複
合被膜として形成されてもよいし、更には、各物質単独
の被膜が複数層積層して成る積層被膜として形成されて
もよい。Each of these may be formed as a single film, or may be formed as a composite film formed by appropriately mixing two or more of these substances, or furthermore, a film of each substance alone may be formed in multiple layers. It may be formed as a laminated film formed by laminating layers.
本発明方法を図に例示した装置を用いて詳細に説明する
6
まず、lは反応室であって、この中で基体表面への被膜
形成が行なわれる。The method of the present invention will be explained in detail using the apparatus illustrated in the figure. 6 First, 1 is a reaction chamber in which a film is formed on the surface of a substrate.
反応室1の内部は、形成すべき被膜の一方の構成物質を
含有する気体で所定圧に維持される1例えば、形成すべ
き被膜が炭化物、窒化物、ホウ化物、酢化物、硫化物の
場合には、それぞれ、メタン、アセチレンのような炭化
水素、窒素、アンモニアのような含窒素ガス、揮発性ポ
ラーンのような含ホウ素ガス、酸素、水のような含酸素
ガス。The inside of the reaction chamber 1 is maintained at a predetermined pressure with a gas containing one of the constituent substances of the film to be formed.For example, when the film to be formed is a carbide, nitride, boride, acetide, or sulfide. Hydrocarbons such as methane and acetylene, nitrogen-containing gases such as nitrogen and ammonia, boron-containing gases such as volatile pollane, oxygen, and oxygen-containing gases such as water, respectively.
硫化水素のような含硫黄ガスが供給されてそれぞれの2
囲気を形成する。2はそのための気体供給源である0反
応器1内の圧力は用いるイオンブレーティング法によっ
ても異なってくるが1通常、 10−2〜10−’ T
orr程度である。3は排気系である。A sulfur-containing gas such as hydrogen sulfide is supplied to each
form an enclosure. 2 is the gas supply source for this purpose. The pressure inside the reactor 1 varies depending on the ion blating method used, but is usually 10-2 to 10-' T.
It is about orr. 3 is an exhaust system.
4は形成すべき被膜の他方の構成物質を収納するポート
である。ここでいう他方の構成物質とは、例えば形成す
べき被膜がTiN 、TiGなどの場合には、Tiを指
す、すなわち、前記した具体例に則していえば、周期律
表rVa 、 Va 、 Vra族の金属元素である。4 is a port that accommodates the other constituent material of the film to be formed. The other constituent material here refers to Ti when the film to be formed is TiN, TiG, etc. In other words, according to the above-mentioned specific example, it is a member of the rVa, Va, and Vra groups of the periodic table. is a metallic element.
その他にも、ヒ素、7ンチモン、ビスマス、ケイ素、ゲ
ルマニウムのような半金属又はホウ素、アルミニウムも
適用することができる。また、これらの相互間液体であ
ってもよい。In addition, metalloids such as arsenic, heptimony, bismuth, silicon, germanium, boron, and aluminum can also be used. Alternatively, they may be mutually liquid.
5は、上記した他方の構成物質に電子ど一ム5aを照射
して九発させるための電子銃であって加熱手段として機
能する0図では電子銃を例示したか、この加熱手段とし
てはその外に抵抗加熱手段や高周波加熱手段を適用する
こともできる。Reference numeral 5 denotes an electron gun for irradiating nine electron beams 5a onto the other constituent material mentioned above, and functions as a heating means. Resistance heating means or high frequency heating means can also be applied.
6は、高周波イオンブレーティング法における高周波コ
イルであって、高周波電源7と゛接続されコイル領域内
でブロー放電を形成するように設計される。8は高圧直
値電源であって、ポート5を陽極とし、基体9を負極た
らしめる。このとき、基体の負の印加電圧は、1〜5K
Vであることが好ましい、又、6は電極、フィラメント
等でイオン化しやすいものであれば何であってもよい。Reference numeral 6 denotes a high-frequency coil used in the high-frequency ion brating method, and is designed to be connected to a high-frequency power source 7 and to form a blow discharge within the coil region. Reference numeral 8 is a high-voltage direct power supply, with port 5 serving as an anode and base 9 serving as a negative pole. At this time, the negative applied voltage to the base is 1 to 5K.
V is preferable, and 6 may be any electrode, filament, etc. as long as it is easily ionized.
反応室l内を所定雰囲気、所定圧に維持した状態で高周
波コイル、電子銃を作動すると、ポートからは所定の例
えば金属が蒸発してイオン化し、更にこれはグロー放電
領域を通過する過程で雰囲気ガスと化学反応を起こして
被膜形成物質となり、基体表面に被着する。When the high-frequency coil and electron gun are activated while maintaining a predetermined atmosphere and pressure in the reaction chamber l, a predetermined metal, for example, evaporates from the port and becomes ionized, and furthermore, in the process of passing through the glow discharge region, the atmosphere It causes a chemical reaction with gas and becomes a film-forming substance that adheres to the substrate surface.
本発明方法においては、この被膜形成物質が基体表面に
被着すると同時又は若干の時間差を置いて交互に非金属
イオンを照射する。In the method of the present invention, non-metal ions are irradiated at the same time that the film-forming substance is deposited on the substrate surface or alternately with a slight time lag.
非金属イオンとしては、所定のイオン加速エネルギーを
有するイオン種であって、基体9と形成された被膜との
界面でイオンミキシング効果を発揮するようなものであ
れば何であってもよく、例えば、ホウ素イオン(B“)
、炭素イオン(Cゝ)、イオウイオン(Sa、窒素原子
イオン(N4)、窒素分子イオン(N2ゝ)、酸素原子
イオン(0°)、m素分子イオン(02”) 、ヘリウ
ムイオン(He”) 、アルゴンイオン(Ar”) 、
クリプトンイオン(Kr勺、ネオンイオン(Ne”)を
あげることができる、これらの非金属イオンの種類は、
目的とする被膜形成物質との関係から適宜に選定される
。The non-metal ions may be any ion species that has a predetermined ion acceleration energy and that exhibits an ion mixing effect at the interface between the substrate 9 and the formed coating, for example, Boron ion (B“)
, carbon ion (Cゝ), sulfur ion (Sa, nitrogen atom ion (N4), nitrogen molecular ion (N2ゝ), oxygen atom ion (0°), m elementary molecular ion (02"), helium ion (He") ), argon ion (Ar”),
Types of these nonmetallic ions include krypton ions (Kr) and neon ions (Ne'').
It is appropriately selected depending on the relationship with the intended film-forming substance.
このとき、照射するこれら非金属イオンのイオン加速エ
ネルギーは2〜 l00KeVの範囲内、特に、5〜9
0KeVに設定することが好ましい、このエネルギーが
2 KeVより小さい゛場合には、イオンミキシング効
果が有効に進行せず被膜の表面ではスパッタ現象が支配
的となって、形成されつつある又は形成された被膜は“
やせる゛ばかりで所期の目的達成が困難であり、また1
oOKeVを超える場合には、被膜に多量の格子欠陥が
発生して良質の被膜が得られない。At this time, the ion acceleration energy of these nonmetal ions to be irradiated is within the range of 2 to 100 KeV, particularly 5 to 9
It is preferable to set the energy to 0 KeV. If this energy is smaller than 2 KeV, the ion mixing effect will not proceed effectively and the sputtering phenomenon will become dominant on the surface of the film, causing the ion to be formed or to be formed. The coating is “
It is difficult to achieve your desired goal because you are always trying to lose weight, and
If it exceeds oOKeV, a large amount of lattice defects will occur in the film, making it impossible to obtain a good quality film.
このような非金属イオンは図の反応室lに付設したイオ
ン発生装置10から基体表面の被膜に照射される0図で
イオン化されるへきガスがリークバルブlOaを介して
イオン源10bに導入され、ここでイオン化されたのち
、加速rj、lOcで加速されて所定のイオン加速エネ
ルギーが付芋される。イオンは次に分析マグネットlo
dに導入され、ここで必要とするイオン種のみが磁気的
に選択されて例えば収束レンズ10eから図の矢線方向
に供給されて基体9上に形成される被膜を照射する。Such non-metal ions are irradiated onto the coating on the surface of the substrate from the ion generator 10 attached to the reaction chamber l shown in the figure.The gas is ionized in the figure and introduced into the ion source 10b through the leak valve lOa. After being ionized here, it is accelerated by the accelerations rj and lOc to provide a predetermined ion acceleration energy. The ions are then placed in the analysis magnet lo
d, and only the necessary ion species are magnetically selected and supplied from, for example, a converging lens 10e in the direction of the arrow in the figure to irradiate the coating formed on the substrate 9.
本発明方法では、この非金属イオンの照射を。In the method of the present invention, this nonmetal ion irradiation is performed.
基体表面に被膜形成物質を被着せしめるのと同時に、又
は該被膜が形成された直後に行なう、前者の場合には、
被膜形成のその瞬間でイオンミキシング効果が発現して
付着力大の状態で被膜成長が進行し、後者の場合にも同
じくイオンミキシング効果は発揮されていく。In the former case, it is carried out at the same time as depositing the film-forming substance on the substrate surface, or immediately after the film is formed.
The ion mixing effect is expressed at the moment of film formation, and the film growth progresses in a state of strong adhesion, and in the latter case, the ion mixing effect is also exerted.
付着力大の状態で被1文が形成されたのちも、イオン照
射を継続又は中断すれば所望の被膜がイオンプレティン
グ法による大きな堆積速度で形成されていく。Even after the coating is formed with strong adhesion, if ion irradiation is continued or interrupted, the desired film will be formed at a high deposition rate by the ion plating method.
また、この被膜の上に更に他の被膜を積層する場合には
、上記操作を反復すればよい。Furthermore, in order to further laminate another film on top of this film, the above operation may be repeated.
[発明の実施例]
実施例1
図示の装置を用いて気体供給源2から反応室1内に窒素
ガスを4人し、室l内を!04Torrの圧力に保持し
た。基体9としてP30チップを用いこれに3KVの負
電圧を印加した。また、高周波コイル6に13.56M
Hzの電力を印加した。[Embodiments of the Invention] Example 1 Using the illustrated apparatus, four people supplied nitrogen gas from the gas supply source 2 into the reaction chamber 1, and the inside of the chamber 1 was filled! The pressure was maintained at 0.04 Torr. A P30 chip was used as the substrate 9 and a negative voltage of 3 KV was applied to it. In addition, 13.56M is added to the high frequency coil 6.
A power of Hz was applied.
窒素ガスをリークパルグloaからイオン源10bに導
入し、発生したイオンを加速器10cで加速して50K
eVの加速エネルギーを付与した。このイオンを分析マ
グネッ) lodに導入し窒素分子イオン(N2+)の
みを磁気的に選択した。Nitrogen gas is introduced into the ion source 10b from the leak pulse loa, and the generated ions are accelerated by the accelerator 10c to 50K.
An acceleration energy of eV was applied. These ions were introduced into an analytical magnet, and only nitrogen molecular ions (N2+) were magnetically selected.
まず、ポート4内の金属チタンに、電子銃5から出力s
oowの電子ビームを発生させてこれを金属チタンに照
射して金属チタンをバ発させた。First, the output s from the electron gun 5 is applied to the titanium metal in the port 4.
An oow electron beam was generated and irradiated onto metal titanium, causing the titanium metal to explode.
これと同時に、収束レンズlOeから窒素分子イオンを
1016個/Cm2の照射密度で10分間基体9に照射
した。基体表面には窒化チタン(Tie)の被膜が形成
された。その11!積速度は0.05 h m/−1n
であった。At the same time, the substrate 9 was irradiated with nitrogen molecular ions from a converging lens lOe at an irradiation density of 1016 ions/Cm2 for 10 minutes. A titanium nitride (Tie) film was formed on the surface of the substrate. Part 11! The cumulative velocity is 0.05 h m/-1n
Met.
つぎに、窒素分子イオンをTiN膜に照射し統けなまま
、電子銃5の出力を2KWにあげてチタンを10分間基
発させた。その結果、厚み 2.5ト
gmのTiN1lの形成が確認された。堆積速度的0.
25 p−m/win 。Next, while the TiN film was irradiated with nitrogen molecular ions, the output of the electron gun 5 was increased to 2 KW and titanium was irradiated for 10 minutes. As a result, the formation of TiN11 with a thickness of 2.5 gm was confirmed. Deposition rate 0.
25 pm/win.
得られたTiN被膜のチップにつき、下記の仕様でTi
N被膜の耐摩耗性と該被膜の耐剥離性を調べた。比較の
ために、イオンブレーティング法のみで同じ膜厚の被膜
を形成したチップについても同様の測定を行なった。For the obtained TiN-coated chip, Ti
The wear resistance of the N coating and the peeling resistance of the coating were investigated. For comparison, similar measurements were also performed on chips on which a film of the same thickness was formed using only the ion blating method.
耐摩耗性試験:チップをスライスにセ−/ トし、切削
速度148m/l1il、切込み2■、送り速度0.2
2m1/回転の条
件で5US304ステンレス鋼を2バ
ス(pass)、6分間フライス切削
し、そのときの平均摩耗幅、最
大彦耗幅を測定した。Wear resistance test: Chips were set into slices, cutting speed 148m/l1il, depth of cut 2■, feed rate 0.2
5US304 stainless steel was milled for 2 passes for 6 minutes under the condition of 2 m1/rotation, and the average wear width and maximum wear width at that time were measured.
耐剥離性試験:チップをバイトにセ゛ットし、切削速度
30m/win 、切込み 1.5■、送り速度0.3
5mm/回転の条
件で948G炭素鋼を湿式切削して
被膜の剥離幅を測定した。Peeling resistance test: Set the chip on a cutting tool, cutting speed 30m/win, depth of cut 1.5■, feed rate 0.3
948G carbon steel was wet-cut under the condition of 5 mm/rotation, and the peeling width of the coating was measured.
以上の結果を一括して表に示した。The above results are summarized in the table.
実施例2
非金属イオンがアルゴンイオンであったことを除いては
実施例1と同様にしてまず厚み約0,05トmのTiN
被膜を形成した。Example 2 First, TiN with a thickness of about 0.05 tm was prepared in the same manner as in Example 1 except that the nonmetal ions were argon ions.
A film was formed.
ついで、アルゴンイオンを照射しつづけたまま、電子銃
5の出力を3KWにあげてチタンを15分間基発させた
。その結果、厚み約5川副のTiN被膜が形成された。Then, while continuing to irradiate with argon ions, the output of the electron gun 5 was increased to 3 KW to irradiate titanium for 15 minutes. As a result, a TiN film having a thickness of about 5 wafers was formed.
堆積速度的0.33声ll1分。Deposition rate: 0.33 voices 1 minute.
その後、アルゴンイオンを照射し続けながら、反応室1
内を酸素分圧10″5Torrの雰囲気に置換し、かつ
500wの電子ビームで別置したポート内のアルミニウ
ムを10分間基発させた。 Tin被膜の上には更に厚
み約2ルIのへ見、03の被膜が形成された。Then, while continuing to irradiate argon ions, the reaction chamber 1
The interior was replaced with an atmosphere with an oxygen partial pressure of 10''5 Torr, and the aluminum in the separately placed port was ignited for 10 minutes using a 500W electron beam. , 03 coatings were formed.
得られたチップの耐摩耗性、耐剥離性は実施例得られた
チップの耐摩耗性、耐剥離性は実施例1の場合とほぼ同
じであった。The wear resistance and peeling resistance of the obtained chip were almost the same as those of Example 1.
[発明の効果]
以上の説明で明らかなように、本発明方法によれば、形
成された被膜は、基体との界面でイオンミキシング効果
が発現しているので両者間の付着力は大きく被膜の剥離
問題は解消する。そして、その後の被膜形成物質の堆積
速度はイオンブレーティング法によって律速されている
ので、被膜形成速度は非常に大きい、しかも得られた被
膜はイオンブレーティング法の特質を反映して良質であ
る。[Effects of the Invention] As is clear from the above explanation, according to the method of the present invention, the formed coating exhibits an ion mixing effect at the interface with the substrate, so the adhesion between the two is large and the coating is This solves the peeling problem. Since the subsequent deposition rate of the film-forming substance is controlled by the ion-blating method, the film-forming speed is very high, and the resulting film is of good quality, reflecting the characteristics of the ion-blating method.
したがって、本発明方法を各種の切削工具の基体に適用
すれば、耐摩耗性、耐剥離性が優れた硬質被膜を具備す
る工具を高い生産性の下で製造することができるのでそ
の工業的価値は極めて大である。Therefore, if the method of the present invention is applied to the substrates of various cutting tools, tools having hard coatings with excellent wear resistance and peeling resistance can be manufactured with high productivity, resulting in their industrial value. is extremely large.
図は本発明方法を適用するに好適な装置の1例を示す概
念的模式図である。The figure is a conceptual diagram showing an example of an apparatus suitable for applying the method of the present invention.
Claims (2)
物質を被着せしめると同時又は交互に、該被膜に非金属
イオンを注入することを特徴とする被膜形成方法。(1) A method for forming a film, which comprises depositing a film-forming substance on the surface of a substrate by an ion-blating method and simultaneously or alternately implanting nonmetallic ions into the film.
が5KeVから90KeVである特許請求の範囲第1項
記載の被膜形成方法。(2) The film forming method according to claim 1, wherein the ion acceleration energy during the non-metal ion implantation is from 5 KeV to 90 KeV.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21638884A JPS6196721A (en) | 1984-10-17 | 1984-10-17 | Film forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21638884A JPS6196721A (en) | 1984-10-17 | 1984-10-17 | Film forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6196721A true JPS6196721A (en) | 1986-05-15 |
Family
ID=16687784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21638884A Pending JPS6196721A (en) | 1984-10-17 | 1984-10-17 | Film forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6196721A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01172564A (en) * | 1987-12-26 | 1989-07-07 | Agency Of Ind Science & Technol | Formation of film at high speed |
JPH01172563A (en) * | 1987-12-26 | 1989-07-07 | Agency Of Ind Science & Technol | Formation of high-purity film |
JPH02208660A (en) * | 1989-02-08 | 1990-08-20 | Minolta Camera Co Ltd | Electrophotographic sensitive body |
JPH03197662A (en) * | 1989-12-26 | 1991-08-29 | Sumitomo Metal Mining Co Ltd | Surface coated sintered hard alloy and its production and surface coated steel products and its production |
JPH04333560A (en) * | 1991-05-09 | 1992-11-20 | Nissin Electric Co Ltd | Formation of nitride film |
JPH05156427A (en) * | 1991-12-09 | 1993-06-22 | Nissin Electric Co Ltd | Method and device for forming thin film |
JP2009155698A (en) * | 2007-12-27 | 2009-07-16 | Mitsubishi Materials Corp | Film deposition method and film deposition apparatus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5856413A (en) * | 1981-09-30 | 1983-04-04 | Fujitsu Ltd | Semiconductor device manufacturing equipment |
JPS59170270A (en) * | 1983-03-15 | 1984-09-26 | Toshiba Corp | Apparatus for forming film |
JPS60131964A (en) * | 1983-12-20 | 1985-07-13 | Nissin Electric Co Ltd | Manufacture of film-coated body |
-
1984
- 1984-10-17 JP JP21638884A patent/JPS6196721A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5856413A (en) * | 1981-09-30 | 1983-04-04 | Fujitsu Ltd | Semiconductor device manufacturing equipment |
JPS59170270A (en) * | 1983-03-15 | 1984-09-26 | Toshiba Corp | Apparatus for forming film |
JPS60131964A (en) * | 1983-12-20 | 1985-07-13 | Nissin Electric Co Ltd | Manufacture of film-coated body |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01172564A (en) * | 1987-12-26 | 1989-07-07 | Agency Of Ind Science & Technol | Formation of film at high speed |
JPH01172563A (en) * | 1987-12-26 | 1989-07-07 | Agency Of Ind Science & Technol | Formation of high-purity film |
JPH02208660A (en) * | 1989-02-08 | 1990-08-20 | Minolta Camera Co Ltd | Electrophotographic sensitive body |
JPH03197662A (en) * | 1989-12-26 | 1991-08-29 | Sumitomo Metal Mining Co Ltd | Surface coated sintered hard alloy and its production and surface coated steel products and its production |
JPH04333560A (en) * | 1991-05-09 | 1992-11-20 | Nissin Electric Co Ltd | Formation of nitride film |
JPH05156427A (en) * | 1991-12-09 | 1993-06-22 | Nissin Electric Co Ltd | Method and device for forming thin film |
JP2009155698A (en) * | 2007-12-27 | 2009-07-16 | Mitsubishi Materials Corp | Film deposition method and film deposition apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4657774A (en) | Method for thin film formation | |
JPS58221271A (en) | Formation of film by ion plating method | |
JPH0352433B2 (en) | ||
JPH0588310B2 (en) | ||
WO2008028355A1 (en) | Method for making surface antibacterial products utilizing physical vapor deposition technology | |
JPS6196721A (en) | Film forming method | |
Zdunek et al. | Optimization of gas injection conditions during deposition of AlN layers by novel reactive GIMS method | |
JPH0259862B2 (en) | ||
JP2909248B2 (en) | Boron nitride coated member | |
CN100537835C (en) | Magnetron sputtering-LASER HEATING CEM depositing process and equipment | |
JPS5920465A (en) | Sintered hard alloy tool and its production | |
JPS5457477A (en) | Throw away tip of coated tool steel | |
Iwaki | Formation of metal surface layers with high performance by ion implantation | |
CN1775997A (en) | Device and process of microwave plasma enhanced arc glow coating coating | |
JP2875892B2 (en) | Method of forming cubic boron nitride film | |
JPS63238270A (en) | Method for manufacturing compound thin film | |
Yamashita et al. | Adhesion and structure of c-BN films produced by ion-beam-assisted deposition | |
JPS60131964A (en) | Manufacture of film-coated body | |
JPS5655564A (en) | Method of forming hard cladding layer on the surface of member for cutting tool | |
JPS6224501B2 (en) | ||
JPH01168857A (en) | Formation of titanium nitride film | |
JPS6257802A (en) | Parts coated with hard carbon | |
JPH0445258A (en) | Boron nitride coated member | |
Sartwell et al. | Surface & Coatings Technology: Papers Presented at the Third International Conference on Plasma Surface Engineering, Garmisch-Partenkirchen, Germany, October 26–29, 1992 | |
JPS63262457A (en) | Preparation of boron nitride film |