[go: up one dir, main page]

JPS6191964A - MOS field effect transistor - Google Patents

MOS field effect transistor

Info

Publication number
JPS6191964A
JPS6191964A JP59213955A JP21395584A JPS6191964A JP S6191964 A JPS6191964 A JP S6191964A JP 59213955 A JP59213955 A JP 59213955A JP 21395584 A JP21395584 A JP 21395584A JP S6191964 A JPS6191964 A JP S6191964A
Authority
JP
Japan
Prior art keywords
gate electrode
gate
effect transistor
field effect
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59213955A
Other languages
Japanese (ja)
Inventor
Minoru Tanaka
稔 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC IC Microcomputer Systems Co Ltd filed Critical NEC IC Microcomputer Systems Co Ltd
Priority to JP59213955A priority Critical patent/JPS6191964A/en
Publication of JPS6191964A publication Critical patent/JPS6191964A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • H10D30/6212Fin field-effect transistors [FinFET] having fin-shaped semiconductor bodies having non-rectangular cross-sections
    • H10D30/6213Fin field-effect transistors [FinFET] having fin-shaped semiconductor bodies having non-rectangular cross-sections having rounded corners
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/117Shapes of semiconductor bodies

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔腫業上の利用分野〕 本発明は、、MOS @界効朱トランジスタ(以下、M
OSFET  という)のゲート・磁極構造に関するも
のである。
[Detailed Description of the Invention] [Field of Tumor Application] The present invention is directed to a MOS@field effect transistor (hereinafter, M
This relates to the gate/magnetic pole structure of OSFET.

〔従来の技術〕[Conventional technology]

従来、MOIITのゲート電極は、平面的そ3造換言す
れは、ソースとドレイン間に平面状に存在する2次元的
な構造によって形成されていた。
Conventionally, the gate electrode of MOIIT has been formed in a planar manner, or in other words, as a two-dimensional structure existing in a planar manner between a source and a drain.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような構造によれは、高い相互7ンダクタクタンス
(以下、pmという)を、要求ざ扛る屈合、MOf!(
FET (1) t9 Inが、ゲート電極のmrfR
や長さ等の幾何学的寸法によって決定される為に、犬き
な面積を必戟とし、大きな9mを妃要とするMOSFE
TのIC,LSI内での微細化、高集積化、小チツプ化
のさまたけとなっていた。
Such a structure requires a high mutual inductance (hereinafter referred to as pm), MOf! (
FET (1) t9 In is mrfR of the gate electrode
Since it is determined by geometric dimensions such as height and length, a large area is required, and a large 9m is required for MOSFE.
This has been an obstacle to miniaturization, higher integration, and smaller chips in T ICs and LSIs.

又、2次元的な構造であるが故に、ゲート電極直下に形
成されるチャネルを通過するキャリア(可動電荷)も2
次元的な制約をうけて、ゲート電極直下の基板中(表面
に対して、内部の事ンでのキャリアの実際の易動度(単
位電界でのギヤリアの速度:動き易さ)の−程度の易g
!JJIfLか実現できなかった。
Also, because it has a two-dimensional structure, carriers (mobile charges) passing through the channel formed directly under the gate electrode are also 2-dimensional.
Due to dimensional constraints, the actual mobility of carriers (velocity of gear in unit electric field: ease of movement) in the substrate directly under the gate electrode (relative to the surface) is easy
! JJIfL could not be realized.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明によれば、ソース領域とドレイン領域間の半導体
基板をアーチ状にし、この上にゲート開極を形成したM
OSFETを得る。
According to the present invention, the semiconductor substrate between the source region and the drain region is formed into an arch shape, and a gate opening is formed on the semiconductor substrate.
Obtain OSFET.

〔作用〕[Effect]

ソース、ドレイン電極間のゲート電極はアーチ状となっ
、ているので小さい平面的面積でもより大きな実効面積
を得ることができ、より小さな占有面積で高いgmt*
するMOSFETを得ることができ、IC等に適用した
場合高集積化が実現できる。
The gate electrode between the source and drain electrodes is arch-shaped, so a larger effective area can be obtained even with a small planar area, resulting in high gmt* with a smaller occupied area.
It is possible to obtain a MOSFET that can achieve high integration when applied to an IC or the like.

〔実施例〕〔Example〕

以下、図面を用いて説明する。 This will be explained below using the drawings.

従来のMOSFETは第3図に示すように、−主表面を
有する半導体基板3にソース領域4とドレイン領域5と
を形成し、それらソースおよびドレイン領域4,5間の
半導体基板3上に平面状にゲート酸化膜2およびゲート
電極1を形成していた。
As shown in FIG. 3, in a conventional MOSFET, a source region 4 and a drain region 5 are formed on a semiconductor substrate 3 having a main surface, and a planar region is formed on the semiconductor substrate 3 between the source and drain regions 4 and 5. A gate oxide film 2 and a gate electrode 1 were formed thereon.

従って、ゲート電極1の面積はソースおよびドレイン領
域4,5間の面積によって一義的に決まってしまい、高
11m化のためにはソースおよびドレイン領域4,5間
の面積を広げ誰子占有面積の増大が避けられなかった。
Therefore, the area of the gate electrode 1 is uniquely determined by the area between the source and drain regions 4 and 5, and in order to increase the height to 11 m, the area between the source and drain regions 4 and 5 must be increased to reduce the area occupied by both. Growth was inevitable.

また、ゲート電イメ1下の可動電荷は2次元的に束縛さ
れた領域を電界にひっばられ;:がら動くため、半導体
基板3上部の半分程度の速度しか得られずより高速動作
の可能なM(J8FETが得られなかった。
In addition, since the movable charges under the gate electrode image 1 move in a two-dimensionally constrained region by the electric field, the speed is only about half that of the upper part of the semiconductor substrate 3, making it possible to operate at higher speeds. M (J8FET was not obtained.

i1図は本発明の一実施例を示すもので、ソース領域4
およびドレイン領域5間の半導体基板3は台形状の堀シ
込みが両側に設けられている。ゲート酸化膜2は台形状
部の表面にアーチ状に設けられており、ゲート電極1も
ゲート酸化膜2上にアーチ状に設けられている。
Figure i1 shows an embodiment of the present invention, in which the source region 4
The semiconductor substrate 3 between the drain region 5 and the drain region 5 is provided with trapezoidal trenches on both sides. The gate oxide film 2 is provided in an arch shape on the surface of the trapezoidal portion, and the gate electrode 1 is also provided in an arch shape on the gate oxide film 2.

本実施例によれば、アーチ状ゲート電極1の側面部は平
面的面積をそれほど必要とすることなく、実効ゲート面
積を広くすることができる。従って、より小さな平面面
積で高いpmのMOSFETを得ることができ、半導体
基板上での素子占有開面を小さくできる上に、集積密度
を高めることができる。
According to this embodiment, the effective gate area can be increased without requiring much planar area for the side portions of the arched gate electrode 1. Therefore, a high pm MOSFET can be obtained with a smaller planar area, the aperture occupied by the element on the semiconductor substrate can be reduced, and the integration density can be increased.

次に、第2図(a)〜(e)を参照して1本実施例の製
造方法を説明する。
Next, the manufacturing method of this embodiment will be explained with reference to FIGS. 2(a) to 2(e).

先ず同図(a)の様に半導体基板3上に、窒化膜6ヲタ
い積させ、エツチングによって、ゲート部を残して、窒
化膜を除去する。
First, as shown in FIG. 2A, a nitride film 6 is deposited on a semiconductor substrate 3, and the nitride film is removed by etching, leaving the gate portion.

次に、同図(b)の様に酸化膜7を半導体基板3上に成
長させる。この時ゲート部゛の両脇が酸化工程で堀シ下
げられる。
Next, as shown in FIG. 3B, an oxide film 7 is grown on the semiconductor substrate 3. At this time, both sides of the gate section are dug down in an oxidation process.

次に、窒化膜6と酸化膜7とを取シ除く事番こより、同
図(C1の様に、半導体3上に2本の溝が形成される。
Next, by removing the nitride film 6 and the oxide film 7, two grooves are formed on the semiconductor 3, as shown in FIG.

更に、フィールド酸化によりフィールド酸化膜8を形成
し、エツチング工程およびゲート酸化工程を経て、同図
(d)のごとく、ゲート部には薄いゲート酸化膜2をそ
れ以外の部分に厚いフィールド酸化膜8を形成する。
Furthermore, a field oxide film 8 is formed by field oxidation, and through an etching process and a gate oxidation process, as shown in FIG. form.

こうして、この上にゲート電極金属をたい積させる事に
よシ、同図(e)の様なアーチ状のゲート電極1が形成
される。
In this way, by depositing gate electrode metal on this, an arch-shaped gate electrode 1 as shown in FIG. 2(e) is formed.

このように、本発明の一実施例によれば、ゲート電極1
をアーチ状に形成する事で、ゲート電極1をゲート幅方
向に傾斜をもたせ、ゲート丁番こ3次元空間を構成し、
チャネルを半導体基板3中と同じ様な3次元的な束縛下
におくことができる。
Thus, according to one embodiment of the present invention, the gate electrode 1
By forming the gate electrode 1 in an arch shape, the gate electrode 1 is inclined in the gate width direction, and the gate hinge forms a three-dimensional space.
The channel can be placed under three-dimensional constraints similar to those in the semiconductor substrate 3.

この3次元空間では、2方向からの電界によって少数キ
ャリアが誘起されるわけであるから、チャネルは、ここ
に集中し、キャリアは、3次元空間を通過する事になり
、烏動度は半導体基板3と同等な値となシ、高い11m
を実現できる。
In this three-dimensional space, minority carriers are induced by electric fields from two directions, so the channel is concentrated here, and the carriers pass through the three-dimensional space, and the magnetic flux is the same as that of the semiconductor substrate. The value is equivalent to 3, and the height is 11m.
can be realized.

更に、幅方向に傾斜をもたせるのであるから。Furthermore, it has an inclination in the width direction.

占有する面積も小さくなり、平面的な拡がシを必要とせ
ずに高いIImを実現できる。
The area occupied is also reduced, and a high IIm can be achieved without requiring planar expansion.

〔発明の効果〕  “ 本発明は、幅方向にゲートを曲げ、アーチ状のゲート電
極構造を形成する事で、 (1)  IC,LSIチップ上でトランジスタの占め
る面積を小さくし、 (2)3次元的拡がシをもつチャネルを形成する事によ
り、 高いImを実現できるし、増幅器の高い増幅器を実現で
き、リニア回路への、応用が容易になるばかりでなく、
占める面積が小さくなる為に、高密度のIC,LSI等
の半導体素子を実現する事もできる。
[Effects of the Invention] “The present invention bends the gate in the width direction to form an arch-shaped gate electrode structure, thereby (1) reducing the area occupied by the transistor on an IC or LSI chip, and (2) 3 By forming a channel with dimensional expansion, it is possible to realize a high Im and a high amplifier, which not only makes it easy to apply to linear circuits.
Since it occupies a smaller area, it is also possible to realize high-density semiconductor devices such as ICs and LSIs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す透視図、第2図は第1
図の実施例の一製造法をその製造工程順に示す断面図、
第3図は従来のMO8電界効果トランジスタを示す透視
図である。 1・・・・・・ゲート電極、2・・・・・・ゲート酸化
膜、3・・・・・・半導体基板、4・・・・・・ソース
領域、5・・・・・・ドレイン領域、6・・・・・・窒
化膜、7・・・・・・酸化膜、8・・・・・・フィール
ド酸化膜。 一911シ ノ  図 亡)晒i二 3 図
Fig. 1 is a perspective view showing one embodiment of the present invention, and Fig. 2 is a perspective view showing an embodiment of the present invention.
A sectional view showing a manufacturing method of the embodiment shown in the order of manufacturing steps,
FIG. 3 is a perspective view of a conventional MO8 field effect transistor. DESCRIPTION OF SYMBOLS 1... Gate electrode, 2... Gate oxide film, 3... Semiconductor substrate, 4... Source region, 5... Drain region , 6... Nitride film, 7... Oxide film, 8... Field oxide film. 1911 Shi no Figure deceased) exposed i2 3 figure

Claims (1)

【特許請求の範囲】[Claims]  ソース領域およびドレイン領域間に、該ソース領域お
よびドレイン領域間を結び方向に直角な断面がアーチ状
のゲート電極を有することを特徴とするMOS電界効果
トランジスタ。
A MOS field effect transistor having a gate electrode between a source region and a drain region, the cross section of which is perpendicular to the direction connecting the source region and the drain region is arch-shaped.
JP59213955A 1984-10-12 1984-10-12 MOS field effect transistor Pending JPS6191964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59213955A JPS6191964A (en) 1984-10-12 1984-10-12 MOS field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59213955A JPS6191964A (en) 1984-10-12 1984-10-12 MOS field effect transistor

Publications (1)

Publication Number Publication Date
JPS6191964A true JPS6191964A (en) 1986-05-10

Family

ID=16647819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59213955A Pending JPS6191964A (en) 1984-10-12 1984-10-12 MOS field effect transistor

Country Status (1)

Country Link
JP (1) JPS6191964A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388564A2 (en) * 1988-02-11 1990-09-26 STMicroelectronics, Inc. Method for forming a non-planar structure on the surface of a semiconductor substrate
US4979014A (en) * 1987-08-10 1990-12-18 Kabushiki Kaisha Toshiba MOS transistor
WO2001086726A1 (en) * 2000-05-10 2001-11-15 Koninklijke Philips Electronics N.V. A semiconductor device
ITTO20100521A1 (en) * 2010-06-17 2011-12-18 St Microelectronics Srl PROCEDURE FOR THE MANUFACTURE OF INTEGRATED POWER DEVICES WITH SURFACE CORRUGATIONS AND INTEGRATED POWER DEVICE WITH SURFACE CORRUGATIONS
GB2508986A (en) * 2012-11-20 2014-06-18 Banks J & Co Ltd A restrictor with a flexible cable

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4979014A (en) * 1987-08-10 1990-12-18 Kabushiki Kaisha Toshiba MOS transistor
EP0388564A2 (en) * 1988-02-11 1990-09-26 STMicroelectronics, Inc. Method for forming a non-planar structure on the surface of a semiconductor substrate
WO2001086726A1 (en) * 2000-05-10 2001-11-15 Koninklijke Philips Electronics N.V. A semiconductor device
ITTO20100521A1 (en) * 2010-06-17 2011-12-18 St Microelectronics Srl PROCEDURE FOR THE MANUFACTURE OF INTEGRATED POWER DEVICES WITH SURFACE CORRUGATIONS AND INTEGRATED POWER DEVICE WITH SURFACE CORRUGATIONS
US8871594B2 (en) 2010-06-17 2014-10-28 Stmicroelectronics S.R.L. Process for manufacturing power integrated devices having surface corrugations, and power integrated device having surface corrugations
GB2508986A (en) * 2012-11-20 2014-06-18 Banks J & Co Ltd A restrictor with a flexible cable
GB2508986B (en) * 2012-11-20 2019-12-25 J Banks & Co Ltd Restrictor and kit of parts for assembling a restrictor

Similar Documents

Publication Publication Date Title
JPS6112077A (en) Method for manufacturing semiconductor structure
US4910564A (en) Highly integrated field effect transistor and method for manufacturing the same
JPS6191964A (en) MOS field effect transistor
JPS61212057A (en) Manufacture of ccd
JPH06151738A (en) Semiconductor device and manufacture thereof
JPH01276669A (en) Semiconductor device
JPH0469435B2 (en)
JPS61105868A (en) semiconductor equipment
JPH02158143A (en) Semiconductor device and its manufacturing method
JPH0251279A (en) vertical field effect transistor
JPS60245176A (en) Manufacturing method of MIS type field effect transistor
JPH01304781A (en) Manufacturing method of semiconductor device
JPS63132478A (en) Surface superlattice mis type fet
JPH04294585A (en) Manufacture of vertical type mos semiconductor device
JPH04192368A (en) Longitudinal channel fet
JPH04250667A (en) Semiconductor device and manufacture thereof
JPS59123266A (en) MIS transistor and its manufacturing method
JP2532471B2 (en) Semiconductor device
JPH0547982B2 (en)
JPS61172371A (en) Semiconductor device
JPS59210674A (en) Junction field effect transistor
JPH0283979A (en) Mos transistor
JPS61194776A (en) Method for manufacturing charge transfer device
JPH03266468A (en) field effect transistor
JPH0350743A (en) Semiconductor device