[go: up one dir, main page]

JPH01276669A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH01276669A
JPH01276669A JP63104862A JP10486288A JPH01276669A JP H01276669 A JPH01276669 A JP H01276669A JP 63104862 A JP63104862 A JP 63104862A JP 10486288 A JP10486288 A JP 10486288A JP H01276669 A JPH01276669 A JP H01276669A
Authority
JP
Japan
Prior art keywords
gate electrode
semiconductor substrate
transistor
semiconductor device
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63104862A
Other languages
Japanese (ja)
Inventor
Takeo Nakayama
中山 武雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63104862A priority Critical patent/JPH01276669A/en
Publication of JPH01276669A publication Critical patent/JPH01276669A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • H10D30/6211Fin field-effect transistors [FinFET] having fin-shaped semiconductor bodies integral with the bulk semiconductor substrates

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はMOS型トランジスタを構成する半導体装置に
関するもので、特にMOS集積回路に使用されるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device that constitutes a MOS type transistor, and is particularly used in a MOS integrated circuit.

(従来の技術) この種の従来の半導体装置は、第3図に示すようなM 
OS )’ランジスタ構造が用いられていた。
(Prior Art) This type of conventional semiconductor device has an M as shown in FIG.
OS)' transistor structure was used.

ここで1は半導体基板、2はゲート電極、3はゲート絶
縁膜、4はソースまたはドレイン領域、5はフィールド
絶縁膜である。
Here, 1 is a semiconductor substrate, 2 is a gate electrode, 3 is a gate insulating film, 4 is a source or drain region, and 5 is a field insulating film.

(発明が解決しようとする課題) 上記従来技術では、第3図に示すような平面的なチャネ
ルのMOSトランジスタ楕遺が用いられているため、大
電流を駆動する場合には、トランジスタサイズを大きく
しなければならず、高集積化上問題である9、また基板
1、t、fi2間で、チャネル面に対し垂直な方向に強
い電界が働き、例えば電子(キャリア)のソース、ドレ
イン間移動度が小となり、大電流がとりにくくなる。ま
た微細なトランジスタを形成したは場合、ナローチャネ
ル効果が問題となる。つまりm細化の場合、チャネル幅
Wが小となるから、フィールド絶縁膜5゜5下の反転防
止層どうしが近づきすぎる等で、しきい値電圧が大とな
る篭の問題がある。
(Problems to be Solved by the Invention) In the above-mentioned conventional technology, a planar channel MOS transistor ellipse as shown in FIG. 3 is used, so when driving a large current, the transistor size must be increased. In addition, a strong electric field acts in the direction perpendicular to the channel plane between the substrates 1, t, and fi2, which causes problems in the mobility of electrons (carriers) between the source and drain. becomes small, making it difficult to draw large currents. Furthermore, when a fine transistor is formed, a narrow channel effect becomes a problem. In other words, in the case of m-thinning, since the channel width W becomes small, there is a problem that the anti-inversion layers under the field insulating film 5.5 are too close to each other, resulting in an increase in the threshold voltage.

本発明は、従来のトランジスタ構造で高集積fヒしよう
とした場合問題となった点を解決するべくなされたもの
で、トランジスタの駆動電流の増大とトランジスタ特性
の向上を目的とするものである。
The present invention was made in order to solve the problems that arose when trying to achieve high integration with a conventional transistor structure, and aims to increase the drive current of the transistor and improve the transistor characteristics.

[発明の構成] (課題を解決するための手段と作用) 本発明は、MOS型トランジスタを構成する半導体装置
において、ゲート電極下の半導体基板が凸状になってい
ることを第1の特徴とする。また本発明は、前記ゲート
電極下の凸状になっている半導体基板の上面及び両側面
の三面がチャネル領域となっていることを第2の特徴と
する。また本発明は、前記ゲート電極下の半導体基板が
凸条になっていて、この半導体基板の凸条部の側面が、
前記MOS型トランジスタのドレイン、ソース間を流れ
る電子または正札の方向と平行な方向であることを特徴
とする。
[Structure of the Invention] (Means and Effects for Solving the Problems) The present invention provides a semiconductor device constituting a MOS transistor, the first feature of which is that the semiconductor substrate under the gate electrode has a convex shape. do. A second feature of the present invention is that the three surfaces of the convex top surface and both side surfaces of the semiconductor substrate below the gate electrode serve as channel regions. Further, in the present invention, the semiconductor substrate under the gate electrode has a convex strip, and the side surface of the convex strip of the semiconductor substrate is
It is characterized in that the direction is parallel to the direction of electrons flowing between the drain and source of the MOS transistor or the direction of the genuine tag.

即ち本発明は、MOS型トランジスタ構造において、ゲ
ートを極上の半導体基板を、隆起した形状にすることに
より、微細なトランジスタでの駆動電流の増大と、トラ
ンジスタ特性を向上させるものである。
That is, the present invention increases the drive current in a fine transistor and improves the transistor characteristics by forming the gate in a MOS type transistor structure in a raised shape on the topmost semiconductor substrate.

(実施例) 以下図面を参照して本発明の一実施例を説明する。第1
図は同実施例の要部を示すM OS トランジスタの斜
視図であるが、これは第3図のものと対応させた場合の
例であるから、対応個所には同一符号を付して説明を省
略し、特徴とする点の説明を行なう、即ちこのMOSト
ランジスタは、ゲート電極下の半導体基板が凸状(凸条
)になっていて、この凸部11の上面、両側面はゲート
絶縁膜3で覆われており、凸部11をまたぐようにゲー
ト電極2が形成され、このゲート電極2に囲われた部分
の凸部1工がチャネル領域となり、ゲh ’S [72
を挾む両側の凸部11の部分にソース。
(Example) An example of the present invention will be described below with reference to the drawings. 1st
The figure is a perspective view of the MOS transistor showing the main parts of the same embodiment, but since this is an example in which it corresponds to that in Figure 3, corresponding parts will be given the same reference numerals and explained. This will be omitted and the characteristic points will be explained. Namely, in this MOS transistor, the semiconductor substrate under the gate electrode has a convex shape (convex strip), and the upper surface and both side surfaces of the convex portion 11 are covered with the gate insulating film 3. A gate electrode 2 is formed so as to straddle the convex portion 11, and the convex portion 1 surrounded by the gate electrode 2 becomes a channel region.
Place the sauce on the protrusions 11 on both sides.

トレイン4が形成される。この場合凸部11の縦方向に
キャリア(@子または正札)が流れる。
Train 4 is formed. In this case, the carrier (@ child or genuine bill) flows in the vertical direction of the convex portion 11 .

次に本実施例のトランジスタ製造方法を説明する。まず
第2図(a)に示す如く、例えばP型S1単結晶基板1
上に、950℃の水素燃焼酸化で500人の8102膜
10を形成して、SiN膜11を化学的気相j[法によ
り2500人堆積し、リソグラフィ技術により、素子分
離領域の上記S t N11l以外をレジストで覆い、
素子分離領域のSiN膜と5102Mを、RI B (
ReactiveI On  E tChing)によ
り除去し、そしてSL単結晶基板1をRIEした後にレ
ジストを除去する。
Next, a method for manufacturing a transistor according to this embodiment will be explained. First, as shown in FIG. 2(a), for example, a P-type S1 single crystal substrate 1
A 500-layer 8102 film 10 is formed on the top by hydrogen combustion oxidation at 950° C., a 2,500-layer SiN film 11 is deposited by a chemical vapor phase method, and the above-mentioned S t N 11l in the element isolation region is deposited by a lithography technique. Cover the rest with resist,
The SiN film and 5102M in the element isolation region are
After performing RIE on the SL single crystal substrate 1, the resist is removed.

次に第2図(b)のように、950°C水素燃焼酸化で
500人のs i oz膜12を形成し、更にSiN膜
13を化学的気相堆積法により1000人堆積し、堆積
したSiN膜13をRIEにより除去する。この時、R
IEによる異方性エツチングによりSiN膜13を除去
するため、SL単結晶基板の凸部11のrfIJWには
、SiN膜13が残る。そして、このSIN膜11.1
3を酸化のマスクとして、フィールド酸1ヒ膜5を水素
燃焼酸化により5000人形成する0次に、5iNJI
111゜13をCDE (Chelical Dry 
 EtChin!+)により除去し、NH4F溶液によ
り5LO2fi10゜12を除去する。そしてMOSト
ランジスタのゲート絶縁M3を、900°C,HCjを
10%含む乾燥酸素雰囲気中で熱処理することにより、
300人形成する。そして、ゲート電極として、多結晶
S i WA2を化学的気相堆積法により4000人堆
積し、ゲート電極の低抵抗化のために、900’C,P
oCj 3.30分のリン拡散を行なう。次に、リング
ラフィ技術によりゲートtf!部をレジストで覆い多結
晶Si膜2をRIEにより除去し、レジストを除去して
第1図の構成を得る。この後、周知の技術により第1図
の凸部11においてゲートt&2を挾む領域にソース、
ドレイ4を形成して、第2図(d)の如<絶m11g1
4,15を形成した後に、A1合金16により配線を行
ない集積回路を形成するものである。
Next, as shown in FIG. 2(b), a 500 SiOZ film 12 was formed by hydrogen combustion oxidation at 950°C, and a 1000 SiN film 13 was further deposited by chemical vapor deposition. The SiN film 13 is removed by RIE. At this time, R
Since the SiN film 13 is removed by anisotropic etching using IE, the SiN film 13 remains on the rfIJW of the convex portion 11 of the SL single crystal substrate. And this SIN film 11.1
Using 3 as an oxidation mask, 5000 field acid films 5 are formed by hydrogen combustion oxidation.
111°13 CDE (Chemical Dry
EtChin! +) and 5LO2fi10°12 with NH4F solution. Then, by heat-treating the gate insulation M3 of the MOS transistor at 900°C in a dry oxygen atmosphere containing 10% HCj,
Form 300 people. Then, as a gate electrode, 4000 polycrystalline Si WA2 was deposited by chemical vapor deposition method, and 900'C, P was deposited to reduce the resistance of the gate electrode.
oCj 3. Perform phosphorus diffusion for 30 minutes. Next, using phosphorography technology, the gate tf! The polycrystalline Si film 2 is removed by RIE, and the resist is removed to obtain the structure shown in FIG. 1. Thereafter, using a well-known technique, a source is placed in the region sandwiching the gates t&2 in the convex portion 11 of FIG.
Form the drain 4 and attach it as shown in Fig. 2(d).
After forming 4 and 15, wiring is performed using A1 alloy 16 to form an integrated circuit.

上記のような構成であれば、縦方向(高さ方向)にもチ
ャネル領域か形成できるため、大電流を駆動する時に、
平面的なトランジスタサイズを大きくすることなく高集
積化ができる。換言すれば、平面的に小さな面積でチャ
ネル領域を広くでき、トランジスタサイズを実質的に大
きくでき、大電流を駆動できる。また第1図の構成では
、凸部11の上面のみでなく、凸部11の両側面で横方
向にも電界か生じるため、ベクトル合成してみてら分か
るように縦方向の電界が緩和され、大電流が得やすくな
る。実際には、ゲート電極2で囲われた部分の凸部11
全体が反転層化されるとき、一番電界が緩和される。ま
た凸部11の上部と両側部がチャネル@Wとなるから、
チャネル幅が大となって、ナローチャネル効果の間趙が
減少するものである。
With the above configuration, a channel region can also be formed in the vertical direction (height direction), so when driving a large current,
High integration can be achieved without increasing the planar transistor size. In other words, the channel region can be widened with a small planar area, the transistor size can be substantially increased, and a large current can be driven. In addition, in the configuration shown in FIG. 1, an electric field is generated not only on the upper surface of the convex part 11 but also in the horizontal direction on both sides of the convex part 11, so as can be seen by vector synthesis, the vertical electric field is relaxed. It becomes easier to obtain large current. Actually, the convex portion 11 in the area surrounded by the gate electrode 2
The electric field is most relaxed when the entire structure is made into an inversion layer. Also, since the upper part and both sides of the convex part 11 form a channel @W,
As the channel width increases, the noise during the narrow channel effect decreases.

[発明の効果コ 以上説明した如く本発明によれば、集積回路面積の微細
化、またこの微細化を行なった場合のトランジスタの駆
動電流の増大とトランジスタ特性の向上が可能となるも
のである。
[Effects of the Invention] As explained above, according to the present invention, it is possible to miniaturize the area of an integrated circuit, and when this miniaturization is carried out, it is possible to increase the drive current of the transistor and improve the transistor characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の要部の斜視図、第2図は同
実施例の製造工程図、第3図は従来装置の斜視図である
。 1・・・半導体基板、11・・・凸部(凸条)、2・・
・ゲート電極、3・・・ゲート絶縁膜、4・・・ソース
またはドレイン領域、5・・・フィ、−ルド酸化膜。 出願人代理人 弁理士 鈴江武彦 ζ 第1図 ワ 第3図 第2図  1
FIG. 1 is a perspective view of essential parts of an embodiment of the present invention, FIG. 2 is a manufacturing process diagram of the same embodiment, and FIG. 3 is a perspective view of a conventional device. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 11... Convex part (convex strip), 2...
- Gate electrode, 3... Gate insulating film, 4... Source or drain region, 5... Field oxide film. Applicant's agent Patent attorney Takehiko Suzue ζ Figure 1 Figure 3 Figure 2 1

Claims (3)

【特許請求の範囲】[Claims] (1)MOS型トランジスタを構成する半導体装置にお
いて、ゲート電極下の半導体基板が凸状になっているこ
とを特徴とする半導体装置。
(1) A semiconductor device constituting a MOS transistor, characterized in that a semiconductor substrate under a gate electrode has a convex shape.
(2)前記ゲート電極下の凸状になっている半導体基板
の上面及び両側面の三面がチャネル領域となっているこ
とを特徴とする請求項1に記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein three surfaces of the semiconductor substrate having a convex shape below the gate electrode, including the top surface and both side surfaces, serve as channel regions.
(3)前記ゲート電極下の半導体基板が凸条になってい
て、この半導体基板の凸条部の側面が、前記MOS型ト
ランジスタのドレイン、ソース間を流れる電子または正
札の方向と平行な方向であることを特徴とする請求項1
または2に記載の半導体装置。
(3) The semiconductor substrate under the gate electrode has a protruding strip, and the side surface of the protruding strip of the semiconductor substrate is in a direction parallel to the direction of electrons flowing between the drain and source of the MOS transistor or the direction of the genuine tag. Claim 1 characterized in that
Or the semiconductor device according to 2.
JP63104862A 1988-04-27 1988-04-27 Semiconductor device Pending JPH01276669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63104862A JPH01276669A (en) 1988-04-27 1988-04-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63104862A JPH01276669A (en) 1988-04-27 1988-04-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH01276669A true JPH01276669A (en) 1989-11-07

Family

ID=14392059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63104862A Pending JPH01276669A (en) 1988-04-27 1988-04-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH01276669A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388564A2 (en) * 1988-02-11 1990-09-26 STMicroelectronics, Inc. Method for forming a non-planar structure on the surface of a semiconductor substrate
US5281547A (en) * 1989-05-12 1994-01-25 Oki Electric Industry Co., Ltd. Method for manufacturing a field effect transistor
US5391506A (en) * 1992-01-31 1995-02-21 Kawasaki Steel Corporation Manufacturing method for semiconductor devices with source/drain formed in substrate projection.
US5612255A (en) * 1993-12-21 1997-03-18 International Business Machines Corporation One dimensional silicon quantum wire devices and the method of manufacture thereof
US6198158B1 (en) * 1998-05-08 2001-03-06 Micron Technology, Inc. Memory circuit including a semiconductor structure having more usable substrate area
WO2004112121A1 (en) * 2003-06-13 2004-12-23 Kabushiki Kaisha Toyota Jidoshokki Mis transistor and cmos transistor
JP2005019978A (en) * 2003-06-04 2005-01-20 Tadahiro Omi Semiconductor device and its manufacturing method
US6989316B2 (en) 1999-06-30 2006-01-24 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0388564A2 (en) * 1988-02-11 1990-09-26 STMicroelectronics, Inc. Method for forming a non-planar structure on the surface of a semiconductor substrate
US5281547A (en) * 1989-05-12 1994-01-25 Oki Electric Industry Co., Ltd. Method for manufacturing a field effect transistor
US5391506A (en) * 1992-01-31 1995-02-21 Kawasaki Steel Corporation Manufacturing method for semiconductor devices with source/drain formed in substrate projection.
US5612255A (en) * 1993-12-21 1997-03-18 International Business Machines Corporation One dimensional silicon quantum wire devices and the method of manufacture thereof
US6198158B1 (en) * 1998-05-08 2001-03-06 Micron Technology, Inc. Memory circuit including a semiconductor structure having more usable substrate area
US6403430B1 (en) 1998-05-08 2002-06-11 Micron Technology, Inc. Semiconductor structure having more usable substrate area and method for forming same
US6566206B2 (en) 1998-05-08 2003-05-20 Micron Technology, Inc. Semiconductor structure having more usable substrate area and method for forming same
US6989316B2 (en) 1999-06-30 2006-01-24 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing
US7772671B2 (en) 1999-06-30 2010-08-10 Kabushiki Kaisha Toshiba Semiconductor device having an element isolating insulating film
JP2005019978A (en) * 2003-06-04 2005-01-20 Tadahiro Omi Semiconductor device and its manufacturing method
WO2004112121A1 (en) * 2003-06-13 2004-12-23 Kabushiki Kaisha Toyota Jidoshokki Mis transistor and cmos transistor
US8314449B2 (en) 2003-06-13 2012-11-20 Foundation For Advancement Of International Science MIS transistor and CMOS transistor

Similar Documents

Publication Publication Date Title
JPS63308387A (en) Manufacture of semiconductor device
JPS6116571A (en) Manufacture of semiconductor device
JPH01276669A (en) Semiconductor device
JP2003298063A (en) Field effect transistor
JP2571004B2 (en) Thin film transistor
JPH05283687A (en) Production of semiconductor element
JPS63271971A (en) Mos type semiconductor device and manufacture thereof
JPS61199666A (en) Field-effect transistor
JPS5917865B2 (en) hand tai souchi no seizou houhou
JPH0196950A (en) Manufacture of semiconductor device
JPH02189976A (en) Semiconductor device and manufacture thereof
JPS6143484A (en) Formation of electrode in semiconductor device
JPH01122167A (en) Manufacturing method of semiconductor device
JPS6276675A (en) semiconductor equipment
JPH02117175A (en) Semiconductor memory
JPS6025272A (en) Insulated gate field effect transistor
JPH0442938A (en) Manufacture of semiconductor device
JPS6142163A (en) Manufacture of semiconductor device
KR960005998A (en) Semiconductor device and manufacturing method
JPH04137735A (en) Semiconductor device and its manufacturing method
JPS58155764A (en) Manufacture of semiconductor device
JPS63289963A (en) Manufacturing method of semiconductor device
JPS60105249A (en) Method for introducing impurity
JPH0547982B2 (en)
JPS61166154A (en) Manufacturing method of MIS type semiconductor device