[go: up one dir, main page]

JPS6170442A - Instrument for analyzing composition of waste combustion gas - Google Patents

Instrument for analyzing composition of waste combustion gas

Info

Publication number
JPS6170442A
JPS6170442A JP59191953A JP19195384A JPS6170442A JP S6170442 A JPS6170442 A JP S6170442A JP 59191953 A JP59191953 A JP 59191953A JP 19195384 A JP19195384 A JP 19195384A JP S6170442 A JPS6170442 A JP S6170442A
Authority
JP
Japan
Prior art keywords
concentration
concn
signal
exhaust gas
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59191953A
Other languages
Japanese (ja)
Other versions
JPH0262182B2 (en
Inventor
Kiyoshi Makimura
槙村 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP59191953A priority Critical patent/JPS6170442A/en
Publication of JPS6170442A publication Critical patent/JPS6170442A/en
Publication of JPH0262182B2 publication Critical patent/JPH0262182B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To reduce the cost of an analyzing instruments and to improve the reliability thereof by detecting the concn. of O2 and CO2 in a waste combustion gas, incorporating the detected concn. values into the specific equation and determining the concn. of N2 and the concn. of H2O by computation. CONSTITUTION:Fuel is burned in a combustion furnace and the waste gas is supplied to an O2 concn. detector and CO2 concn. detector, by which the concns. thereof are detected. The O2 concn. value and CO2 concn. value obtd. by the detectors are substd. into the equation I, the equation II (where (a) and (b) are the values of CO2 and H2 in the waste combustion gas during combustion by the supply of theoretical air amt. for each 1kg of the fuel, m<3>/kg). The concn. of N2 and the concn. of H2O are determined by the arithmetic processing. The concns. of the O2, CO2, N2 and H2O are respectively displayed on a display part. The concns. of the O2 and CO2 in the waste combustion gas are thus detected and the concns. of the N2 and H2O are determined by using such detected values and therefore there is no need for providing an N2 concn. detecting part and H2O concn. detecting part and the cost of the instrument is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃焼排ガス中の0゜濃度とCO2濃度を測定
し、これらの信号を用いて所定の演算処理をし、N一度
及びH2o濃度を求めるようにした燃焼排ガスの組成分
析装置に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention measures the 0° concentration and CO2 concentration in combustion exhaust gas, performs predetermined calculation processing using these signals, and calculates the N and H2o concentrations. The present invention relates to an apparatus for analyzing the composition of combustion exhaust gas.

〔従来の技術〕[Conventional technology]

従来の燃焼排ガスの組成分析装置は、注目成分、例えば
、CO□、N20、N2及び0゜を個々に設ける検出部
で測定し、所定の表示部で表示する構成となっている。
A conventional combustion exhaust gas composition analyzer is configured to measure components of interest, for example, CO□, N20, N2, and 0°, using individual detection units and display them on a predetermined display unit.

以上の構成において、燃焼排ガス中のCO、N29 、
N2及び0の4成分を連続、かつ、自動的に測定するこ
とができる。
In the above configuration, CO, N29,
Four components, N2 and 0, can be measured continuously and automatically.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の燃焼排ガスの組成分析装置にあっては、個々
の注目成分の検出部を備えるため、装置が高価たなると
いう問題がある。又、一般的に、■2o検出部として、
長期間、安定動作をするものが入手し難く、N2検出部
が他成分の影響を完全に除去することが難しいため、信
頼性に欠けるという問題がある。
The conventional combustion exhaust gas composition analyzer described above has a problem in that it is expensive because it includes detection sections for individual components of interest. Also, in general, ■ As a 2o detection section,
It is difficult to obtain a device that operates stably for a long period of time, and it is difficult for the N2 detection section to completely eliminate the influence of other components, resulting in a lack of reliability.

そこで、本発明は、安価なうえに1信頼性の高い、燃焼
排ガスの組成分析装置を提供するにある。
SUMMARY OF THE INVENTION Therefore, the present invention provides a combustion exhaust gas composition analyzer that is inexpensive and highly reliable.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決する本発明の燃焼排ガスの組成分析装
置は、燃焼排ガス中の0□濃度を測定する0濃度検出部
及びco濃度を測定するCO濃度検出部と、前記〇一度
検出部及びCO□O□検出部の信号を入力し、下記の演
算式に基づく処理をしてN一度及びH2o濃度を求める
信号処理部を備えるようになっている。
The combustion exhaust gas composition analyzer of the present invention that solves the above problems includes a 0 concentration detection section that measures the 0□ concentration in the combustion exhaust gas, a CO concentration detection section that measures the CO concentration, and the It is equipped with a signal processing section that inputs the signal from the CO□O□ detection section and processes it based on the following arithmetic expression to obtain the N and H2o concentrations.

記 但し、a及びbは、燃料1 kg当りの理論空気量の供
給による燃焼時の燃焼排ガス中のCO2及び■2o  
の値o(m3/kg) 〔作用〕 の演算処理をし、N2濃度及びH2o濃度を求める。
However, a and b are the CO2 and
The value o (m3/kg) [effect] is calculated to determine the N2 concentration and H2o concentration.

〔実施例〕 以下、図面を参照し本発明について説明する。〔Example〕 The present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例を示す構成図である。燃焼
排ガスの組成分析装置は、燃焼炉1の燃焼排ガス流路に
設置するジルコニア素子を用いた0濃度検出部2及び赤
外線方式のCO2濃度検出部3と、Oa変度検出2の0
2濃度信号x1及びCO3濃度検出部5のCO□濃度濃
度信号全2力し、所定の演算処理をしH2o濃度信号Y
工及びN2濃度信号Y2を出力する信号処理部4と、信
号X□、N2、Y工及びY2を入力し、o2、CO□、
N20°及びN2を夫々の表示部5.6.7及び8に表
示する表示手段9とを有する。
FIG. 1 is a configuration diagram showing an embodiment of the present invention. The combustion exhaust gas composition analyzer includes a zero concentration detection section 2 using a zirconia element installed in the combustion exhaust gas flow path of a combustion furnace 1, an infrared CO2 concentration detection section 3, and an Oa variation detection section 2.
2 concentration signal x1 and all 2 CO□ concentration signals of the CO3 concentration detection unit 5 are input, predetermined arithmetic processing is performed, and H2o concentration signal Y is obtained.
The signal processing section 4 outputs the concentration signal Y2, and the signals X□, N2, Y, and Y2 are inputted,
It has display means 9 for displaying N20° and N2 on display sections 5, 6, 7 and 8, respectively.

信号処理部4は、信号X□を入力し、N3 冨X□70
.21の演算をして信号x3を出力する演算部10と、
信号x3を入力し、X4= X3X (0,79)の演
算をして信号x4を出力する演算部11と、信号X及び
後述する手段13からの信号x5を入力し、Y21II
x4+x5の演算をし一方、信号処理部4は、信号X□
及びN2を入力し、(1)式及び(2)式に基づく演算
をして信号Y工及びY2を出力する。これにより、表示
手段5のH20表示部7は、信号Y□に対応する数値を
、又、N2表示部8は、信号Y2に対応する数値を表示
する。これら各表示部の数値は、以下の説明の通り、N
20濃びN2a度を示すことになる。
The signal processing unit 4 inputs the signal X□ and outputs N3
.. an arithmetic unit 10 that performs 21 arithmetic operations and outputs a signal x3;
A calculation unit 11 inputs signal x3, calculates X4=X3X (0, 79), and outputs signal x4; inputs signal X and signal x5 from means 13, which will be described later;
While calculating x4+x5, the signal processing unit 4 calculates the signal
and N2 are input, calculations are performed based on equations (1) and (2), and signals Y and Y2 are output. As a result, the H20 display section 7 of the display means 5 displays a numerical value corresponding to the signal Y□, and the N2 display section 8 displays a numerical value corresponding to the signal Y2. The numerical values on each of these display sections are as explained below.
20 concentration N2a degree.

燃焼理論により、燃料1 kg当りの理論空気量A。According to combustion theory, the theoretical amount of air per 1 kg of fuel is A.

〔m3/kg〕の供給による燃焼時の燃焼排ガス中のC
O2、N20及びN2夫々が、a [m 7kg ]、
b(m7kg)及びc(m7kg)であるとして以下説
明をする。
C in combustion exhaust gas during combustion by supplying [m3/kg]
O2, N20 and N2 are each a [m 7 kg],
The following explanation will be given assuming that they are b (m7 kg) and c (m7 kg).

燃料x C kg/hr )を過剰空気A[:m/kg
]で燃焼させたとき、燃焼排ガス量V(m/hr)は、
(3)式となり、過剰空気量I (m /hr ]は、
(4)式となる。
Fuel x C kg/hr) and excess air A [: m/kg
], the amount of combustion exhaust gas V (m/hr) is
Equation (3) is obtained, and the excess air amount I (m/hr) is
The formula (4) is obtained.

V=((a+b+c)+(m−1)A  )x  (m
 /hr)    (3)I−(m−1)A  −X 
  Cm  /hr)           (4>但
し、 ■=A/A ところで、空気中の0。とN2の体枦百分率をo.21
:て信号Y2を出力する演算部12を有する。又、信号
処理部4は、信号x2を入力し、X5= X2x (c
/a) (但し、麿及びCは、後述するように予め設定
される定数)の演算をして信号x5を出力する演算部1
3と、信号X2, N3及びN5を入力し、N6=x2
+x3+x5の演算をして信号x6を出力する演算部1
4と、信号x6を入力し、Y□=1−N6の演算をして
信号Y□を出力する演算部15を有する。即ち、信号処
理部4における入・出力信号の間には、(1)式及び(
2)式の関係が成り立つ構成となっている。
V=((a+b+c)+(m-1)A)x(m
/hr) (3)I-(m-1)A-X
Cm /hr) (4>However, ■=A/A By the way, the body percentage of 0. and N2 in the air is o.21
: has an arithmetic unit 12 that outputs a signal Y2. Further, the signal processing unit 4 inputs the signal x2, and calculates that X5=X2x (c
/a) (However, Maro and C are constants set in advance as described later) and outputs a signal x5.
3 and input signals X2, N3 and N5, N6=x2
Arithmetic unit 1 that calculates +x3+x5 and outputs signal x6
4 and a calculation section 15 which inputs the signal x6, performs the calculation of Y□=1-N6, and outputs the signal Y□. That is, between the input and output signals in the signal processing section 4, equation (1) and (
2) The configuration is such that the relationship in equation 2) holds true.

IC Y2− 0.79 X −57H + 7 N2(2)
以上の構成において、0□濃度検出部2は、燃焼排ガス
中の02濃度に対応した信号X工を出力し、CO2 a
度検出部3は、燃焼排ガス中のCO3濃度に対応した信
号x2を出力する。これによシ、表示手段5の02表示
部5は、Q2濃度を、又、Co2表示部6は、CO濃度
を夫々表示する。
IC Y2- 0.79 X -57H + 7 N2(2)
In the above configuration, the 0□ concentration detection section 2 outputs the signal X corresponding to the 02 concentration in the combustion exhaust gas, and the CO2 a
The degree detection unit 3 outputs a signal x2 corresponding to the CO3 concentration in the combustion exhaust gas. Accordingly, the 02 display section 5 of the display means 5 displays the Q2 concentration, and the Co2 display section 6 displays the CO concentration.

0.79とみると、過剰空気中のN2量工N2及び02
量l02=0.21(m−1)AOx  (m /hr
)     (6)よって、燃焼排ガス中における各ガ
ス台は、(7)式乃至00式となる。
0.79, the amount of N2 in the excess air is N2 and 02
Amount l02 = 0.21 (m-1) AOx (m /hr
) (6) Therefore, each gas stage in the combustion exhaust gas becomes equations (7) to 00.

CO2’、、、、、、、、、a x    (m /h
r )       (7)N2.、、(0,79(m
−1)A0+c ) x  (m /hr)    (
9)02、、、0.21(m−1)AoX   (m 
/hr)      a。
CO2', , , , , , a x (m /h
r ) (7) N2. ,,(0,79(m
-1)A0+c) x (m/hr) (
9) 02, , 0.21 (m-1) AoX (m
/hr) a.

又、燃焼炉に多量の空気y(m/hr)とN20z[m
/hr]が取込まれたときの各ガス量は、α力式乃至α
4式となり、燃焼ガスの総量T(m/hr)は、αつ式
となる。
In addition, a large amount of air y (m/hr) and N20z [m
/hr] is taken in, the amount of each gas is expressed by the α force formula or α
4 equations, and the total amount T (m/hr) of combustion gas becomes α equations.

Co  、、、、、、、、a x    (m /hr
)      α92゜ よって、Co2、N20、N2及び0゜ノ割合(濃度)
xCO2’ YH20’  YN2及びN02は、at
J乃至(至)式となる・Xco=−!LL−αQ T YH20″ T            α乃αO式及
び(2)式より、空気y[:m/hr)を求めると(ハ
)式となる。又、(1つ式、06)式及びに)式を用い
て、N20 z Cm / br )を求めるとQ力式
となる。
Co , , , , , a x (m /hr
) α92° Therefore, the ratio (concentration) of Co2, N20, N2 and 0°
xCO2'YH20' YN2 and N02 are at
J to (to) formula -Xco=-! LL-αQ T YH20'' T From the α乃αO formula and the formula (2), the air y[:m/hr] is calculated as the formula (c). Also, the formula (1), 06), and 2) Using this to find N20 z Cm / br ), the Q-force formula is obtained.

式と々る。又、αつ式、(2)式及び01)式より、燃
焼ガスの総量T(m/hr)は(ハ)式となる。
Shiki Totoru. Also, from the α equations, equations (2) and equations 01), the total amount T (m/hr) of combustion gas is expressed as equation (c).

同様に・0式・e?″)式及び(ハ)式より・ YN2
を求めると(ハ)式となる。
Similarly, 0 type, e? ″) From formula and (c), YN2
The equation (c) is obtained.

YN2°丁21 xO2” a xCO2”従って、(
り式と(財)式及び(2)式とに)式の対比から明らか
なようK % 02濃度検出部2が、o2濃度x02に
対応する信号x1を出力すると共に、CO2濃度検出部
3が、CO2濃度に対応する信号x2を出力することに
より、信号処理部4の出力信号Y□は、H2O濃度、Y
H2゜を、又、出力信号Y2は、N2濃度YN2を夫々
表わすことになる。
YN2° 21 xO2” a xCO2” Therefore, (
As is clear from the comparison of the formula (2) and (2), the K%02 concentration detection section 2 outputs the signal x1 corresponding to the o2 concentration x02, and the CO2 concentration detection section 3 outputs the signal x1 corresponding to the o2 concentration x02. , by outputting the signal x2 corresponding to the CO2 concentration, the output signal Y
H2° and the output signal Y2 represent the N2 concentration YN2, respectively.

第2図は、本発明の他の実施例を示す構成図であシ、直
火形乾燥炉排ガス中のN20制御装置の構成を示す。N
20嬌 炉22の排気送風路に設置する0濃度検出部2及びCO
2濃度検出部3の出力信号x1及びN2を入力し、制御
演算をして、その出力信号2工でダンパー駆動部23を
操作する構成となっている。■2o濃度演算調節計21
は、初段に、第1図に示した演算部10。
FIG. 2 is a block diagram showing another embodiment of the present invention, and shows the structure of a control device for controlling N20 in the exhaust gas of a direct-fired drying furnace. N
0 concentration detection unit 2 and CO installed in the exhaust air passage of the 20-liter furnace 22
The output signals x1 and N2 of the second concentration detection section 3 are input, control calculations are performed, and the damper drive section 23 is operated using the output signals. ■2o concentration calculation controller 21
In the first stage, the arithmetic unit 10 shown in FIG. 1 is provided.

13、14及び15を有し、入力される信号X□及びN
2を用いて(1)式に基づく処理をして信号Y工を求め
、この信号Yを測定信号として制@演算をするようにな
っている。
13, 14 and 15, and the input signals X□ and N
2 is used to perform processing based on equation (1) to obtain the signal Y, and perform control calculations using this signal Y as a measurement signal.

以上の構成において、H2O儂度演算調節計21は、乾
燥炉のN20濃 操作して乾燥炉のE[20 a度を所定の値にする。
In the above configuration, the H2O temperature calculation controller 21 controls the N20 concentration of the drying oven to set the E[20a degrees of the drying oven to a predetermined value.

N20濃 把握及び蒸発水分量を知ることができる。N20 thick You can understand and know the amount of evaporated water.

〔発明の効果〕〔Effect of the invention〕

以上、説明の通り、本発明の燃焼排ガスの組成分析装置
によれば、燃焼排ガス中の02濃度とC02濃度を測定
し、これらの信号を用いて所定の演算処理をし、N2濃
度及びN20 濃度を求めるようにしたため、N2濃度
検出部及びN20 !度検出部を備える必要がない。こ
のため、装置が安価になるうえ、信頼性も高くなる。
As described above, according to the combustion exhaust gas composition analyzer of the present invention, the 02 concentration and the C02 concentration in the combustion exhaust gas are measured, and predetermined calculation processing is performed using these signals to determine the N2 concentration and the N20 concentration. Since the N2 concentration detection section and N20! There is no need to provide a degree detection section. This makes the device less expensive and more reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す構成図、第2図は、
本発明の他の実施例を示す構成図である。 1・・・燃焼炉、2・・・〇一度検出部、3・・・CO
□濃度検出部、4・・・信号処理部、9・・・表示手段
、21・・・0゜濃度演算調節計、22・・・乾燥炉、
23・・・ダンパー駆動部。 第1図
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
It is a block diagram which shows another Example of this invention. 1... Combustion furnace, 2... Once detection unit, 3... CO
□Concentration detection unit, 4... Signal processing unit, 9... Display means, 21... 0° concentration calculation controller, 22... Drying oven,
23... Damper drive section. Figure 1

Claims (1)

【特許請求の範囲】 燃焼排ガス中のO_2濃度を測定するO_2濃度検出部
及びCO_2濃度を測定するCO_2濃度検出部と、前
記O_2濃度検出部及びCO_2濃度検出部の信号を入
力し、下記の演算式に基づく処理をしてN_2濃度及び
H_2O濃度を求める信号処理部を備えることを特徴と
する燃焼排ガスの組成分析装置。 記 N_2濃度=0.79×〔O_2濃度〕/0.21+c
/a×〔CO_2濃度〕H_2O濃度=1−{〔O_2
濃度〕/0.21+(1+c/a)〔CO_2濃度〕}
但し、a及びbは、燃料1kg当りの理論空気量の供給
による燃焼時の燃焼排ガス中のCO_2及びH_2Oの
値。〔m^3/kg〕
[Claims] An O_2 concentration detection unit that measures the O_2 concentration in the combustion exhaust gas and a CO_2 concentration detection unit that measures the CO_2 concentration, and the signals of the O_2 concentration detection unit and the CO_2 concentration detection unit are input, and the following calculation is performed. A combustion exhaust gas composition analysis device comprising a signal processing unit that calculates N_2 concentration and H_2O concentration by performing processing based on equations. N_2 concentration = 0.79 x [O_2 concentration] / 0.21 + c
/a×[CO_2 concentration]H_2O concentration=1-{[O_2
Concentration]/0.21+(1+c/a) [CO_2 concentration]}
However, a and b are the values of CO_2 and H_2O in the combustion exhaust gas during combustion when the theoretical amount of air is supplied per 1 kg of fuel. [m^3/kg]
JP59191953A 1984-09-13 1984-09-13 Instrument for analyzing composition of waste combustion gas Granted JPS6170442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59191953A JPS6170442A (en) 1984-09-13 1984-09-13 Instrument for analyzing composition of waste combustion gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191953A JPS6170442A (en) 1984-09-13 1984-09-13 Instrument for analyzing composition of waste combustion gas

Publications (2)

Publication Number Publication Date
JPS6170442A true JPS6170442A (en) 1986-04-11
JPH0262182B2 JPH0262182B2 (en) 1990-12-25

Family

ID=16283198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191953A Granted JPS6170442A (en) 1984-09-13 1984-09-13 Instrument for analyzing composition of waste combustion gas

Country Status (1)

Country Link
JP (1) JPS6170442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120058A (en) * 2011-12-06 2013-06-17 Shimadzu Corp Combustion exhaust gas analysis instrument
CN104266991A (en) * 2014-10-22 2015-01-07 中山欧麦克仪器设备有限公司 Portable gas detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852438A (en) * 2014-03-25 2014-06-11 南京霍普斯科技有限公司 Online solid waste incineration treatment analysis system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013120058A (en) * 2011-12-06 2013-06-17 Shimadzu Corp Combustion exhaust gas analysis instrument
CN104266991A (en) * 2014-10-22 2015-01-07 中山欧麦克仪器设备有限公司 Portable gas detector

Also Published As

Publication number Publication date
JPH0262182B2 (en) 1990-12-25

Similar Documents

Publication Publication Date Title
EP0230673A2 (en) Modal mass analysis method for exhaust gases from motorcars
KR840009138A (en) Gas concentration measurement device and its method
JPS6382354A (en) Gas testing method and device
JPS6170442A (en) Instrument for analyzing composition of waste combustion gas
JP2010107337A (en) Gas generator and sensor evaluation system
JPH0810216B2 (en) Gas analyzer
JPH0222341B2 (en)
JP4572043B2 (en) Gas analyzer
JP5390139B2 (en) Carbon potential calculation device
JPH0664049B2 (en) Water quality analyzer data processing method
JPS6122246A (en) Blood gas analyser
JPS59204767A (en) emergency air conditioner
JPS601545A (en) Automatic water analyzing apparatus
Nicol MRATE: a Pascal program for on-line calculation of metabolic rate using wet gases
JPS61265554A (en) Gas analyser
SU1691397A1 (en) Method for measuring heat loss power of off gases
JPS625135A (en) Measuring device of secondary air supply flow rate of engine
JPH06103264B2 (en) Gas analyzer
JPS6240312A (en) Method for controlling atmosphere in furnace
JPH07103900A (en) Measuring Method of Converter Conversion Efficiency in Chemiluminescence Nitrogen Oxide Meter
CN116831525A (en) Metabolic cabin and gas concentration evaluation method thereof
JP2626374B2 (en) TOC meter
SU787491A1 (en) Method of measuring carbon potential of furnace gas media
PL136206B1 (en) Combustion quality inspection analyser
JPH02118442A (en) gas sensor device