[go: up one dir, main page]

JPS601545A - Automatic water analyzing apparatus - Google Patents

Automatic water analyzing apparatus

Info

Publication number
JPS601545A
JPS601545A JP10791683A JP10791683A JPS601545A JP S601545 A JPS601545 A JP S601545A JP 10791683 A JP10791683 A JP 10791683A JP 10791683 A JP10791683 A JP 10791683A JP S601545 A JPS601545 A JP S601545A
Authority
JP
Japan
Prior art keywords
water
signal
sensor
sensors
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10791683A
Other languages
Japanese (ja)
Inventor
Moriyuki Kurita
栗田 守之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JOHO SHIYORI GIJUTSU KENKYUSHO KK
Original Assignee
JOHO SHIYORI GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JOHO SHIYORI GIJUTSU KENKYUSHO KK filed Critical JOHO SHIYORI GIJUTSU KENKYUSHO KK
Priority to JP10791683A priority Critical patent/JPS601545A/en
Publication of JPS601545A publication Critical patent/JPS601545A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To measure a plurality of measuring item simultaneously, automatically, and accurately, by operating and outputting the detection of measured components based on the outputs of a plurality of sensors corresponding to each measured component of water to be checked and a temperature sensor and a table of a plurality of analytical curves, which are changed by temperatures, pH, electric conductivity, and the like. CONSTITUTION:The signals corresponding to temperatures, pH, electric conductivity, and concentration from a temperature sensor T provided in water to be checked and a plurality of sensors S1-Sn corresponding to each measured component of the water to be checked are inputted to a CPU22 through amplifiers A0, A1-An, a multiplexer 20, and an AD converter 21. The CPU22 performs operating processing by using analytical curves with regard to temperature, pH, electric conductivity, and concentration and the input signals. The detected values of a plurality of measuring items are outputted to a liquid crystal display device 25 and a printer 26. Opening and closing of a plurality of valves V1-Vn are controlled in correspondence with the detected values, and the amount of supply of correcting liquid is adjusted.

Description

【発明の詳細な説明】 この発明は自動水分析装置に関し、特に排液処理のため
の自動水分析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic water analyzer, and more particularly to an automatic water analyzer for wastewater treatment.

従来技術 排液を処理する場合その排液の、例えばpH、電気伝導
度、カルシウム硬度,塩素イオン、硝酸イオン、亜硝酸
イオン、アンモニア等を測定し水分析を行い、その排液
を排水しても良いかどうかを総合的に判断する。もしそ
のままの状態では排水できないと判断された場合には補
正液を混入してその排液を排水可能な状態にしてから排
水する。
Conventional technology When treating wastewater, for example, the pH, electrical conductivity, calcium hardness, chlorine ions, nitrate ions, nitrite ions, ammonia, etc. of the wastewater are measured, water analysis is performed, and the wastewater is drained. Comprehensively judge whether it is good or not. If it is determined that the liquid cannot be drained as it is, a correction liquid is mixed in to make the liquid drainable and then drained.

このような水分析を行う際、従来では各測定成分ご\と
に計器の指針を目で読取ったり摘定法(定址分析)を行
ったシして各データをそろえ、これらデータに基づいて
排液の状態を総合的に判断するようにしているため専門
的(化学)知識や訓練が必要で、また、1つの検水の各
測定項目を計測するのに非常に時間がかかシ、それにも
かかわらず高い精度を得ることができず、さらには見ま
ちがい等の誤差も出やすかった。
When performing such water analysis, conventionally, each component was read by eye or a sampling method (spot analysis) was performed for each component to be measured. Since the condition of the water is judged comprehensively, specialized (chemical) knowledge and training are required, and it is very time consuming to measure each measurement item in one water sample. However, it was not possible to obtain high accuracy, and furthermore, errors such as misidentification were likely to occur.

また複数の機材を設置し、測定成分ごとに指示薬や滴定
液を用意しなければならないため、機材を設置し、化学
物質の用意または保管できる場所でしか測定できず、機
動力に欠けるものであった。
In addition, because multiple pieces of equipment must be installed and indicators and titrants prepared for each component to be measured, measurements can only be made in locations where the equipment can be installed and chemical substances can be prepared or stored, resulting in a lack of mobility. Ta.

このような欠点を解消するために各測定項目ごとのセン
サ(電極)が開発されてお9、これらセンサの電極間に
発生する電圧から測定成分ごとの濃度を知るようにした
ものがある。このようなセンサを使用すれば各測定成分
ごとの検出値は電圧値から一義的に定まシ、水分析にお
ける各測定成分の検出方法を非常に改良できるけれども
、なおかつ各検出値は温度や、イオン強度、pHによっ
て影響されるため測定成分ごとに測定前にセンサ出力電
圧の較正が必要である。
In order to overcome these drawbacks, sensors (electrodes) for each measurement item have been developed,9 and there are sensors in which the concentration of each component to be measured can be determined from the voltage generated between the electrodes of these sensors. If such a sensor is used, the detected value for each measured component can be uniquely determined from the voltage value, and the detection method for each measured component in water analysis can be greatly improved. Since it is affected by ionic strength and pH, it is necessary to calibrate the sensor output voltage for each component to be measured before measurement.

このセンサ出力電圧の較正および濃度の測定は次のよう
に行われる。まず2種類の村準液(例えば/ pI)m
と/ 00 ppm濃度のもの)を用意しておき、ミリ
ボルト計にイオン電極と比較電極を接続して各標準液の
電極電位差V、およびV。
Calibration of this sensor output voltage and measurement of concentration are performed as follows. First, there are two types of village semi-liquid (for example / pI) m
and /00 ppm concentration) are prepared, and the ion electrode and reference electrode are connected to a millivolt meter to measure the electrode potential difference V and V of each standard solution.

を読取シ、両度Cを対数軸に、電位■を均等軸とった片
対数グラフを用いてMy図に示すような検量線りを作成
する。次に試料の電極電位v3をふらつきが止まるのを
待って一定になった時点で読取シ、第1図の検量線りか
ら濃度C1を読取る。このような検量線を各測定項目ご
とに作成しなければならない。なお@量線はpHと電気
伝導度に関しては温度のみの影響によって変化し、他は
イオン強度やpHの値に応じて変化することが知られて
いる。
, and create a calibration curve as shown in the My diagram using a semi-logarithmic graph with both degrees C on the logarithmic axis and potential ■ on the equal axis. Next, wait until the fluctuation of the electrode potential v3 of the sample stops, and when it becomes constant, read it, and read the concentration C1 from the calibration curve shown in FIG. Such a calibration curve must be created for each measurement item. It is known that the @dose curve changes only due to the influence of temperature with respect to pH and electrical conductivity, and that other values change depending on ionic strength and pH values.

以上のようにセンサを使用したものにおいてもセンサご
とにセンサ出力電圧の較正が必要であり、さらにはこの
ようにして得られた各検出値に基づく排液に補正液を混
入するかどうかの判断は結局は人間が総合的に行わなけ
ればならず習熟が必要で時間がかかるものであった。
As mentioned above, even in devices that use sensors, it is necessary to calibrate the sensor output voltage for each sensor, and furthermore, it is necessary to calibrate the sensor output voltage for each sensor, and furthermore, it is necessary to determine whether or not to mix the correction liquid into the waste liquid based on each detected value obtained in this way. In the end, it had to be done comprehensively by humans, requiring skill and time.

発明の目的および要約 この発明は上記諸点Iこ鎌みて為されたもので、水分析
を行うべき検水の各測定成分ごとに設けられた複数個の
センサと、前記検水の温度を測定する温度センサと、温
度、pH値および電気伝導度によって変化する複数の検
量線を表わす信号を収録した前記各測定成分ごとに1つ
の複数個のテーブルであって、それぞれ前記温度センサ
からの温度信号およびpH値を表わす信号に応じて前記
複数の検量線のうちの1つを出力するものと、前記各測
定成分ごとに1つの複数個の演算手段であって、それぞ
れ前記複数個のセンサのうちの対応する1つからのセン
サ信号および前記複数個のテーブルのうちの対応するl
っからの検−1線信号を入力し、この入力された検量線
信号から前記センサ信号に基づいて当該測定成分の検出
値を選択して出力するものとを一体に構成することによ
り、複数の測定項目を同時かつ自動的に正確に測定し、
かつ測定時間を大幅に短縮し誰にでも操作可能な自動水
分析装置を提供することを目的としている。
Purpose and Summary of the Invention The present invention has been made in consideration of the above-mentioned points I, and includes a plurality of sensors provided for each component of sample water to be analyzed, and a sensor that measures the temperature of the sample water. a plurality of tables, one for each of the measured components, containing signals representing a temperature sensor and a plurality of calibration curves that vary with temperature, pH value, and electrical conductivity; one for outputting one of the plurality of calibration curves in response to a signal representing a pH value, and one for each of the measurement components, each of which is one of the plurality of calculation means among the plurality of sensors. a sensor signal from a corresponding one and a corresponding one of said plurality of tables;
By inputting a detection line signal from the sensor and outputting a detected value of the measured component based on the sensor signal from the input calibration curve signal, it is possible to Accurately measure measurement items simultaneously and automatically,
The purpose of this invention is to provide an automatic water analyzer that can significantly shorten measurement time and that can be operated by anyone.

実施例 以下、この発明の一実施例を図について説明する。第一
図ではボイラの冷却水の排水処理を例にとってこの発明
による水分析装置を概略的に説明している。第2図にお
いて、ボイラlは導通管コを通して混合槽3から冷却水
を受け、尋通管ダを通して使用済の冷却水を外部に排出
する。導通管qの途中からは枝管Cがソレノイドバルブ
炉を経て測定槽3まで延びておシ、これによシ水分析を
行うための排液を抽出することができる。測定槽!の中
には水分析を行うための複数個のセンサ電極Sと温度セ
ンサTとが配設され、これらセンサがらの各種信号がこ
の発明による水分析装置りに与えられる。水分析が行わ
れた後、測定槽j内の抽出された排液はソレノイドバル
ブ!1にょシ導通管j′を通して外部に排出され、排出
後にセンサSを洗浄するセンサ用洗浄液がソレノイドバ
ルブj1によって液槽gから導通管ざ1を通して測定槽
3内に供給される。
EXAMPLE Hereinafter, an example of the present invention will be explained with reference to the drawings. FIG. 1 schematically explains the water analyzer according to the present invention, taking as an example the waste water treatment of boiler cooling water. In FIG. 2, a boiler l receives cooling water from a mixing tank 3 through a conduit pipe A, and discharges used cooling water to the outside through an interstitial pipe da. A branch pipe C extends from the middle of the conduit q to the measurement tank 3 via a solenoid valve furnace, and from this it is possible to extract waste liquid for water analysis. Measuring tank! A plurality of sensor electrodes S and a temperature sensor T for water analysis are arranged in the water analyzer, and various signals from these sensors are applied to the water analysis apparatus according to the present invention. After the water analysis has been performed, the extracted waste liquid in the measuring tank j is drained by the solenoid valve! The sensor cleaning liquid that cleans the sensor S is discharged to the outside through the conduction pipe j', and is supplied into the measuring tank 3 from the liquid tank g through the conduction pipe 1 by the solenoid valve j1.

混合槽3は管デ全通して冷却水が補充されると共に、複
数個の液槽10内の補正液がそれぞれの管lσおよびソ
レノイドバルブlグを通して供給される。複数個の液槽
lOはそれぞれ複数個のセンサSの各々に対応して設け
られており、それぞれ各センサの測定する測定成分に対
応した異つ九種類の補正液を収容している。水分析装置
りは各種センサからの入力信号に基づいて演算を行い、
冷却水に混合すべき補正液の種類と量を決定し、複数個
のバルブlσ゛1のうちの対応するものに開指令を与え
る。水分析装置7はまた、バルブy@、 tlおよびg
“にも適宜開指令を与える。
The mixing tank 3 is replenished with cooling water through the pipes, and the correction liquid in the plurality of liquid tanks 10 is supplied through the respective pipes lσ and solenoid valves lg. A plurality of liquid tanks 10 are provided corresponding to each of the plurality of sensors S, and each contains nine different types of correction liquids corresponding to the measurement components measured by each sensor. Water analyzers perform calculations based on input signals from various sensors.
The type and amount of the correction liquid to be mixed with the cooling water is determined, and an opening command is given to the corresponding one of the plurality of valves lσ'1. The water analyzer 7 also has valves y@, tl and g
“Give appropriate opening orders to

第3図は、第一図で符号7によって表わされた水分析装
置の一実施例を概略的に示している。
FIG. 3 schematically shows an embodiment of a water analysis device, designated by the reference numeral 7 in FIG.

この装置7は第一図にも示されているように複数個のセ
ンサS、すなわちS、、S2・・・・・、Snおよび温
度センサTからの信号を入力し、そして複数個のバルブ
/θ1、すなわち■t e % e・・・・・。
As shown in FIG. 1, this device 7 inputs signals from a plurality of sensors S, ie, S, S2..., Sn and a temperature sensor T, and inputs signals from a plurality of valves/ θ1, that is, ■t e % e...

■nK指令信号を出力する。パルプvi l ”21・
・・・。
■Output nK command signal. Pulp vi l”21・
....

vnはそれぞれセンサS1.S21・・・・・、Snに
対応している。
vn are the sensors S1. S21... corresponds to Sn.

センサTおよびS、、S、・・・・・、Snからの入力
イδ号は、それぞれ増幅器A。、A□、Ao、・・・・
・。
The input signals δ from the sensors T and S, , S, ..., Sn are each input to an amplifier A. , A□, Ao, ...
・.

Anで増幅された後マルチプレクサ2Qに与えられ、マ
ルテブレクサコOはセンサからの信号を順位に7点づつ
切換えて出力する。マルチブレフサλθからの出力信−
号はアナログ/ディジタル(A/D )変換器、2/で
ディジクル信号に変換されて処理装置、2コに与えられ
る。なお、マルチプレクサコOとA/D変換器、2/と
はマルチ偽ん制御用インタフェース、23を介して処理
装置ココでもって制御される。
After being amplified by An, it is applied to multiplexer 2Q, and Maltebrexaco O switches the signals from the sensor in order of seven points and outputs them. Output signal from multi-breather λθ
The signal is converted into a digital signal by an analog/digital (A/D) converter, 2/, and is provided to a processor, 2. Note that the multiplexer O and the A/D converter 2/ are controlled by the processor 2 through the multiple counterfeit control interface 23.

普通の電気回路であっても良くまたマイクロコンピュー
タであっても良い処理装置、2コは、A/D変換器コl
からの入力信号に基づいて演算を行い、その演算結果を
バルブ制御用インター7 x −ス、2 Q ”l介し
て複数個のパルプV、、V、。
The two processing devices, which may be ordinary electric circuits or microcomputers, are A/D converters.
Calculations are performed based on input signals from the valves V, , V, and the results of the calculations are transmitted to the valve control interfaces 7x and 2Q''l.

・・・・・、vnに与え、各パルプの開閉制御を行う。..., is given to vn to control the opening and closing of each pulp.

処理装置ココには液晶表示装置λ!、プリンタ2基、キ
ーボード、27、ディジタルカセットλj等が接続され
ておシ、これにより上記演算結果の表示や記憶等を行う
ことができる。
The processing unit has a liquid crystal display device λ! , two printers, a keyboard 27, a digital cassette λj, etc., are connected, and the above calculation results can be displayed and stored.

第ダ図は、第3図に符号コλでもって表わされた処理装
置の作用を説明するための図である。
FIG. 3 is a diagram for explaining the operation of the processing device indicated by the symbol λ in FIG. 3.

この第ダ図ではセンサS1はpH測定用のセンサ、セン
サS!は電気伝導度測定用のセンサ、Ss””Snはそ
の他の濃度測定用のセンサとして説明する。
In this figure, sensor S1 is a sensor for pH measurement, sensor S! will be described as a sensor for measuring electrical conductivity, and Ss""Sn as a sensor for measuring other concentration.

センサ5IsS!p・・・・・、Snからの信号はそれ
ぞれ演算器OF、 、OF、・・・・・、 opnの一
方の入力端子に与えられ、演算器の他方の入力端子には
それぞれテーブルTA、 、 TA、 、・・・・・T
Anからの信号が与えられる。テーブルTA、およびT
A、には各温度値1.,1..・・・・・に対応した検
量線信号D11 ?D1! #・・・・・およびD2□
# D2! l D23 F・・・・がそれぞれ収容さ
れておシ、温度センサTからの温度信号に対応した検量
線信号が選ばれて演算器op、およびop、にそれぞれ
出力される。各検量線信号は第5図に示されるように電
圧値とこの電圧値に対応するpH値とが対になってディ
ジタル信号で収録されている。センサS、からのディジ
タル電圧値と、温度信号によって選ばれた検量線信号と
を入力する演算器op□は、該ディジタル電圧値に基づ
いてこのディジタル電圧値に対応するpH値を検量線信
号から選び出して出力する。同様にして演算器OPtで
は電気伝導度を検量線信号から選び出して出力する。
Sensor 5IsS! The signals from p..., Sn are given to one input terminal of the computing units OF, , OF,..., opn, respectively, and the other input terminals of the computing units are provided with the tables TA, , , , respectively. TA, ,...T
A signal from An is given. Tables TA and T
A, each temperature value 1. ,1. .. Calibration curve signal D11 corresponding to...? D1! #・・・・・・and D2□
#D2! A calibration curve signal corresponding to the temperature signal from the temperature sensor T is selected and outputted to the computing units OP and OP, respectively. As shown in FIG. 5, each calibration curve signal is recorded as a digital signal in which a voltage value and a pH value corresponding to this voltage value are paired. The calculator op□ inputs the digital voltage value from the sensor S and the calibration curve signal selected based on the temperature signal, and calculates the pH value corresponding to this digital voltage value from the calibration curve signal based on the digital voltage value. Select and output. Similarly, the arithmetic unit OPt selects the electrical conductivity from the calibration curve signal and outputs it.

テーブルTA、 、・・・・・TAnは各種濃度に関す
る検量線信号D31 e D311 ” ” ” ” 
” p D41 e D42 e ’ ” ”弓・・・
・・jDnl jDnl j・・・・・がそれぞれ収録
されており、これら検量線はpH値によって変化するた
め各テーブルは温度値t1#t2y・・・・・の代りに
演算器op、からのpH信号、pi(1t pH2t・
・・・・を受け、このpH信号に対応した検量線信号D
11゜D1□、・・・・・(1=J、$、・・・・・、
n)を各演算器oP1に出力する。各演算器OPIは演
算器op、およびOF、で説明したのと同じ方法で各セ
ンサS1からのディジタル電圧値に応じて検量線信号か
ら各種濃度信号を選んで出力する。
Tables TA, ,...TAn are calibration curve signals D31 e D311 `` `` `` '' regarding various concentrations.
"p D41 e D42 e '""Bow...
...jDnl jDnl j... are recorded, and since these calibration curves change depending on the pH value, each table uses the pH value from the calculator op instead of the temperature value t1#t2y... Signal, pi (1t pH2t・
..., and the calibration curve signal D corresponding to this pH signal is
11゜D1□,...(1=J, $,...
n) is output to each arithmetic unit oP1. Each computing unit OPI selects and outputs various concentration signals from the calibration curve signal in accordance with the digital voltage value from each sensor S1 in the same manner as explained for the computing units op and OF.

演算器op、 、op、 、・・・・・、opnからの
出力信号はそれぞれ比較器Co、 、Co、 、・・・
・・、Conに与えられ、そこで各基準源R1yRt 
t・・・・・、Rnからの信号と比較される。比較器c
o、 、ao2.・・・・。
The output signals from the computing units op, , op, ,..., opn are sent to the comparators Co, , Co, ,..., respectively.
..., Con, where each reference source R1yRt
t... is compared with the signal from Rn. comparator c
o, , ao2. ....

COnは各演算器からの出力信号が各基準源からの基準
信号よシ小さい時は“O”信号を出力する。
CON outputs an "O" signal when the output signal from each arithmetic unit is smaller than the reference signal from each reference source.

基準信号よシ、大きい時は“/”信号を出力して対応す
るバルブを開き、冷却水と一定量の補正液とを混合して
ボイラへ入れ、その後再測定を行う。このシーケンスを
該当する比較器が“O”信号を出力するまで続ける。こ
のようにしてすべての比較器からの出力信号が“0”と
なった時、排水処理は完了する。
When the reference signal is large, a "/" signal is output, the corresponding valve is opened, cooling water and a certain amount of correction fluid are mixed and put into the boiler, and then the measurement is performed again. This sequence continues until the corresponding comparator outputs an "O" signal. In this way, when the output signals from all the comparators become "0", the wastewater treatment is completed.

なお基準源Rj(j=/、:l、・・・・・、n)は、
工場排水や船舶等、排液の種類に応じて排液処理ができ
るように、排液の種類忙応じた基準値jl。
Note that the reference source Rj (j=/, :l,...,n) is
Standard values are set according to the type of wastewater, such as factory wastewater or ships, so that wastewater treatment can be performed according to the type of wastewater.

ja、・・・・・を収録しており、連動するスイッチ接
点SW、 、日W1.・・・・・、SWn を有したス
イツチを手動操作することによりいずれかに設定するこ
とができる。
ja,... are recorded, and the interlocking switch contacts SW, , day W1. . . . can be set to either one by manually operating a switch equipped with SWn.

第り図では演算器OP1.OF、 、・・・・・、 O
Fnの出力側にRAMが設けられて示されておシ、これ
によりこれら演算器の出力信号をRAMにそのまま書込
むことができる。このように演算器の出力をRAM K
 畳込めばその時の水分析値をそのまま保存できるし、
表示装置、2左等で表示することもできる。
In the figure, the arithmetic unit OP1. OF、 、・・・・・・、O
A RAM is shown provided on the output side of Fn, so that the output signals of these arithmetic units can be directly written into the RAM. In this way, the output of the arithmetic unit is stored in RAM K
If you fold it, you can save the water analysis value at that time,
It can also be displayed on a display device, 2 left, etc.

なお、以上の実施例ではこの発明による水分析装置を排
水処理系に適用した場合を説明したが、この発明は排水
処理系に限らず水分析一般に適用できるのはもちろんで
ある。
In the above embodiments, a case has been described in which the water analysis apparatus according to the present invention is applied to a wastewater treatment system, but the present invention is of course applicable not only to wastewater treatment systems but also to water analysis in general.

以上のようにこの発明によれば複数の測定項目をセンサ
を使用して同時にかつ自動的に測定できるように構成し
たので、多くの機材を用意することなく本装置だけで水
分析を行うことができ、測定時間を大幅に短縮すること
ができしかも専門知識は一切不要で誰にでも容易に操作
可能であるという幼児がある。またコンパクトかつ携帯
可能に構成できるので、検水を行う場所まで本装置を持
って行き、その場で測定結果を出すことができるという
効果がおる。さらに本装置にカセットチーブ、RAMパ
ンケージを接続することによシデータの蓄積を行うこと
ができ、測定データの自動統計的処理が可能となる。
As described above, according to the present invention, multiple measurement items can be measured simultaneously and automatically using sensors, so water analysis can be performed using only this device without preparing a lot of equipment. There are young children who say that it is possible to significantly shorten the measurement time, and that anyone can easily operate it without any specialized knowledge. Furthermore, since it can be configured to be compact and portable, it is possible to take the device to a place where water is to be tested and obtain measurement results on the spot. Furthermore, by connecting a cassette chip and a RAM pancage to this device, data can be accumulated and automatic statistical processing of measurement data becomes possible.

さらにCRTやプリンタ停を接続すgば各種一覧表やグ
ラフ等の表示が可能となるという効果もある。
Furthermore, by connecting a CRT or printer, it is possible to display various lists, graphs, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

誇l@は水分析を行うために必要な検量線を説明するた
めの図、第一図はこの発FjAKよる水分析装置が使用
される排水処理系の一例を概略的に示す図、MJ図およ
び第り図はこの発明の一実施例による水分析装置を示す
ブロック回路図、第5図は第7図のkb作を説明するだ
めの図である。図において、7は水分析装置、 * 1
 g 82 g・・・・・tsnl’i:センサ、Tは
温度センサ、 TAl、TA2゜・・・・・e TAn
 Iriチー 7−ル、D直□、D□、・・・・・。 D□、D、、、・・・・;・・・・・;D□、D丁、・
・・・・は検量線信号、OFl、OF、 、・・・・・
OPnは演算手段である。 特許出願人 株式会社 情報処理技術研究所手続補正書
(自発) 昭和sg年7り/ダ日 特許庁長官殿 事件の表示 昭和5g年特許願第 10791A 号発明の名称 自動水分析装置 補正をする者 代理人 補正の対象 (1)明細書の発明の詳細な説明の欄 6、補正の内容 (1) 明細書箱ざ頁g行の「順位」を「順次」と補正
する。 (2)同第1o頁9行の「TAnは」を「’rAnには
」と補正する。 (3)同第1コ頁79行の「幼児」を「効果」と補正す
る。
Figure 1 is a diagram to explain the calibration curve necessary for water analysis, Figure 1 is a diagram schematically showing an example of a wastewater treatment system in which this FjAK water analyzer is used, and MJ diagram. 2 and 3 are block circuit diagrams showing a water analyzer according to an embodiment of the present invention, and FIG. 5 is a diagram for explaining the construction of kb in FIG. 7. In the figure, 7 is a water analysis device, *1
g 82 g...tsnl'i: sensor, T is temperature sensor, TAl, TA2゜...e TAn
Iri Chee 7-le, D Direct□, D□,... D □、D、、、・・・・・・;D□、D
... is the calibration curve signal, OFl, OF, , ...
OPn is a calculation means. Patent Applicant: Information Processing Technology Research Institute, Inc. Procedural Amendment (Voluntary) Display of the case of the Commissioner of the Japan Patent Office, Showa SG, July 1999, Showa 5G, Patent Application No. 10791A, Name of the invention, Automatic water analyzer, Person making the amendment Target of amendment by agent (1) Detailed explanation of the invention column 6 of the specification, contents of amendment (1) The "rank" in line g of page 1 of the specification is amended to "sequentially". (2) "TAnwa" on page 1o, line 9 of the same page is corrected to "'rAnwa". (3) "Infant" on page 1, line 79 is corrected to "effect."

Claims (1)

【特許請求の範囲】 水分析を行うべき検水の各測定成分ごとに設けられた複
数個のセンサと、 前記検水の温度を測定する温度センサと、温度、pH値
および電気伝等度によって変化する複数の検辻綜を表わ
す信号を収録した前記各測定成分ごとに1つの複数個の
テーブルであって、それぞれ前記温度センサからの温度
信号およびpH値を表わす信号に応じて前記検数の検量
線のうちの1つを出力するものと、 前記各測定成分ごとに1つの複数個の演算手段であって
、それぞれ前記複数個のセンサのうちの対応する1つか
らのセンサ信号および前記複数個のテーブルのうちの対
応する1つからの検量線信号を入力し、この入力された
検量線信号から前記センサ信号に基づいて当該測定成分
の検出値を選択して出力するものと を備えたことを特徴とする自動水分析装置。
[Scope of Claims] A plurality of sensors provided for each component to be measured in sample water to be analyzed; a temperature sensor for measuring the temperature of the sample water; a plurality of tables, one for each of the measured components, each containing signals representing a plurality of changing test points, each of which records a plurality of tables, one for each of the measured components; one for outputting one of the calibration curves; and a plurality of calculation means, one for each of the measured components, each calculating means for outputting a sensor signal from a corresponding one of the plurality of sensors and the plurality of calculation means. inputting a calibration curve signal from a corresponding one of the tables, and selecting and outputting a detected value of the measurement component based on the sensor signal from the inputted calibration curve signal. An automatic water analysis device characterized by:
JP10791683A 1983-06-17 1983-06-17 Automatic water analyzing apparatus Pending JPS601545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10791683A JPS601545A (en) 1983-06-17 1983-06-17 Automatic water analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10791683A JPS601545A (en) 1983-06-17 1983-06-17 Automatic water analyzing apparatus

Publications (1)

Publication Number Publication Date
JPS601545A true JPS601545A (en) 1985-01-07

Family

ID=14471300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10791683A Pending JPS601545A (en) 1983-06-17 1983-06-17 Automatic water analyzing apparatus

Country Status (1)

Country Link
JP (1) JPS601545A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220666A2 (en) * 1985-10-30 1987-05-06 Westinghouse Electric Corporation Automatic on-line chemistry monitoring system
JPH0243651U (en) * 1988-09-16 1990-03-26
US4928065A (en) * 1989-03-31 1990-05-22 E. I. Du Pont De Nemours And Company Voltammetry in low-permitivity suspensions
JPH03179256A (en) * 1989-09-25 1991-08-05 H Paul Heyde Ion chromatography for low density

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112560A (en) * 1979-02-22 1980-08-30 Yoshikazu Kobayashi Ion concentration automatic measuring unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112560A (en) * 1979-02-22 1980-08-30 Yoshikazu Kobayashi Ion concentration automatic measuring unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0220666A2 (en) * 1985-10-30 1987-05-06 Westinghouse Electric Corporation Automatic on-line chemistry monitoring system
JPH0243651U (en) * 1988-09-16 1990-03-26
US4928065A (en) * 1989-03-31 1990-05-22 E. I. Du Pont De Nemours And Company Voltammetry in low-permitivity suspensions
JPH03179256A (en) * 1989-09-25 1991-08-05 H Paul Heyde Ion chromatography for low density

Similar Documents

Publication Publication Date Title
Linko et al. Evaluation of uncertainty of measurement in routine clinical chemistry-applications to determination of the substance concentration of calcium and glucose in serum
GB1564981A (en) Continuous calibration system and method for analytical instruments
US6055849A (en) Gas detector and its adjusting method
Konstantinides et al. Pyrochemiluminescence: real-time, cost-effective method for determining total urinary nitrogen in clinical nitrogen-balance studies.
Ricós et al. Analytical quality specifications for common reference intervals
JPS601545A (en) Automatic water analyzing apparatus
US3635564A (en) System for measuring organic content of water
US5312528A (en) Method of determining, with the aid of an ion-selective electrode, the concentration of a substance to be determined, and apparatus to be used in said method
US3717566A (en) Corrosion ratemeter
JP4378204B2 (en) Water quality monitoring system
KR100315313B1 (en) Control Circuit and its Method for Gas Analyzing System
CN111735788A (en) Method for determining sample concentration in water quality analyzer and water quality analyzer
JP3147170B2 (en) Thermal control method
Liu et al. Application of a six sigma model to evaluate the analytical performance of cerebrospinal fluid biochemical analytes and the design of quality control strategies for these assays: A single-centre study
US4264328A (en) Method for recording measured values in an automatically performed blood gas analysis
US3730869A (en) Corrosion ratemeter
JP4701020B2 (en) Water quality meter that can provide temperature and humidity data
Doventas et al. Tools for evaluating the performance of HbA1c analyzer: Sigma Metric and Quality Goal Index Ratio
Slanina et al. Computer automation of potentiometric analysis with ion-selective electrodes
JPH04191650A (en) Measuring apparatus for ion
JPH01244356A (en) Method and apparatus for measuring ion activity
JPH0427856A (en) Ion concentration measurement method and device
JPH05322843A (en) Electrolyte analyzer using ion electrode
SU994970A1 (en) Device for continuous potentiometric determination of ion concentration in solutions
JPH06265512A (en) Method for calibrating electrolyte analyzer