JPS6168329A - Glass manufacturing method - Google Patents
Glass manufacturing methodInfo
- Publication number
- JPS6168329A JPS6168329A JP59189665A JP18966584A JPS6168329A JP S6168329 A JPS6168329 A JP S6168329A JP 59189665 A JP59189665 A JP 59189665A JP 18966584 A JP18966584 A JP 18966584A JP S6168329 A JPS6168329 A JP S6168329A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- gel
- dispersion medium
- drying
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000002245 particle Substances 0.000 claims description 29
- 239000002612 dispersion medium Substances 0.000 claims description 20
- 150000004703 alkoxides Chemical class 0.000 claims description 13
- 238000006460 hydrolysis reaction Methods 0.000 claims description 12
- 230000007062 hydrolysis Effects 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 8
- 230000003301 hydrolyzing effect Effects 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 239000000654 additive Substances 0.000 claims description 4
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 229910052792 caesium Inorganic materials 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims 2
- 229910052732 germanium Inorganic materials 0.000 claims 2
- 229910052718 tin Inorganic materials 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000000499 gel Substances 0.000 description 33
- 238000000034 method Methods 0.000 description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 238000001035 drying Methods 0.000 description 13
- 239000010931 gold Substances 0.000 description 13
- 229910052737 gold Inorganic materials 0.000 description 13
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 12
- 239000011148 porous material Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000004108 freeze drying Methods 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- -1 gold alkoxides Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000003980 solgel method Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical class [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- CRNJBCMSTRNIOX-UHFFFAOYSA-N methanolate silicon(4+) Chemical compound [Si+4].[O-]C.[O-]C.[O-]C.[O-]C CRNJBCMSTRNIOX-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000004704 methoxides Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical class CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/12—Other methods of shaping glass by liquid-phase reaction processes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C1/00—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
- C03C1/006—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Silicon Compounds (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
木兄111j、ガラスの製造方法に関するものであり、
詳しくは、金属アルコキシド金原料としてゾルゲル法に
Lクガラス金製造する方法に関する。[Detailed Description of the Invention] [Industrial Field of Application] Kinoe 111j relates to a method for manufacturing glass,
Specifically, the present invention relates to a method for producing L-glass gold using a sol-gel method as a metal alkoxide gold raw material.
現在、光7アイパーのプリフォームに作製する方法とし
てij、WAD法t−aじめとする、51c4等七火炎
中に通しガラス微粒子全ターゲット上に堆積させ、得ら
れたガラス多孔質体全焼結しガラス塊を得る、という方
法が主流になっている。これは高純度の多孔質ガラス金
比較的安価に得られる優れた方法である。しかしこの方
法は気相反応であるため、添加物として使える物質がガ
ス化できるものに限られる、という欠点があった。Currently, the methods for producing Hikari 7 Eyeper preforms include ij, WAD method, t-a, etc., in which glass fine particles are passed through a 51c4 flame and deposited on all targets, and the resulting glass porous body is completely sintered. The mainstream method is to obtain crushed glass blocks. This is an excellent method for obtaining high-purity porous glass gold at a relatively low cost. However, since this method is a gas phase reaction, it has the disadvantage that the substances that can be used as additives are limited to those that can be gasified.
そこで、近年、この欠点?補う方法として、sl y
主体とした金属アルコキシドを加水分解し、シリカゲル
あるいは添加元累會含むシリカゲル?得、該シリカゲル
全乾燥させた後無孔化処理等?行い透明ガラスを得る方
法が盛んに研究されている。So, in recent years, this drawback? As a complementary method, sly
Silica gel made by hydrolyzing metal alkoxide as the main ingredient or silica gel containing additives? Is the silica gel completely dried and then treated to make it non-porous? Methods for obtaining transparent glass by this process are being actively researched.
一例金挙げれば、シリコンテトラメトキシド等の81の
アルコキシド金、エタノールと充分にI前押混合した後
、水を加え更に攪拌して加水分解する。この時水にはア
ンモニア等pH調整剤を加えておくことが好ましい。加
水分解反応の開始と共に粒子の析出が始まり、該反応浴
液を内面にシリコーンを塗った容器に移し、乾燥時間を
長くできるようにアルミ箔等で差音して例えば60℃程
度の恒温槽中にてゆっくり乾燥させることにぶり、ゾル
液のゲル化およびゲルの乾燥全行う。乾燥するに従って
ゲルに収縮し、通常数日を経るとほぼ乾燥が終了する。For example, gold alkoxides such as silicon tetramethoxide, etc., are thoroughly pre-mixed with ethanol, and then water is added and further stirred for hydrolysis. At this time, it is preferable to add a pH adjuster such as ammonia to the water. Particles begin to precipitate with the start of the hydrolysis reaction, and the reaction bath liquid is transferred to a container coated with silicone on the inside, and placed in a constant temperature bath at about 60°C, for example, with aluminum foil or the like placed between them to increase the drying time. Gelification of the sol solution and drying of the gel are performed by slowly drying the sol solution. As it dries, it shrinks into a gel, and the drying process usually ends after a few days.
このようにして得たゲルtMRり出し、例えば酸素を含
むHe TJ囲気中にて加熱する等にエリ無孔化処理全
行い、透明ガラス化する方法がすでに卸られている。A method is already available in which the gel tMR obtained in this manner is taken out and subjected to a complete pore-free treatment such as heating in an oxygen-containing He TJ atmosphere to make it transparent vitrified.
この工5ないわゆるゾルゲル法は、アルコキシドが多く
の金属元素について作製できるので、各種の物質全容易
に添加できるという長所がある。This so-called sol-gel method has the advantage that alkoxides can be prepared for many metal elements, so that all kinds of substances can be easily added.
しかしながら、上記の方法においては、ゲルが焼結の過
程で割れ易い、という欠点もある。However, the above method also has the disadvantage that the gel tends to crack during the sintering process.
この焼結時の割れは、ゲルの細孔径が小さく、焼結時に
、水、アルコールなどが抜ける前に閉気孔が生ずるため
と考えられる。閉気孔が生じた後、これをさらに加熱す
ると、閉気孔内の圧力が上昇し、割れが生ずる。逆に細
孔径が大きく閉気孔ができにくいゲルは焼結しやすい。This cracking during sintering is thought to be due to the small pore diameter of the gel, which causes closed pores to form before water, alcohol, etc. escape during sintering. After closed pores are formed, when the closed pores are further heated, the pressure inside the closed pores increases and cracks occur. On the other hand, gels with large pore diameters that are difficult to form closed pores are easily sintered.
従って、ガラス塊全安定して得るには、細孔径の大きい
ゲルを安定して得ることが必要である。Therefore, in order to stably obtain a whole glass lump, it is necessary to stably obtain a gel with a large pore size.
細孔径の制御は、ゲルのかさ密度を制御することにより
可能であるが、従来はゲルのかさ密度の制御は困難であ
った。ゲルのかさ密度は乾燥時の収縮の度合いで決まる
が、その収縮力は、表面張力によるものであり、収縮の
度合いはおおむね、粒径と分散媒の表面張力で決まる。The pore diameter can be controlled by controlling the bulk density of the gel, but conventionally it has been difficult to control the bulk density of the gel. The bulk density of a gel is determined by the degree of shrinkage during drying, and this shrinkage force is due to surface tension, and the degree of shrinkage is generally determined by the particle size and the surface tension of the dispersion medium.
従来ゲルのかさ密度制御が困難だったのは、第一に、構
成粒子の粒径を制御できないからであり、第二に、分散
媒に任意のもの?選べないからである。Conventionally, it has been difficult to control the bulk density of gels because, firstly, it is not possible to control the particle size of the constituent particles, and secondly, is it possible to use an arbitrary dispersion medium? This is because you can't choose.
粒径については、濃度の高い浴液を加水分解して粒子全
生成すると、色々の粒径のものができてしまい、校訓の
制御が難しい。しかし希薄浴液で適当な条件で加水分解
してゾルを作り、そのゾル全噴霧乾燥等、生成粒子の粒
径制御の容易な方法で乾燥させることにより、任意の粒
径の粒径分布幅の狭い粒子が得られる。(文献5tt5
ber at al 001−1o1d Interf
ace 5cience 。Regarding particle size, if all particles are generated by hydrolyzing a highly concentrated bath liquid, particles of various sizes will be produced, making it difficult to control according to the school policy. However, by creating a sol by hydrolyzing it in a dilute bath solution under appropriate conditions and drying it using a method that makes it easy to control the particle size of the resulting particles, such as spray drying the entire sol, it is possible to control the particle size distribution width of any particle size. Narrow particles are obtained. (Reference 5tt5
bar at al 001-1o1d Interf
ace 5science.
vol、26 1968 p、62 ;セラミックス
vo1.16 No、 10 1981 p、85
1 )従来、ゲル全構成する粒子の粒径を制御できなか
ったのは、希薄な溶液全加水分解したのでは、ゾルにで
きてもゲル化しないので、濃度の高い浴液全便わざるt
得なかったためである。vol, 26 1968 p, 62; Ceramics vol. 1.16 No. 10 1981 p, 85
1) Conventionally, it was not possible to control the particle size of the particles that make up the entire gel, because if a dilute solution was completely hydrolyzed, it would not gel even if a sol was formed.
This is because they didn't get it.
分散媒については、従来は水とアルコールの混合物以外
の選択はできなかった。しかも、加水分解の条件全一定
にするならば、水とアルコールの比まで決まってしまう
。また、分散媒に多量のアルコールが含まれているため
、かさ密度の制御の容易な乾燥法である凍結乾燥法は極
めて低い温度全必要とし実用的でなかった。As for the dispersion medium, conventionally it was not possible to select anything other than a mixture of water and alcohol. Moreover, if the hydrolysis conditions are all constant, even the ratio of water to alcohol is fixed. Furthermore, since the dispersion medium contains a large amount of alcohol, the freeze-drying method, which is a drying method that allows easy control of bulk density, requires extremely low temperatures and is not practical.
本発明は、以上詳述した従来のゾルゲル法における欠点
を解消し、かさ密度制御が容易で、大きな細孔径を持つ
易焼結なゲル?安定して得られ、それによりガラスを製
造する方法全提供すること金目的とする。The present invention solves the drawbacks of the conventional sol-gel method detailed above, and creates a gel that is easy to control bulk density, has large pores, and is easy to sinter. It is an object of the present invention to provide a method for producing glass that is stably obtained.
本発明者らは、かかる現状に鑑み、鋭意研究の結果、粒
子全作る工程と、ゲル化・乾燥する工程を分けることに
より、かさ密度の制御全容易にし、易焼結ゲル全安定し
て得ることができるにエフ、上記の問題点全解決できる
ことに想到した。In view of the current situation, the present inventors conducted intensive research and found that by separating the process of making all the particles and the process of gelling and drying, the bulk density can be easily controlled and an easily sinterable gel can be obtained in a stable manner. I have come up with the idea that all of the above problems can be solved.
すなわち本発明は、金屑アルコキシド全力ロ水分解して
ガラス全製造する方法に於いて、加水分解により得られ
た粒子を一旦該加水分解の分散媒から分離した後、任意
の分散媒と混合し、しかる後に乾燥せしめ乾燥ゲルを得
、無孔化処理を含む処理音節してなることを特徴とする
ガラスの製造方法を提供する。That is, the present invention provides a method for producing glass by fully hydrolyzing gold scrap alkoxide, in which the particles obtained by hydrolysis are once separated from the dispersion medium of the hydrolysis, and then mixed with an arbitrary dispersion medium. , followed by drying to obtain a dry gel, and providing a method for producing glass, characterized in that the glass is treated to make it non-porous.
本発明の特に好ましい実施態様として、上記において金
属アルコキシドが81 、 B 、 Ge 、 P 。In a particularly preferred embodiment of the present invention, the metal alkoxide is 81, B, Ge, P.
At、 8b 、 Ti 、 Zr 、 8n 、 Y
、 Pb $P工びCsからなる群より選ばれる少な
くとも1種の元素のアルコキシドであるガラスの製造方
法が挙げられる。At, 8b, Ti, Zr, 8n, Y
, Pb $P process, Cs, and the like.
また本発明の特に好ましい別の実施態様として、前記任
意の分散媒に、添加物としてB 、 Go 。Moreover, as another particularly preferable embodiment of the present invention, B and Go are added to the arbitrary dispersion medium as additives.
P 、 At、 8b 、 Ti 、 Zr 、 El
n 、 Y 、 Sr 、 Pb およびaSからな
る群より選ばれる元素又は元素の化合物の少なくとも1
種以上を添加し、それにより製造されたガラス中に該元
素?含有せしめる上記のガラスの製造方法tも挙げるこ
とができる。P, At, 8b, Ti, Zr, El
At least one element or compound of elements selected from the group consisting of n, Y, Sr, Pb and aS
Adding more than one species to the glass thus produced? The above-mentioned glass manufacturing method t in which glass is contained can also be mentioned.
本発明のガラスの製造方法においては、粒子をつくる工
程では、ゲル化に必要な濃度など全考慮することなく、
粒径の制御が容易な条件、例えば希薄な浴液を加水分解
し噴霧乾燥する方法などにより粒子金作製する。これに
工って得られた粒子を適当な表面張力上もつ任意の液体
(分散媒)に加え、しかる後に徐々に乾燥させる。この
ようにして、大きな細孔径を持つ易焼結な乾燥ゲル金少
ないバラツキで得ることができる。また、その液体に水
音用いることにより、かさ密度の制御が容易な凍結乾燥
ks−10℃以上の比較的高温でも行な5ことができる
。さらに、分散媒の中に適当な物質t−加えておくこと
により、その物質tガラスに添加しガラスの性質を変え
ることも可能である。例えば分散媒に水を用い、その水
の中にホウ酸を加えておくことにより、製造されたガラ
スの屈折率金工げることができる。In the glass manufacturing method of the present invention, in the step of creating particles, the concentration required for gelation and other factors are not taken into consideration.
Particle gold is produced under conditions that allow easy control of particle size, such as by hydrolyzing a dilute bath solution and spray drying. The particles obtained by this process are added to any liquid (dispersion medium) having an appropriate surface tension, and then gradually dried. In this way, easily sinterable dry gel gold having a large pore diameter can be obtained with little variation. In addition, by using water for the liquid, freeze-drying can be carried out even at relatively high temperatures of -10° C. or higher, where the bulk density can be easily controlled. Furthermore, by adding an appropriate substance to the dispersion medium, it is possible to add the substance to the glass to change the properties of the glass. For example, by using water as a dispersion medium and adding boric acid to the water, it is possible to improve the refractive index of the produced glass.
本発明の方法に用いられる金属アルコキシドとしては、
例えば” # B # oe e P t kt 、
St) 、 Ti 。The metal alkoxide used in the method of the present invention includes:
For example, “# B # oe e P t kt,
St), Ti.
Zr 、 8n 、 Y 、 PbおLびCs等のメト
キシド、エトキシド、プロポキシド、ブトキシド等が挙
げられ、例えば石英系ガラス全製造する場合にハS1の
アルコキシド又Hs1のアルコキシドと上記のB以下の
アルコキシドの1種又にそれ以上七混合したものを加水
分解する。Examples include methoxides, ethoxides, propoxides, butoxides of Zr, 8n, Y, Pb, L and Cs, etc. For example, when producing quartz glass, alkoxides of S1 or Hs1 and alkoxides of B and below are used. A mixture of one or more of the following is hydrolyzed.
本発明における金属アルコキシドの加水分解は通常の方
法、すなわちアルコールお工び水を加水分解反応に好ま
しい濃度となる工うに混合することにLれば工い。アル
コールとしてはメタノール、エタノール、グロバノール
、ブタノール等から適宜選択される。Hydrolysis of the metal alkoxide in the present invention can be carried out by a conventional method, that is, by mixing alcohol and water to a concentration suitable for the hydrolysis reaction. The alcohol is appropriately selected from methanol, ethanol, globanol, butanol, and the like.
加水分解終了後、得られた粒子ヶ一旦加水分解の分散媒
、すなわちアルコールと水から分離・する方法は、通常
の分離・乾燥手段に工ればよい。例えば析出粒子t−i
F’取後乾燥する、あるいは分散媒を蒸発させて粉末を
得る等であり、また一般に粉末乾燥手段として用いられ
る高温中への噴霧、熱風吹きつけ、真空乾燥、凍結乾燥
等の手段を用いることができる。After the hydrolysis is completed, the obtained particles can be separated from the dispersion medium of the hydrolysis, that is, alcohol and water, by using conventional separation and drying means. For example, precipitated particles ti
After removing F', dry it or evaporate the dispersion medium to obtain a powder, and use commonly used powder drying methods such as spraying into a high temperature, blowing hot air, vacuum drying, and freeze drying. I can do it.
この工うにj、で得られた粒子ケ再び任意の分散媒と混
合するが、この場合はゲル化に好適な濃度とすることが
できる。The particles obtained in this process are again mixed with an arbitrary dispersion medium, but in this case, the concentration can be adjusted to a concentration suitable for gelation.
任意の分散媒としては、例えばFθ、 Ou 、 C。Examples of the arbitrary dispersion medium include Fθ, Ou, and C.
等の光学特注に有害な不純物の含有が少なければいずれ
の液体でも工く、例えば水、アルコール類、アセトン等
が挙げられるが、これらに限定されるものでrLない。Any liquid may be used as long as it contains only a small amount of impurities harmful to optical customization such as water, alcohols, acetone, etc., but is not limited to these.
また上記の任意の分散媒中には、添加物としてB 、
Go 、 P 、 At、 8b 、 Ti 、 Zr
、 8n 、 Y 、 Sr 、 P’bおよびCs
からなる群より選ばれる元素又は化合物の少なくとも1
種以上を加えることにより、製造されたガラス中に該元
素上含有せしめることができる。これらの元素は例えば
塩、アルコキシド等金水溶液、鉱R浴液等として添加す
ることができる。この工うな元素の添加により製品ガラ
スの屈折IKk変ILさせることができる。In addition, in any of the above dispersion mediums, B,
Go, P, At, 8b, Ti, Zr
, 8n, Y, Sr, P'b and Cs
At least one element or compound selected from the group consisting of
By adding more than one species, the element can be included in the produced glass. These elements can be added, for example, as salts, alkoxides, etc., gold aqueous solutions, mineral R bath liquids, and the like. By adding this element, it is possible to change the refraction IKk and IL of the product glass.
以上により生成したゲルを乾燥して乾燥ゲルを得るが、
急激に乾燥するとゲルが収縮して歪みで割れる場合があ
るので、ゆっくり乾燥させるか、凍結乾燥するとこのよ
うな割れを避けることができる。The gel produced above is dried to obtain a dry gel.
Rapid drying can cause the gel to shrink and crack due to strain, so drying slowly or freeze-drying can avoid this type of cracking.
前記の如く、任意の分散媒として水金用いれば、かさ密
度制御が容易な点で有利な凍結乾燥y、−io℃以上と
いう比較的高温でも行うことができる。As mentioned above, if water/metal is used as an arbitrary dispersion medium, freeze-drying can be carried out even at a relatively high temperature of -io DEG C. or higher, which is advantageous in that the bulk density can be easily controlled.
次いで乾燥ゲルの無孔1ヒ処理金行うが、例えば好適な
雰囲気中にて、成分の融点より低い温度で焼結する方法
が挙げられ、例えばシリカ金主成分とする乾燥ゲルにつ
いては、He雰囲気中にて1200〜1500℃程度の
温度で焼結上行う。Next, the dry gel is subjected to a non-porous 1H treatment, for example, a method of sintering it in a suitable atmosphere at a temperature lower than the melting point of the components. Sintering is carried out at a temperature of about 1200 to 1500°C.
以下実施例により本発明のガラスの製造方法全具体的に
説明する。The entire method for manufacturing the glass of the present invention will be specifically explained below with reference to Examples.
実施例1
エタノール5モル中に、実験直前に再蒸留したテトラメ
チルシリケート178モルを加え、マグネテツクスター
ラで充分に混合した。その後この中に、エタノール2モ
ルに飽和アンモニア水1Qtult−加え混合したもの
を加え激しくかきまぜた。その後、緩やかにかきまぜな
がら3時間室温に保った後、800℃の高温中に噴霧し
、乾燥した。こうして得られた粉末の粒子径は、α1ミ
クロン程度でバラツキに少なかった。Example 1 178 moles of tetramethyl silicate redistilled immediately before the experiment were added to 5 moles of ethanol and thoroughly mixed using a magnetic stirrer. Thereafter, a mixture of 2 moles of ethanol and 1 Qtult of saturated ammonia water was added and stirred vigorously. Thereafter, the mixture was kept at room temperature for 3 hours while being gently stirred, and then sprayed into a high temperature of 800° C. and dried. The particle size of the powder thus obtained was approximately α1 micron, with little variation.
この粉末1 t2エタノール5o−に加え超音波で分散
させた後、湯煎で加熱し濃縮した。流動性が高くなった
ところで加熱tやめ、内面にシリコーン金塗った、径1
21.長さ105蝙の試験管5本に移し、アルミ箔でか
るくフタをして60Cの恒温槽に入れた。このまま5日
間乾燥し、径B1)IK程度、長さ14醪程度の乾燥シ
リカゲルを得た。この乾燥ゲルのかさ密度は、平均[L
52f/cm’標準偏差a 01 S’/cWI’であ
り、これt■e雰囲気中、15QQCで焼結し、5つの
乾燥ゲルすべてについてクラックの無い透明ガラス金得
た。This powder was added to 1 t2 ethanol 50- and dispersed using ultrasonic waves, and then heated and concentrated in a water bath. When the fluidity became high, the heating was stopped and the inner surface was coated with silicone gold, diameter 1.
21. The mixture was transferred to five test tubes each having a length of 105 cm, capped loosely with aluminum foil, and placed in a constant temperature bath at 60C. This was left to dry for 5 days to obtain a dried silica gel with a diameter of about B1)IK and a length of about 14 mm. The bulk density of this dry gel is the average [L
The standard deviation was 52 f/cm', a 01 S'/cWI', and this was sintered at 15QQC in a TE atmosphere to obtain transparent glass gold without cracks for all five dried gels.
実施例2
実施例1で作った粉末1f七a1チホウ酸水浴液50m
に加え超音波で分散させた後、加熱し濃縮した。流動性
が高くなったところで加熱tやめ前、記と同一の試験管
5本に移し、アルミ箔でかるくフタtして60℃の恒温
槽に入れた。Example 2 Powder made in Example 1 1f 7a1 Thiboric acid water bath solution 50m
After dispersing with ultrasonic waves, the mixture was heated and concentrated. When the fluidity became high, before stopping heating, the mixture was transferred to the same five test tubes as described above, capped loosely with aluminum foil, and placed in a constant temperature bath at 60°C.
このまま2日間乾燥し、長さが151w程度になったa
ころで取りだし、冷凍車(−20℃)でゆりくりと冷却
し凍結後、氷、塩化ナトリウム寒剤で冷却しながら凍結
したまま真空乾燥し乾燥ゲル金得た。この乾燥ゲルの平
均かさ密度は、α4917cm”標準偏差は、Q、 0
197cm” テh り、これiHe雰囲気中、130
0℃で焼結し、5つの乾燥ゲルすべてについてクラック
の無い透明ガラス金得た。It dried like this for 2 days, and the length became about 151w.
The mixture was taken out on a roller, slowly cooled in a refrigerator car (-20°C), frozen, and dried in vacuum while cooling with ice and a sodium chloride cryogen to obtain dried gel gold. The average bulk density of this dry gel is α4917 cm, and the standard deviation is Q, 0
197cm” Tehri, this is in the iHe atmosphere, 130
Sintering at 0° C. resulted in clear glass gold with no cracks for all five dried gels.
比較例
シリコンテトラメトキシド1/16モルと、エタノール
1/4モル金1マクネテックスターラで混合し、その中
に13%アンモニア水3滴七加えた水1/2モル全7x
Iえさらに混合した後、前記と同一の試験管5本に移し
アルミ箔で軽くフタをし、60C恒温槽に入れた。7日
後には、#1ぼ完全に乾燥しており、径は6111)l
程度1長さは11瓢程度であった。この乾燥ゲルのかさ
密度は平均1)L78f/備3標準偏差は106t/謂
3であった。仁の乾燥ゲル’e、、He雰囲気中130
0℃で焼結したところ、5つの内、3つには割れが生じ
極めて小さな透明ガラスしか得られなかつ念。Comparative Example: 1/16 mole of silicon tetramethoxide, 1/4 mole of ethanol, 1 mole of gold was mixed in a Macnetex stirrer, and 3 drops of 13% ammonia water was added thereto, totaling 7x 1/2 mole of water.
After further mixing, the mixture was transferred to the same five test tubes as above, capped loosely with aluminum foil, and placed in a 60C constant temperature bath. After 7 days, #1 was completely dry and the diameter was 6111) l.
The length of grade 1 was about 11 gourds. The average bulk density of this dry gel was 1)L78f/3 standard deviation was 106t/3. Dry gel of kerosene 'e,,130 in He atmosphere
When sintered at 0°C, three of the five pieces were cracked and only very small pieces of transparent glass were obtained.
以上の実施例、比較例の結果から明らかなように、本発
明の方法は従来法によるよりかさ密度の小さい乾燥ゲル
t1粒径分布幅を小さく得ることができ、該乾燥ゲルは
易焼結である。As is clear from the results of the above Examples and Comparative Examples, the method of the present invention can obtain a dry gel with a smaller bulk density and a narrower particle size distribution width than the conventional method, and the dry gel can be easily sintered. be.
また加水分解に=9生じた粒子を一旦分離後、任意の分
散媒中にてゲル化するので、任意の分散媒、とじて水を
用いれば、従来法の多量にアルコールを含有する場合に
比べて、比較的高温にて凍結乾燥できるため米用上有利
である。In addition, once the particles generated by hydrolysis = 9 are separated, they are gelled in any dispersion medium, so if you use any dispersion medium, water, compared to the conventional method that contains a large amount of alcohol. Since it can be freeze-dried at a relatively high temperature, it is advantageous for rice production.
したがって本発明によれば、従来、制御が困難であった
、ゲルt−構成する粒子の粒径を容易に制御することが
でき、また乾燥ゲルのかさ密度を容易に制御することが
でき、その結果、割れ無しに焼結することのできる乾燥
ゲル?容易に得ることのできる優れた効果を有する。Therefore, according to the present invention, it is possible to easily control the particle size of the particles constituting the gel, which has been difficult to control in the past, and the bulk density of the dry gel can be easily controlled. As a result, a dry gel that can be sintered without cracking? It has excellent effects that can be easily obtained.
Claims (3)
る方法に於いて、加水分解により得られた粒子を一旦該
加水分解の分散媒から分離した後、任意の分散媒と混合
し、しかる後に乾燥せしめ乾燥ゲルを得、無孔化処理を
含む処理を施してなることを特徴とするガラスの製造方
法。(1) In a method for producing glass by hydrolyzing metal alkoxides, the particles obtained by hydrolysis are once separated from the dispersion medium of the hydrolysis, mixed with any dispersion medium, and then dried. A method for producing glass, which comprises obtaining a dry gel and subjecting it to a treatment including non-porous treatment.
Sb、Ti、Zr、Sn、Y、PbおよびCsからなる
群より選ばれる少なくとも1種の元素のアルコキシドで
ある特許請求の範囲第(1)項に記載のガラスの製造方
法。(2) Metal alkoxide is Si, B, Ge, P, Al,
The method for producing glass according to claim (1), wherein the glass is an alkoxide of at least one element selected from the group consisting of Sb, Ti, Zr, Sn, Y, Pb, and Cs.
l、Sb、Ti、Zr、Sn、Y、Sr、PbおよびC
sからなる群より選ばれる元素又は元素の化合物の少な
くとも1種以上を添加し、それにより製造されたガラス
中に該元素を含有せしめる特許請求の範囲第(1)項記
載のガラスの製造方法。(3) Additives such as B, Ge, P, and A to any dispersion medium.
l, Sb, Ti, Zr, Sn, Y, Sr, Pb and C
The method for producing glass according to claim (1), wherein at least one element or compound of an element selected from the group consisting of s is added, so that the element is contained in the glass produced thereby.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59189665A JPS6168329A (en) | 1984-09-12 | 1984-09-12 | Glass manufacturing method |
CA000489925A CA1256115A (en) | 1984-09-12 | 1985-09-03 | Platinum complexes |
ZA856889A ZA856889B (en) | 1984-09-12 | 1985-09-09 | Platinum complexes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59189665A JPS6168329A (en) | 1984-09-12 | 1984-09-12 | Glass manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6168329A true JPS6168329A (en) | 1986-04-08 |
JPH0520364B2 JPH0520364B2 (en) | 1993-03-19 |
Family
ID=16245123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59189665A Granted JPS6168329A (en) | 1984-09-12 | 1984-09-12 | Glass manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS6168329A (en) |
ZA (1) | ZA856889B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63277527A (en) * | 1987-05-11 | 1988-11-15 | Ube Nitto Kasei Kk | Production of very small spherical silica glass |
JPH02275733A (en) * | 1989-04-17 | 1990-11-09 | Masayuki Nogami | Semiconductor-containing glass and its production |
-
1984
- 1984-09-12 JP JP59189665A patent/JPS6168329A/en active Granted
-
1985
- 1985-09-09 ZA ZA856889A patent/ZA856889B/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63277527A (en) * | 1987-05-11 | 1988-11-15 | Ube Nitto Kasei Kk | Production of very small spherical silica glass |
JPH02275733A (en) * | 1989-04-17 | 1990-11-09 | Masayuki Nogami | Semiconductor-containing glass and its production |
JP2768442B2 (en) * | 1989-04-17 | 1998-06-25 | 正行 野上 | Manufacturing method of semiconductor-containing glass |
Also Published As
Publication number | Publication date |
---|---|
ZA856889B (en) | 1986-05-28 |
JPH0520364B2 (en) | 1993-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6265714A (en) | Filtration bead and manufacture thereof | |
JPS63307140A (en) | Sol-gel process for manufacturing superlow expansion glass | |
JPS5983955A (en) | Manufacture of optical composition comprising germanium-containing silicate glass | |
JPS6168329A (en) | Glass manufacturing method | |
JPS63107827A (en) | Method and apparatus for manufacturing glass article | |
JPH038729A (en) | Production of porous glass | |
JPH03275510A (en) | Production of alumina sol | |
JPS61256928A (en) | Production of glass | |
JPS6186428A (en) | Glass manufacturing method | |
US20010015079A1 (en) | Method for producing dopant doped high pure silica Glass | |
JPS61163124A (en) | Preparation of glass | |
US5810899A (en) | Glass production | |
JPH03285833A (en) | Manufacture of porous glass | |
JPS60131834A (en) | Manufacture of quartz glass | |
JPH059036A (en) | Production of quartz glass having refractive index distribution | |
JPS6191021A (en) | Silica glass manufacturing method | |
JPS6186429A (en) | Glass manufacturing method | |
JPS61286230A (en) | Glass manufacturing method | |
JPH0551539B2 (en) | ||
JPH03137028A (en) | Production of large-sized massive glass | |
JPS61174126A (en) | Glass manufacturing method | |
JPS6330331A (en) | Production of glass | |
JPS62119132A (en) | Method for manufacturing base material for optical fiber | |
JPS63182222A (en) | Production of silica glass | |
JPH02225327A (en) | Production of filler for sealing material and hollow spherical silica glass |