[go: up one dir, main page]

JPS6166949A - hydrogen gas detector - Google Patents

hydrogen gas detector

Info

Publication number
JPS6166949A
JPS6166949A JP59189414A JP18941484A JPS6166949A JP S6166949 A JPS6166949 A JP S6166949A JP 59189414 A JP59189414 A JP 59189414A JP 18941484 A JP18941484 A JP 18941484A JP S6166949 A JPS6166949 A JP S6166949A
Authority
JP
Japan
Prior art keywords
optical fiber
hydrogen gas
gas detector
light source
detector according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59189414A
Other languages
Japanese (ja)
Inventor
Minoru Watanabe
稔 渡辺
Shigeru Tanaka
茂 田中
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59189414A priority Critical patent/JPS6166949A/en
Publication of JPS6166949A publication Critical patent/JPS6166949A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (技術分野) 本発明は、光学的に水素ガス量を測定する水素ガス検出
器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a hydrogen gas detector that optically measures the amount of hydrogen gas.

(従来技術とその欠点) 水素ガスの検出は種々の分野で必要とされており、例え
ば高速増殖炉に使用される液体ナトリウム冷却プラント
においてはナトリウム蒸気発生器に小量の水分が漏洩し
た場合、水とナトリウムは激しく反応し極めて危険な状
態となるが、この際予め反応の初期に水とナトリウムの
反応により発生する水素ガスを検出すわば大事故を未然
に防止することができる。捷だ、金属が腐食環境におか
れた時、その金属は腐食と同時に金属中に溶解すろ水素
原子VCより脆化することが知られているが、この水素
脆r+の程度は金属に溶解している水素址を測定するこ
とによって知ることができ、これにより水素脆性に基く
破壊事故の予知と防止とを図ることができる。さらに、
光ファイバの製造等石英ガラス加Tでは酸水素炎を使う
ことが多いが、この場合も水素ガス漏洩事故を防止する
には水素ガスの検出が必要となる。
(Prior art and its disadvantages) Detection of hydrogen gas is required in various fields, for example, in liquid sodium cooling plants used in fast breeder reactors, when a small amount of water leaks into the sodium vapor generator, Water and sodium react violently, creating an extremely dangerous situation, but if the hydrogen gas generated by the reaction between water and sodium can be detected in advance in the early stages of the reaction, major accidents can be prevented. It is known that when a metal is placed in a corrosive environment, the metal corrodes and at the same time becomes brittle due to the hydrogen atoms VC dissolved in the metal. This can be determined by measuring the amount of hydrogen present in the hydrogen embrittlement, and thereby it is possible to predict and prevent fracture accidents due to hydrogen embrittlement. moreover,
An oxyhydrogen flame is often used in silica glass processing, such as in the manufacture of optical fibers, but in this case as well, detection of hydrogen gas is necessary to prevent hydrogen gas leakage accidents.

従来、これらの水素ガスを検出する方法としては、ガス
クロマトグラフィな用いる方法、ニッケル拡散膜を使用
して拡散水素ガスを圧力変化から測定する方法、水素検
出用電解液の電気伝導度を測定する方法などがあるが、
この中ガスクロマトグラフィを用いる方法とニッケル拡
散膜を使用する方法はそ」1ぞれ寸法長大なカラムおよ
び真空ポンプ等の機械的可動部品を必要とするため設備
が犬がかりとなるばかりではなく高温雰囲気或は溶液中
など測定状況による使用−ヒの制限が大きく、−また電
解液を用いる方法も液中の溶存酸素量によって感度が変
化すること、水分が蒸発するため補給が必要であること
、および電解液には腐食性のものが多いなどの理由から
使用条件が著しく制限されるという欠点を有する。
Conventional methods for detecting hydrogen gas include gas chromatography, measuring diffused hydrogen gas from pressure changes using a nickel diffusion membrane, and measuring the electrical conductivity of an electrolyte for hydrogen detection. etc., but
Among these methods, the method using gas chromatography and the method using a nickel diffusion membrane each require a large column and mechanically moving parts such as a vacuum pump, which not only require heavy equipment but also require a high-temperature atmosphere. The use of electrolytes is highly restricted depending on the measurement situation, such as in a solution, and methods using electrolytes also have the disadvantages that the sensitivity changes depending on the amount of dissolved oxygen in the solution, and that water evaporates and requires replenishment. The drawback is that many electrolytes are corrosive, and the conditions of use are severely restricted.

(発明の構成) 本発明は上記従来の欠点を除去すべくなされたものであ
って、このため本発明による水素ガス検出器は、一定波
長の光源と、該光源からの光を導かれる石英系光ファイ
バよりなるセンサ部と、該センサ部を通過する光の伝送
損失量を測定する計測手段とからなり、水素ガス量捷た
は濃度を光ファイバを用いて光学的に測定可能としたこ
とを特徴とする。
(Structure of the Invention) The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and for this reason, the hydrogen gas detector according to the present invention includes a light source of a constant wavelength and a quartz-based light source to which the light from the light source is guided. It consists of a sensor section made of an optical fiber and a measuring means for measuring the amount of transmission loss of light passing through the sensor section, and it is possible to optically measure the amount or concentration of hydrogen gas using the optical fiber. Features.

(発明の原理および作用) 従来、石英ガラスはl−12に対する透過率が金属など
に比べてかなり大きいことが知られている。
(Principle and operation of the invention) It has been known that quartz glass has a considerably higher transmittance to l-12 than metals.

今、コアおよびクラッドが石英ガラスよりなる光ファイ
バを1−1 、、雰囲気中に置くと、112は徐々に光
フアイバ中に浸透し、112分子は赤外活性となり光フ
ァイバの伝送損失を増加させる。そこで石英ガラスより
なる光ファイバなセンサ部として用い、その伝送損失督
増加量を測定することにより11□ガス鼠捷たは濃度を
求めることができる。
Now, when an optical fiber whose core and cladding are made of silica glass is placed in a 1-1 atmosphere, 112 gradually penetrates into the optical fiber, and the 112 molecules become infrared active, increasing the transmission loss of the optical fiber. . Therefore, by using an optical fiber as a sensor section made of quartz glass and measuring the amount of increase in transmission loss, the concentration or concentration of the 11□ gas can be determined.

上記伝送損失の増加は、コアが100%5in2ガラス
である場合は波長1.24μm付近に吸収ピークをもつ
11□分子の吸収損失の増加であり、この吸収ピークは
外部の11□分圧を下げるとファイバ内部のIt2は可
逆的に外部へ拡散するので、その都度の外部112分圧
に応じて増減する。捷た、コアがqe02を含む場合は
波長1.4μm付近に吸収ピークをもつGe0IIの吸
収損失の増加であり、この吸収ピークの増加は外部のI
−12分圧を下げても減少しない非可逆的特性を示す。
When the core is 100% 5in2 glass, the increase in transmission loss is due to the increase in the absorption loss of 11□ molecules, which has an absorption peak around the wavelength of 1.24 μm, and this absorption peak lowers the external 11□ partial pressure. Since It2 inside the fiber reversibly diffuses to the outside, it increases or decreases depending on the external 112 partial pressure each time. When the core contains qe02, there is an increase in the absorption loss of Ge0II, which has an absorption peak near a wavelength of 1.4 μm, and this increase in absorption peak is caused by the external I
-12 Shows irreversible characteristics that do not decrease even if the partial pressure is lowered.

この非可逆性の(’、earlの吸収ピークは、P2O
,の添加やファイバの温度を上列させることによりI−
1、に対する感度が増加し、また112分圧の0.4乗
に比例して吸収ピークが増加することがわかった。
This irreversible (', earl absorption peak is P2O
, and by adjusting the fiber temperature, I-
It was found that the sensitivity to 1 increases, and the absorption peak increases in proportion to the 0.4th power of the 112 partial pressure.

(実施例) 次に添附図に清って本発明の実施例につき説明する。第
1図は本発明による水素ガス検出器の一構成例を示すも
ので、発光ダイオード等の光源1からの光はハーフミラ
−乙により測定光と参照光とに分離され、測定光はセン
サ部を構成する光フアイバ5中を伝搬した後受光器7に
て光電変換され、一方参照光は光源出力モニター用の受
光器9にて光電変換され、これら両受光器7.9の出力
をコンピータ11にて比較することにより光ファイバ5
の伝送損失が求められる。この光ファイバ5をH,雰囲
気に置くと、上述したように該光ファイバのコアガラス
の種類に応じて伝送損失が可逆的または非可逆的に増加
し、該増加量を求めることによりI−12濃度を測定す
ることができる。
(Example) Next, an example of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows an example of the configuration of a hydrogen gas detector according to the present invention, in which light from a light source 1 such as a light emitting diode is separated into measurement light and reference light by a half mirror B, and the measurement light passes through the sensor section. After propagating through the constituent optical fibers 5, it is photoelectrically converted by a light receiver 7, while the reference light is photoelectrically converted by a light receiver 9 for monitoring the light source output, and the outputs of both light receivers 7 and 9 are sent to a computer 11. By comparing optical fiber 5
transmission loss is required. When this optical fiber 5 is placed in an H atmosphere, the transmission loss increases reversibly or irreversibly depending on the type of core glass of the optical fiber as described above. Concentration can be measured.

検出器を高感度とするには、図示のように光ファイバ5
をボビン13に巻いて作用長を大きくすることが望まし
く、また光ファイバにヒータ15を組込んで反応を加速
させることが好捷しい。さらにセンサ部となる光ファイ
バに予めγ線や紫外線を照射して内部欠陥を増大させる
ことによっても高感度とすることができる。
To make the detector highly sensitive, connect optical fiber 5 as shown in the figure.
It is desirable to increase the working length by winding the optical fiber around the bobbin 13, and it is also preferable to incorporate a heater 15 into the optical fiber to accelerate the reaction. Furthermore, high sensitivity can also be achieved by irradiating the optical fiber serving as the sensor section with gamma rays or ultraviolet rays in advance to increase internal defects.

本発明の実験結果によれば、Qe0210重量%、P2
O,10重量%を含んだSiO□ガラスをコアとする光
ファイバ5を500Mボビン13に巻き、該光ファイバ
をヒーター15により約200 ’Cに加熱腰光源1と
して波長14μmOL E ’Dを使用し、l二記光フ
ァイバ5を1 ptILIのII2分圧雰囲気内に設置
したところ毎分0.1 d B/iの損失増加星が観測
された。斗た、予め紫外線ランプ照射部を10m/分の
速度て通過させた上記実験例に用いた光ファイバと同−
電光ファイバをセンサ部として用い、上記実験例と同一
条件にて測定l−だところ毎分07(l 1(/Ai 
 の損失増加が観測された。さらに、5i02100%
のガラスヲコアとする光ファイバ5を1klホヒン13
に巻き、該光ファイバをヒーター15&こより約200
℃に加熱し、光源1として波長1.24 μmのL E
Dを使用し、上記光ファイバ5を1%のII2雰囲気内
に設置したところ約15分後に1 dlr/8cIn 
 の損失増加計が観測され、捷たこの損失はII2濃度
の減少により減少した。
According to the experimental results of the present invention, 10% by weight of Qe02, P2
An optical fiber 5 having a core made of SiO□ glass containing 10% by weight of O was wound around a 500M bobbin 13, and the optical fiber was heated to about 200'C by a heater 15. A light source 1 with a wavelength of 14 μm OL E'D was used. When the optical fiber 5 was installed in a II2 partial pressure atmosphere of 1 ptILI, an increasing loss of 0.1 dB/i per minute was observed. The same optical fiber used in the above experimental example was passed through the ultraviolet lamp irradiation section at a speed of 10 m/min.
Using an optical fiber as a sensor part, the measurement was performed under the same conditions as in the above experimental example.
An increase in loss was observed. Furthermore, 5i02100%
1kl optical fiber 5 with glass core 13
The optical fiber is wrapped around the heater 15 &
℃ and L E with a wavelength of 1.24 μm as light source 1.
When the optical fiber 5 was installed in a 1% II2 atmosphere using D, 1 dlr/8 cIn was obtained after about 15 minutes.
An increased loss was observed, and this loss decreased with decreasing II2 concentration.

(発明の効果) 以上のように、本発明によれば水素ガス濃度を検出する
に光ファイバを用いて光学的に検出できるようにしたの
で、センサ部全体の構造を極めて簡単かつ小型軽量とす
ることができ、測定状況による使用の制限を大l〕に緩
和することができろ。、とくに、センサ部となる光ファ
イバは可撓nおよび耐火、耐水、耐腐食性に優れている
ので広範な領域および測定環境において水素ガス濃度検
出が可能である。
(Effects of the Invention) As described above, according to the present invention, since the hydrogen gas concentration can be detected optically using an optical fiber, the structure of the entire sensor section can be made extremely simple, small and lightweight. It would be possible to greatly alleviate restrictions on use depending on the measurement situation. In particular, since the optical fiber serving as the sensor section has excellent flexibility, fire resistance, water resistance, and corrosion resistance, it is possible to detect hydrogen gas concentration in a wide range of areas and measurement environments.

なお、本発明はセンサ部に使用する光ファイバのコアの
ガラス成分を選択することにより可逆的又は非可逆的セ
ンサとして使用できることは勿論のこと、センサ部とな
る光ファイバのコアのガラス成分および又は加熱温度を
適当に選択することにより水素ガス濃度の言1測範囲を
変えることができるばかりではなく、これら計測範囲の
異なる複数の検出器を組み合わせて広範なi−1測範囲
をカバーできる複合検出器としても使用可能である。
It should be noted that the present invention can of course be used as a reversible or irreversible sensor by selecting the glass component of the core of the optical fiber used in the sensor section. Composite detection not only allows you to change the measurement range of hydrogen gas concentration by appropriately selecting the heating temperature, but also covers a wide i-1 measurement range by combining multiple detectors with different measurement ranges. It can also be used as a vessel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による水素ガス検出器の構成例を示す図
である。 1:光 源 5:光ファイバ 7.9:受光器 11:コンピュータ 15:ヒータ 特許用E 住友電気工業株式会社 j  光源 5      ブー フ74J\゛ 7.9   受光器 11    コンピュータ )5   ヒータ
FIG. 1 is a diagram showing an example of the configuration of a hydrogen gas detector according to the present invention. 1: Light source 5: Optical fiber 7.9: Receiver 11: Computer 15: Heater Patent E Sumitomo Electric Industries, Ltd.

Claims (6)

【特許請求の範囲】[Claims] (1)一定波長の光源と、該光源より光を導かれる石英
系光ファイバよりなるセンサ部と、該センサ部を通過す
る光の伝送損失量を測定する計測手段とからなる水素ガ
ス検出器。
(1) A hydrogen gas detector comprising a light source of a constant wavelength, a sensor section made of a quartz optical fiber to which light is guided from the light source, and a measuring means for measuring the amount of transmission loss of the light passing through the sensor section.
(2)前記光ファイバのコアがSiO_2100%のガ
ラスよりなり、前記光源が波長1.24μm付近のLE
Dよりなる特許請求の範囲第1項の水素ガス検出器。
(2) The core of the optical fiber is made of 100% SiO_2 glass, and the light source is an LE with a wavelength of around 1.24 μm.
A hydrogen gas detector according to claim 1, comprising D.
(3)前記光ファイバのコアがGeO_2を含むSiO
_2ガラスよりなり、前記光源が波長1.4μm付近の
LEDよりなる特許請求の範囲第1項の水素ガス検出器
(3) The core of the optical fiber is SiO containing GeO_2
_2 The hydrogen gas detector according to claim 1, wherein the light source is an LED having a wavelength of around 1.4 μm.
(4)前期光ファイバのコアがGeO_2とP_2O_
5とを含むSiO_2ガラスよりなり、前記光源が波長
1.4μm付近のLEDよりなる特許請求の範囲第1項
の水素ガス検出器。
(4) The core of the early optical fiber is GeO_2 and P_2O_
5. The hydrogen gas detector according to claim 1, wherein the light source is an LED having a wavelength of around 1.4 μm.
(5)前記センサ部に加熱機構を含む特許請求の範囲第
2項乃至第4項のいずれかによる水素ガス検出器。
(5) A hydrogen gas detector according to any one of claims 2 to 4, wherein the sensor section includes a heating mechanism.
(6)前記光ファイバとして予めγ線或は紫外線を照射
した光ファイバを用いる特許請求の範囲第2項乃至第5
項のいずれかによる水素ガス検出器。
(6) Claims 2 to 5 in which the optical fiber is an optical fiber that has been irradiated with gamma rays or ultraviolet rays in advance.
Hydrogen gas detector according to any of the paragraphs.
JP59189414A 1984-09-10 1984-09-10 hydrogen gas detector Pending JPS6166949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59189414A JPS6166949A (en) 1984-09-10 1984-09-10 hydrogen gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59189414A JPS6166949A (en) 1984-09-10 1984-09-10 hydrogen gas detector

Publications (1)

Publication Number Publication Date
JPS6166949A true JPS6166949A (en) 1986-04-05

Family

ID=16240865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59189414A Pending JPS6166949A (en) 1984-09-10 1984-09-10 hydrogen gas detector

Country Status (1)

Country Link
JP (1) JPS6166949A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109634A (en) * 1992-09-29 1994-04-22 Central Res Inst Of Electric Power Ind Hydrogen detector
WO2003056313A1 (en) * 2001-12-27 2003-07-10 Optoplan As Sensor system and method
EP2584340A1 (en) * 2011-10-20 2013-04-24 Draka Comteq BV Hydrogen sensing fiber and hydrogen sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06109634A (en) * 1992-09-29 1994-04-22 Central Res Inst Of Electric Power Ind Hydrogen detector
WO2003056313A1 (en) * 2001-12-27 2003-07-10 Optoplan As Sensor system and method
EP2584340A1 (en) * 2011-10-20 2013-04-24 Draka Comteq BV Hydrogen sensing fiber and hydrogen sensor
CN103063658A (en) * 2011-10-20 2013-04-24 德雷卡通信技术公司 Hydrogen sensing fiber and hydrogen sensor
US9322969B2 (en) 2011-10-20 2016-04-26 Draka Comteq, B.V. Hydrogen-sensing optical fiber hydrogen-passivated to prevent irreversible reactions with hydrogen and hydrogen-induced attenuation losses
CN103063658B (en) * 2011-10-20 2017-07-07 德雷卡通信技术公司 Hydrogen sensor fibre and hydrogen sensor

Similar Documents

Publication Publication Date Title
Villatoro et al. Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre
CN108489901B (en) Optical fiber hydrogen detection system based on novel hydrogen sensitive film
CN103335958B (en) A reusable fiber-optic hydrogen sensor with fast response in cryogenic environment
Esmaeilzadeh et al. Smart textile plasmonic fiber dew sensors
Egami et al. Evanescent-wave spectroscopic fiber optic pH sensor
JPS6166949A (en) hydrogen gas detector
Gill et al. Determination of the refractive indices of gases in the vacuum ultraviolet. II. The Rayleigh scattering method
CN109001155A (en) A kind of humidity measuring method based on low gain low noise optical fiber cavity attenuation and vibration technique
JPS61204545A (en) Detecting photosensor for hydrogen
Maugh Remote Spectrometry with Fiber Optics: The ability of quartz cables to carry an optical signal may engender the next revolution in spectrometry
Saito et al. Optical remote sensing system for hydrocarbon gases using infrared fibers
JPH1096699A (en) Gas detection element and gas-measuring apparatus
Garcia-Ruiz et al. Distributed detection of hydrogen and deuterium diffusion into a single-mode optical fiber with chirped-pulse phase-sensitive optical time-domain reflectometry
CN212083225U (en) Optical fiber gas detection device and optical fiber sensor
US2850640A (en) Chlorine analyzer
US3383515A (en) Dual beam null method and apparatus for determining the concentration of impurities in a sample
CN114935414A (en) Bismuth-erbium co-doped optical fiber point-mode temperature sensor based on rare earth ion fluorescence intensity detection principle
Deaton INSTRUMENTATION AND METHODOLOGY FOR REMOTE FIBER FLUORIMETRY (FLUORESCENCE, FIBER OPTICS, REMOTE SENSING)
Dakin Review of fibre optic gas sensors
JPH0772081A (en) Measuring apparatus for co2 concentration
JP2935247B2 (en) Optical fiber temperature sensor
Kosugi et al. Evaluation of hetero-core fiber SPR sensor with different ionic liquid gel coatings for CO2 detection
RU2133486C1 (en) Method determining dose of ionizing radiation and fiber optical sensor ( variants )
Yang et al. Pt/MOF-5 film-coated optical micro-nano fibre hydrogen sensor with humidity and temperature compensation functions
CN115792746A (en) Temperature-insensitive micro-nano optical fiber magnetic field sensing unit and manufacturing method and application thereof