[go: up one dir, main page]

JPS61204545A - Detecting photosensor for hydrogen - Google Patents

Detecting photosensor for hydrogen

Info

Publication number
JPS61204545A
JPS61204545A JP60044647A JP4464785A JPS61204545A JP S61204545 A JPS61204545 A JP S61204545A JP 60044647 A JP60044647 A JP 60044647A JP 4464785 A JP4464785 A JP 4464785A JP S61204545 A JPS61204545 A JP S61204545A
Authority
JP
Japan
Prior art keywords
light
hydrogen
substrate
light absorption
absorbing layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60044647A
Other languages
Japanese (ja)
Other versions
JPH0223826B2 (en
Inventor
Eiji Sudo
英二 須藤
Koichi Nishizawa
紘一 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60044647A priority Critical patent/JPS61204545A/en
Publication of JPS61204545A publication Critical patent/JPS61204545A/en
Publication of JPH0223826B2 publication Critical patent/JPH0223826B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the concentration of gaseous hydrogen by embedding a light guide in a substrate, forming a light absorbing layer which varies in coefficient of light absorption by reaction on dissociated hydrogen on the surface of the substrate, and providing a dissociative absorbing layer for gaseous hydrogen thereupon. CONSTITUTION:The light guide 2 which is larger in refractive index than the substrate is embedded in one body, and the light absorbing layer 3 made of a dielectric which varies in coefficient of light absorption by reaction on dissociated hydrogen and the adsorbing layer 4 made of a material which dissociate and adsorbs gaseous hydrogen are provided on the surface of the substrate to a sensor. Light from a light source 6 is made incident through one fiber 5A and the quantity of projection light from the other fiber 5B is measured by a photodetector 7. When hydrogen is adsorbed to the surface of the adsorbing layer of the sensor to cause dissociation, generated electrons and protons are received by the light absorbing layer under the adsorbing layer, so that the light absorbing layer increases in coefficient of light absorption. Consequently, the ratio of absorptive attenuation of an evanescent wave from the light guide to the light absorbing layer or light leaking from the light guide by the absorbing layer increases. The increase in coefficient of light absorption is proportional to the concentration of adsorbed gaseous hydrogen, so the concentration of the gaseous hydrogen is known.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は石油精製プラント等において有用な水素を光学
的に検出するセンサーに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sensor for optically detecting hydrogen useful in oil refining plants and the like.

〔従来技術の説明〕[Description of prior art]

水素を検出するセンサーとして従来、第6図に示すよう
に絶縁体基板100上に5n02やZnOなどの酸化物
半導体層10/およびこの半導体層10/上に間隔をお
いて対向させた一対の電極102Av102Bを設け、
裏面側に加熱用ヒーター103と加熱用電極IO’lを
配した半導体センサーiosが知られている。
As shown in FIG. 6, conventional sensors for detecting hydrogen include an oxide semiconductor layer 10 such as 5N02 or ZnO on an insulating substrate 100, and a pair of electrodes placed on the semiconductor layer 10 and facing each other at a distance. 102Av102B is provided,
A semiconductor sensor ios is known in which a heating heater 103 and a heating electrode IO'l are arranged on the back side.

上記の半導体センサー103において、半導体層10/
に水素ガスが化学吸着されると、水素ガスと半導体の間
で一般に電子の授受が行なわれ、その結果半導体層10
/の表面からある厚み範囲にわたってキャリア濃度が増
加し、半導体層10/の電気抵抗が減少して電極102
に、102Bに流れる電流が増加する。また反応速度を
上げるために、基板裏面のヒーター103に通電して基
板100を高温度に保持する。
In the semiconductor sensor 103 described above, the semiconductor layer 10/
When hydrogen gas is chemically adsorbed on the semiconductor layer 10, electrons are generally exchanged between the hydrogen gas and the semiconductor, and as a result, the semiconductor layer 10
The carrier concentration increases over a certain thickness range from the surface of the semiconductor layer 10/, and the electrical resistance of the semiconductor layer 10/ decreases, so that the electrode 102
, the current flowing through 102B increases. Further, in order to increase the reaction speed, electricity is supplied to the heater 103 on the back surface of the substrate to maintain the substrate 100 at a high temperature.

上記の構造のはか、金属ゲートと半導体接合の整流作用
や、MOSFETのゲート作用を水素ガス検知に利用し
たものも知られている。
In addition to the above structure, there are also known devices that utilize the rectifying action of a metal gate and a semiconductor junction, or the gate action of a MOSFET, for detecting hydrogen gas.

この場合は、金属と半導体の間の電子エネルギー準位差
が水素ガスの吸着によって変わることで水素ガス濃度を
測定している。
In this case, the hydrogen gas concentration is measured by changing the electron energy level difference between the metal and the semiconductor due to hydrogen gas adsorption.

〔発明が解決しようとする問題点〕 上述した従来の酸化物半導体を用いた水素ガス検知セン
サーは、常温下では反応速度が遅いため、通常J j 
O”C程度に加熱して使泪しなければならず、加熱用ヒ
ーターの組み込みを必要する。
[Problems to be Solved by the Invention] The conventional hydrogen gas detection sensor using an oxide semiconductor described above has a slow reaction rate at room temperature, and therefore usually J j
It must be heated to about O''C before use, and a heating heater must be installed.

またセンサー表面の酸化や劣化、結晶粒成長や析出が生
じ、経時変化で比較的早期に検出性能が低下する問題が
ある。また、水素ガスのように可燃性、爆発性のあるガ
スに対しては、センサ一部からの配線を防爆化する特別
の工事をしなければならない。さらに、水素ガスに対す
る選択性も悪く、信頼性の高い水素ガス検知センサーは
未だ実用化されていない状況にある。
Additionally, there is the problem that oxidation and deterioration, crystal grain growth, and precipitation occur on the sensor surface, and the detection performance deteriorates relatively quickly due to changes over time. Furthermore, for flammable and explosive gases such as hydrogen gas, special work must be done to make the wiring from part of the sensor explosion-proof. Furthermore, the selectivity for hydrogen gas is poor, and a highly reliable hydrogen gas detection sensor has not yet been put into practical use.

〔問題点を解決する手段〕[Means to solve problems]

基板内の、表面近くまたは表面に一部を露出させて基板
よりも屈折率の犬な光導波路を一体に埋め込み形成し、
この導波路′上の基板表面に、解離水素との反応で光吸
収係数が変化する誘電体から成る光吸収層を設けるとと
もに、この光吸収層上に水素ガスを解離吸着する物質か
ら成る吸着層を設けてセンサーを構成する。
An optical waveguide with a refractive index higher than that of the substrate is integrally embedded near the surface of the substrate or partially exposed on the surface.
A light absorption layer made of a dielectric material whose light absorption coefficient changes upon reaction with dissociated hydrogen is provided on the substrate surface above this waveguide', and an adsorption layer made of a substance that dissociates and adsorbs hydrogen gas is provided on this light absorption layer. to configure the sensor.

そして上記光導波路の両端にそれぞれ光7アイバーを接
続し、一方の7アイバーを通して光源からの光を入射さ
°せ、他方のファイバーからの出射光量を測定する。
Then, seven optical eyebars are connected to both ends of the optical waveguide, and light from a light source is made incident through one of the seven eyebars, and the amount of light emitted from the other fiber is measured.

〔作 用〕[For production]

上記構造のセンサーの吸着層表面に水素が吸着して解離
すると電子、プロトンが発生し、これら電子、プロトン
を受けて吸着層下の光吸収層の光吸収係数が増大する。
When hydrogen is adsorbed on the surface of the adsorption layer of the sensor having the above structure and dissociated, electrons and protons are generated, and upon receiving these electrons and protons, the light absorption coefficient of the light absorption layer under the adsorption layer increases.

この結果、光導波路から光吸収層中に浸み出しているエ
バ不ツセント波あるいは導波路から直接光吸収層中に洩
出している光が上記吸収層で吸収減衰する割合が増大す
る。上記光吸収係数の増加はプロトンの密度すなわち吸
着された水素ガス濃度に比例するので、光導波路からの
出射光量の減少を測定することにより水素ガス濃度を知
ることができる。
As a result, the rate at which evanescent waves leaking from the optical waveguide into the light absorption layer or light leaking directly from the waveguide into the light absorption layer is absorbed and attenuated by the absorption layer increases. Since the increase in the optical absorption coefficient is proportional to the proton density, that is, the concentration of adsorbed hydrogen gas, the hydrogen gas concentration can be determined by measuring the decrease in the amount of light emitted from the optical waveguide.

〔実施例〕〔Example〕

以下本発明を図面に示した実施例に基づいて詳細に説明
する。
The present invention will be described in detail below based on embodiments shown in the drawings.

第1図、第2図においで/は使用波長に対して透明なガ
ラス、プラスチック等からなる基板であり、この基板/
中に光導波路2が基板と一体に埋め込み形成しである。
In Figures 1 and 2, / is a substrate made of glass, plastic, etc. that is transparent to the wavelength used;
An optical waveguide 2 is embedded therein and integrally with the substrate.

この光導波路2は断面が接続されるファイバーのコア径
に略等しい円形で、屈折率が基板よりも大であるととも
に、中心軸上で最大で周辺に向けてバラポリツクに漸減
する分布をもっている。このような屈折率勾配をもった
埋め込み導波路は、ガラス基板の片面に、導波路のパタ
ーンで開口を残したマスキングを施し、上記開口を通し
てタリウムイオン、リチウムイオン等のガラス屈折率増
大に寄与するイオンを基板内に拡散させる。
This optical waveguide 2 has a circular cross section approximately equal to the core diameter of the fiber to be connected, has a refractive index larger than that of the substrate, and has a distribution that is maximum on the central axis and gradually decreases toward the periphery. In order to create such a buried waveguide with a refractive index gradient, one side of the glass substrate is masked with an opening in the waveguide pattern, and through the opening, thallium ions, lithium ions, etc. contribute to the increase in the glass refractive index. Diffusion of ions into the substrate.

上記の第一段イオン交換処理によりマスキング開口直下
の基板内に断面が略半円形の屈折率勾配をもった導波路
が形成される。
By the above-described first stage ion exchange treatment, a waveguide having a substantially semicircular cross section and a refractive index gradient is formed in the substrate directly under the masking opening.

するイオンを、基板両面間に直流電圧を印加しつつ拡散
させる第二段イオン交換処理を施すと、高屈折率イオン
が深部に移動するとともに、上方からの低屈折率イオン
の拡散によって半円形の導波路が断面円形となる。
When a second stage ion exchange process is performed in which ions are diffused while applying a DC voltage between both sides of the substrate, high refractive index ions move deep and low refractive index ions diffuse from above, forming a semicircular shape. The waveguide has a circular cross section.

上記のようにして形成された光導波路2の直上の基板面
/Aには、光吸収層3が設けてあり、さらにこの光吸収
層3上に水素吸着層qが積層形成しである。水素吸着層
lは、水素ガスを吸着解離して電子、プロトンを発生さ
せる物質から成り、光吸収層3は上記の電子、プロトン
を受けて光吸収係数が変化する物質からなる。
A light absorption layer 3 is provided on the substrate surface /A directly above the optical waveguide 2 formed as described above, and a hydrogen adsorption layer q is further laminated on this light absorption layer 3. The hydrogen adsorption layer 1 is made of a substance that adsorbs and dissociates hydrogen gas to generate electrons and protons, and the light absorption layer 3 is made of a substance whose light absorption coefficient changes upon reception of the electrons and protons.

上記の吸着層tの材質としてはパラジウム(Pa)ある
いは白金(Pt)が好適である。
Palladium (Pa) or platinum (Pt) is suitable as the material for the adsorption layer t.

また光吸収層3を彫物する物質としてはWO3が好適で
あり、その他一般にエレクトロクロミックを示す無機材
料、例z Gf M2O3+V2O5+ TlO2yI
r(OH)n、Rh2O3・xH2Oなどが使用可能で
ある。
In addition, WO3 is suitable as a material for engraving the light absorption layer 3, and other inorganic materials that generally exhibit electrochromic properties, such as Gf M2O3 + V2O5 + TlO2yI
r(OH)n, Rh2O3.xH2O, etc. can be used.

また光吸収層3は有機材料で構成してもよく、例えばヘ
ブエルビオロゲン、シアノフェニールピオロゲン、コバ
ルトピリジル錯体、ポリマー化テトラ天オフルバレン(
TTF)、ルテシウムジフタロシアニンなどが使用でき
る。
Further, the light absorption layer 3 may be composed of an organic material, such as hebyl viologen, cyanophenyl pyrogen, cobalt pyridyl complex, polymerized tetra-opfulvalene (
TTF), lutetium diphthalocyanine, etc. can be used.

上記のセンサーの導波路2の一端に光ファイバーiを接
続するとともにファイバー5Aの他端を光源乙に接続し
、また導波路2の他端にも光7アイバー5Bを接続する
とともにその他端をフォトダイオード等の光検出器7に
接続して受光量を測定する。上記構造のセンサー10の
Pd膜グに水素ガスが接触するとPd膜ψの水素還元作
用によって電子、プロトンが発生し、これらが例えばW
O3から成る光吸収層3に注入されて下記の反応を生じ
る。
An optical fiber i is connected to one end of the waveguide 2 of the sensor described above, and the other end of the fiber 5A is connected to a light source B. An optical fiber 5B is also connected to the other end of the waveguide 2, and the other end is connected to a photodiode. The amount of light received is measured by connecting it to a photodetector 7 such as the following. When hydrogen gas comes into contact with the Pd film of the sensor 10 having the above structure, electrons and protons are generated by the hydrogen reduction action of the Pd film ψ.
The light is injected into the light absorption layer 3 made of O3, and the following reaction occurs.

WO3+xH十十xe−→HxWO3(1)上記反応が
進行するとWO3の光吸収層3が着色して光吸収係数が
増加する。(1)式左辺のプロトンと電子を与えるのが
Pd膜lによる水素ガスの還元作用であり、光吸収係数
の増加はプロトンの密度、言い換えれば吸着された水素
ガス濃度に比例することになる。
WO3+xH10xe-→HxWO3 (1) As the above reaction progresses, the light absorption layer 3 of WO3 is colored and the light absorption coefficient increases. It is the reduction action of hydrogen gas by the Pd film l that provides the protons and electrons on the left side of equation (1), and the increase in the light absorption coefficient is proportional to the density of protons, in other words, the concentration of adsorbed hydrogen gas.

このようにしてセンサーの設置箇所に存在する水素ガス
の濃度に応じて光吸収層3が着色し、導波路2から浸出
してこの吸収層3中を透過するエパネッセント波等の光
が吸収されて減衰し、光導波路2から出射する光量が減
少することになるの紙 で、この受光量を測定すれば、概知の水素ガス濃度と受
光量との関係を測定して作成した検量線から水素ガス濃
度を知ることができる。
In this way, the light absorption layer 3 is colored according to the concentration of hydrogen gas present at the location where the sensor is installed, and light such as evanescent waves that leaks from the waveguide 2 and passes through the absorption layer 3 is absorbed. If you measure the amount of light received using a piece of paper that attenuates and reduces the amount of light emitted from the optical waveguide 2, the hydrogen You can know the gas concentration.

次に具体的な数値例を示す。Next, a specific numerical example is shown.

基板/としてガラス板を使用し、前述した二段階イオン
交換法を用いて基板/内に、断面がほぼ円形の屈折率勾
配型の導波路コを埋め込み形成した。
A glass plate was used as the substrate, and a refractive index gradient waveguide having a substantially circular cross section was embedded in the substrate using the two-step ion exchange method described above.

次に、基板lの表面に光吸収層3として酸化タングステ
ン(WO3)の薄膜を1μmの厚みで真空蒸着した。W
O3は純度99.99%のペレットをアルミナでコート
されたW線ルツボを用いて抵抗加熱蒸着した。蒸着条件
は、酸素圧力/X/(7−’ TOrr 、イオン化用
高周波電力200W、イオン加速電圧−5OOVとした
。蒸着時の基板温度は3SO″Cであり、得られたWO
3膜は多結晶になっており、無色透明であった。さらに
、このWO3膜の上に水素吸着層qとしてパラジウム(
Pa)膜を10oXの厚さに電子線加熱蒸着法で付着さ
せた。
Next, a thin film of tungsten oxide (WO3) was vacuum-deposited on the surface of the substrate 1 as a light absorption layer 3 to a thickness of 1 μm. W
O3 was deposited by resistance heating using a W-wire crucible coated with alumina from pellets with a purity of 99.99%. The deposition conditions were: oxygen pressure /
The three films were polycrystalline and colorless and transparent. Furthermore, palladium (
The Pa) film was deposited by electron beam thermal evaporation to a thickness of 100X.

上記のようにして作製したセンサーを検出子べき雰囲気
中に設置し、導波路に接続した光ファイバーを通じてL
EDからの光(波長ハ3μm)を入光させ、出力側には
PIN 7オトダイオードを配置して出力光量を検出し
、予め作成しである検量線から水素濃度を求めたところ
、110−2000ppの水素ガス濃度範囲で±j%の
検出精度が得られた。
The sensor fabricated as described above is installed in the atmosphere where the detector is to be detected, and the light is transmitted through an optical fiber connected to a waveguide.
When light from the ED (wavelength: 3 μm) was input, a PIN 7 photodiode was placed on the output side to detect the output light amount, and the hydrogen concentration was determined from a pre-prepared calibration curve, it was 110-2000pp. A detection accuracy of ±j% was obtained over a hydrogen gas concentration range of .

以上説明した数値例では波長が八3μmの赤外光上用い
たが、He −Ne レーザ(波長o、g32rμm)
や半導体レーザ(波長O6ざspm)を光源に用いても
同様の効果をもつ。
In the numerical example explained above, infrared light with a wavelength of 83 μm was used, but He-Ne laser (wavelength o, g 32 rμm) was used.
A similar effect can be obtained even if a semiconductor laser (wavelength: O6 spm) is used as a light source.

これらの波長領域を用いる場合はWO3としてはアモル
ファスの方が良い。アモルファスのWO3ヲつくる方法
としては、蒸着時の基板温度を2jO”C以下にすれば
よい。
When using these wavelength regions, it is better to use amorphous as WO3. A method for producing amorphous WO3 is to lower the substrate temperature during vapor deposition to 2jO''C or less.

第1図、第一図に示した実施例では円形断面の光導波路
2が基板l内に完全に埋め込まれた構造としたが、第3
図に示すように、導波路−の頂部2Aを基板/の表面/
Aに露出させてこの露出部に接して光吸収層3を設けて
もよい。さらに、第4図に示すように基板面に露出させ
た光導波路λと光吸収層3との間に、バッフ7層として
薄い透明膜lを付加してもよい。さらに光導波路2はイ
オン交換法で形成する以外に第5図に示すように、基板
/に、光導波路2としての高屈折率コア部/2と低屈折
率クラッド層13をもつ光ファイバー11を埋め込み、
クラッド層13をコア部12の近傍まで、またはコア部
/2まで基板lと面一に研磨してこの上に所定の光吸収
層3および水素吸着層弘を設けてもよい。また光導波路
2の断面はファイバーとの結合損失を小さくする上で断
面円形が望ましいが場合によっては断面矩形であっても
よい。
In the embodiment shown in FIGS. 1 and 1, the optical waveguide 2 with a circular cross section is completely embedded in the substrate l,
As shown in the figure, the top 2A of the waveguide is connected to the surface of the substrate.
A light absorption layer 3 may be provided in contact with this exposed portion. Furthermore, as shown in FIG. 4, a thin transparent film 1 may be added as a buffer 7 layer between the optical waveguide λ exposed on the substrate surface and the light absorption layer 3. Furthermore, in addition to forming the optical waveguide 2 by the ion exchange method, as shown in FIG. ,
The cladding layer 13 may be polished flush with the substrate 1 to the vicinity of the core portion 12 or to the core portion /2, and a predetermined light absorption layer 3 and a hydrogen adsorption layer may be provided thereon. Further, the cross section of the optical waveguide 2 is preferably circular in order to reduce the coupling loss with the fiber, but may be rectangular in some cases.

(効 果〕 本発明によれば、水素ガスをすべて光の信号だけで検知
できるだけでなく、小型化、高信頼化、耐熱、耐電磁誘
導、耐火、防爆など光のもつすべての利点を生かすこと
ができる。石油精製などのプラントでは、石油製品の改
質忙水素ガスを多用しており、安全で高信頼性をもつリ
モートセンシングの要求が高い。しかも光7アイパによ
るローカルループが計測システムの中にも導入されてき
ており、信号伝送という意味では情報も測定データも同
等に扱われる傾向にある。したがって光信号を電気信号
に変換することなく、光だけでセンシングできる技術は
上述の光フアイバローカルループとの整合性も極めてよ
い。
(Effects) According to the present invention, not only can hydrogen gas be detected using only optical signals, but also all the advantages of light such as miniaturization, high reliability, heat resistance, electromagnetic induction resistance, fire resistance, and explosion protection can be utilized. In oil refining plants and other plants, hydrogen gas is used extensively for reforming petroleum products, and there is a high demand for safe and highly reliable remote sensing.Moreover, the local loop using Hikari 7 AIPA can be used in the measurement system. In the sense of signal transmission, information and measurement data tend to be treated equally.Therefore, the technology that allows sensing using only light without converting optical signals into electrical signals is based on the optical fiber local technology described above. The compatibility with the loop is also very good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一実施例を示す断面図、第2図は同
正面図、第3図は本発明の第2実施例を示す正面図、第
ψ図は本発明の第3実施例を示す正面図、第5図は本発
明の第を実施例を示す断面図、第6図は従来のセンサー
を示す斜視図である。
Fig. 1 is a sectional view showing a first embodiment of the present invention, Fig. 2 is a front view thereof, Fig. 3 is a front view showing a second embodiment of the invention, and Fig. ψ is a sectional view showing a third embodiment of the invention. FIG. 5 is a front view showing an example, FIG. 5 is a sectional view showing a second embodiment of the present invention, and FIG. 6 is a perspective view showing a conventional sensor.

Claims (6)

【特許請求の範囲】[Claims] (1)基板内の、表面近くまたは表面に一部を露出させ
て基板よりも屈折率の大な光導波路を一体に埋め込み形
成し、この導波路上の基板表面に、解離水素との反応で
光吸収係数が変化する誘電体から成る光吸収層を設ける
とともに、該光吸収層上に水素ガスを解離吸着する物質
から成る吸着層を設けたことを特徴とする水素検知光セ
ンサー。
(1) An optical waveguide with a higher refractive index than the substrate is integrally embedded in the substrate near the surface or partially exposed on the surface, and the substrate surface on the waveguide is formed by a reaction with dissociated hydrogen. 1. A hydrogen-detecting optical sensor, comprising: a light-absorbing layer made of a dielectric whose light absorption coefficient changes; and an adsorption layer made of a substance that dissociates and adsorbs hydrogen gas on the light-absorbing layer.
(2)特許請求の範囲第1項において、前記吸着層はパ
ラジウム(Pd)である水素検知光センサー。
(2) The hydrogen detection optical sensor according to claim 1, wherein the adsorption layer is palladium (Pd).
(3)特許請求の範囲第1項において、前記吸着層は白
金(Pt)である水素検知光センサー。
(3) The hydrogen detection optical sensor according to claim 1, wherein the adsorption layer is platinum (Pt).
(4)特許請求の範囲第1項において、光吸収層をWO
_3で形成した水素検知光センサー。
(4) In claim 1, the light absorption layer is made of WO.
Hydrogen detection optical sensor formed with _3.
(5)特許請求の範囲第1項において、光吸収層を、M
oO_3、V_2O_5、TiO_2、Ir(OH)_
n、Rh_2O_3・xH_2Oのうちから選ばれた少
なくとも一種で形成した水素検知光センサー。
(5) In claim 1, the light absorption layer is M
oO_3, V_2O_5, TiO_2, Ir(OH)_
A hydrogen detection optical sensor formed of at least one selected from n, Rh_2O_3 and xH_2O.
(6)特許請求の範囲第1項において、光吸収層を、ヘ
プエルビオロゲン、シアノフェニールピオロゲン、コバ
ルトピリジル錯体、ポリマー化テトラチオフルバレン(
TTF)、ルテシウムジフタロシアニンのうちから選ば
れた少なくとも一種の有機材料で形成した水素検知光セ
ンサー。
(6) In claim 1, the light absorption layer includes hep-er viologen, cyanophenyl pyrogen, cobalt pyridyl complex, polymerized tetrathiofulvalene (
A hydrogen detection optical sensor formed of at least one organic material selected from TTF) and lutetium diphthalocyanine.
JP60044647A 1985-03-08 1985-03-08 Detecting photosensor for hydrogen Granted JPS61204545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60044647A JPS61204545A (en) 1985-03-08 1985-03-08 Detecting photosensor for hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60044647A JPS61204545A (en) 1985-03-08 1985-03-08 Detecting photosensor for hydrogen

Publications (2)

Publication Number Publication Date
JPS61204545A true JPS61204545A (en) 1986-09-10
JPH0223826B2 JPH0223826B2 (en) 1990-05-25

Family

ID=12697231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60044647A Granted JPS61204545A (en) 1985-03-08 1985-03-08 Detecting photosensor for hydrogen

Country Status (1)

Country Link
JP (1) JPS61204545A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307335A (en) * 1987-05-22 1988-12-15 アメリカン テレフォン アンド テレグラフ カムパニー Wide-range sensor and wide-range detection method and apparatus
US5733506A (en) * 1989-11-08 1998-03-31 British Technology Group, Ltd. Gas sensors and compounds suitable therefor
GB2408796A (en) * 2003-12-01 2005-06-08 Stephen Richard Elliott Raman gain or loss effect optical sensor chip
JP2007071866A (en) * 2005-08-10 2007-03-22 Tokyo Univ Of Science Thin film for gas sensor, element body for gas sensor, and method for manufacturing element body for gas sensor
KR100842119B1 (en) * 2006-12-04 2008-06-30 김광택 Optical fiber hydrogen sensor and hydrogen concentration measuring device using same
JP2008286542A (en) * 2007-05-15 2008-11-27 Japan Atomic Energy Agency Hydrogen gas detecting membrane
JP2011521278A (en) * 2008-04-18 2011-07-21 ソニー デーアーデーツェー オーストリア アクチェンゲゼルシャフト Optical waveguide manufacturing method, optical waveguide and sensor arrangement
CN103308451A (en) * 2013-05-20 2013-09-18 重庆科技学院 Micro optical fiber hydrogen sensing device and measurement method
WO2015152712A1 (en) 2014-03-31 2015-10-08 Technische Universiteit Delft Single element hydrogen sensing material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209149A (en) * 1984-03-31 1985-10-21 Nippon Sheet Glass Co Ltd Hydrogen detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209149A (en) * 1984-03-31 1985-10-21 Nippon Sheet Glass Co Ltd Hydrogen detector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307335A (en) * 1987-05-22 1988-12-15 アメリカン テレフォン アンド テレグラフ カムパニー Wide-range sensor and wide-range detection method and apparatus
US5733506A (en) * 1989-11-08 1998-03-31 British Technology Group, Ltd. Gas sensors and compounds suitable therefor
GB2408796A (en) * 2003-12-01 2005-06-08 Stephen Richard Elliott Raman gain or loss effect optical sensor chip
JP2007071866A (en) * 2005-08-10 2007-03-22 Tokyo Univ Of Science Thin film for gas sensor, element body for gas sensor, and method for manufacturing element body for gas sensor
KR100842119B1 (en) * 2006-12-04 2008-06-30 김광택 Optical fiber hydrogen sensor and hydrogen concentration measuring device using same
JP2008286542A (en) * 2007-05-15 2008-11-27 Japan Atomic Energy Agency Hydrogen gas detecting membrane
JP2011521278A (en) * 2008-04-18 2011-07-21 ソニー デーアーデーツェー オーストリア アクチェンゲゼルシャフト Optical waveguide manufacturing method, optical waveguide and sensor arrangement
US8811790B2 (en) 2008-04-18 2014-08-19 Sony Dadc Austria Ag Method for manufacturing an optical waveguide, optical waveguide, and sensor arrangement
CN103308451A (en) * 2013-05-20 2013-09-18 重庆科技学院 Micro optical fiber hydrogen sensing device and measurement method
WO2015152712A1 (en) 2014-03-31 2015-10-08 Technische Universiteit Delft Single element hydrogen sensing material
NL2012534A (en) * 2014-03-31 2016-01-08 Univ Delft Tech Single element hydrogen sensing material, based on hafnium.

Also Published As

Publication number Publication date
JPH0223826B2 (en) 1990-05-25

Similar Documents

Publication Publication Date Title
US5436167A (en) Fiber optics gas sensor
Ito et al. Hydrogen detection based on coloration of anodic tungsten oxide film
JPH0367218B2 (en)
Villatoro et al. In-line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers
Watanabe et al. A fiber-optic hydrogen gas sensor with low propagation loss
Devendiran et al. Design of aluminium oxide (Al2O3) fiber optic gas sensor based on detection of refracted light in evanescent mode from the side-polished modified clad region
JP5540248B2 (en) Method for producing hydrogen-sensitive membrane
JPS61204545A (en) Detecting photosensor for hydrogen
CN108489901B (en) Optical fiber hydrogen detection system based on novel hydrogen sensitive film
Wang et al. Performance-enhanced optical fiber hydrogen sensors based on WO3-Pd2Pt-Pt composite film with controlled optical heating
Eguchi Optical gas sensors
JPH05196569A (en) Hydrogen sensor
JP5152797B2 (en) Method for producing platinum / tungsten oxide hydrogen-sensitive film
JPH0513458B2 (en)
JPH0210374B2 (en)
JPS60209149A (en) Hydrogen detector
JPH0210375B2 (en)
JPH0481738B2 (en)
JPS61201140A (en) Hydrogen detecting optical sensor
JPH1096699A (en) Gas detection element and gas-measuring apparatus
CN106769890B (en) A kind of optical fiber methane sensor based on graphene sensitization and its preparation method
JPS61201141A (en) Hydrogen detecting optical sensor
JPS6250643A (en) Humidity sensor
Okazaki et al. Development of Fiber-Optic Hydrogen Sensor Using Platinum-Supported Tungsten Trioxide-Silica Composite Film
Stephens et al. Long path length absorption measurements in thin dielectric films

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term