[go: up one dir, main page]

JPS6163062A - field effect transistor - Google Patents

field effect transistor

Info

Publication number
JPS6163062A
JPS6163062A JP59184142A JP18414284A JPS6163062A JP S6163062 A JPS6163062 A JP S6163062A JP 59184142 A JP59184142 A JP 59184142A JP 18414284 A JP18414284 A JP 18414284A JP S6163062 A JPS6163062 A JP S6163062A
Authority
JP
Japan
Prior art keywords
gate
layer
pad
effect transistor
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59184142A
Other languages
Japanese (ja)
Inventor
Yasoo Harada
原田 八十雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59184142A priority Critical patent/JPS6163062A/en
Publication of JPS6163062A publication Critical patent/JPS6163062A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To contrive to reduce the gate resistance and the capacity between the source and the gate by a method wherein one electrode pad is disposed on the surface of a recessed part, by which the active layer is isolated on both sides of the right and left, and plural gate electrodes are respectively disposed toward each active layer on both sides of the right and left from this pad. CONSTITUTION:A buffer layer 2 with a low carrier concentration is deposited on a semiconductor substrate 1 and an active layer 3 is deposited thereon. Each recessed part 7 is one that makes the layer 3 isolate on both sides of the left and right and the recessed parts 7 are provided in such a way as to reach the layer 2. gate electrodes 51a and 52a are both disposed on a region of the layer 3, where are held between a source electrode 4a and a drain electrode 6a, and the electrodes 51a and 52a are both connected to one bonding pad 9 for gate electrode, which is arranged on the surface of the layer 2 in the recessed part 7. This pad 9 is connected to gate electrodes 51b and 52b, which are provided on an active layer 3b on the right side of the pad 9, in the same manner. The plural gate electrodes are respectively disposed in an isolated condition on both sides of the right and left to the pad 9 in such a way, and at the same time, the pad 9 is disposed on the layer 2 with a low carrier concentration only one in number. As a result, the gate resistance and the capacity between the source and the gate can be reduced.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は化合物半纏体MInBFET(Metal!8
emicondutor F’ie、’d Effe(
Jt Transiator)4の′4界効呆トランジ
スタに関するものである。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a compound semi-integrated MInBFET (Metal!8
emiconductor F'ie,'d Effe(
This relates to the '4 field effect transistor of Jt Transiator) 4.

(0)  従来の技術 この種の電界効果トランジスタとくに()aAsFET
の最小雑音指数(NFmin)は以丁の式で示される。
(0) Conventional technology This type of field effect transistor, especially ()aAsFET
The minimum noise figure (NFmin) of is expressed by the following formula.

NFm1n−1+に+−f−OyRp了/1) ynこ
こで、Klは定紋、fは動作周波a%aysはゲート・
ソース間客観、F#はゲート金属抵抗、R8はソース・
ゲート間抵抗1gmは相互コンダクタンスである。Ra
ymond  S、Pen/eeJy著Miorowa
ve Pie/d−Effect Transisto
r−TheOr7+DeSIPn and AppI!
10ations’(RE8RROH8TUDI18 
PRFi88゜1982q(H:@ ) り小惟音指at小さくするためのプロセス及びパターン
設計の1つとしてゲート金α低抗Rfを小さくするため
にゲートを二同数本(例えば4本)で構成することが知
られている。第3図と第4図は従来の典型的な、;界効
果トラン1ンスタの平面囚とB −B’iMt面7に示
すものである。化合物半導体材料(GへAs)である光
絶縁性基板(0)の上にギヤ1)了濃度の小さいバッフ
ァ層(Blを介してメサ4造の動作層(El t−備え
て)す、この動作j脅TEIの表面上VCは3分割され
ているソース電極r81 )(S2)(35)と、4分
割されているゲート4極(G+ )(G2 )(Gs)
(G4)と、2分割されているドレイン電極(D+ 1
(Dg )とを備えている。2つのゲート電極(G1)
(Gt )と〔G5)(Oa)はそれぞれバッファ層(
Bl上に配備した2つのポンディングパッド(PI 1
(Pz )に接続され、又それぞれ分離されて論るソー
ス・ゲート、ドレイン各電極はケーシングの際それぞれ
1つのソース、ゲート、ドレインリードにまとめられる
にの場合、ゲート金属抵抗Ryは、ゲート成極が4分割
されていて入力信号に対して並列に配されることになり
、小さくされる。従い、最小雑音指数を小さくすること
ができる。ゲートパターン形成においてもう1つ重要な
ことはゲート・ソース問答30Psを小さくする工夫で
ある。
NFm1n-1++-f-OyRp completion/1) ynHere, Kl is the fixed frequency, f is the operating frequency a%ays is the gate frequency.
Source-to-source objective, F# is gate metal resistance, R8 is source-to-source
The inter-gate resistance of 1 gm is mutual conductance. Ra
Miorowa by ymond S, Pen/eeJy
ve Pie/d-Effect Transisto
r-TheOr7+DeSIPn and AppI!
10ations'(RE8RROH8TUDI18
PRFi88゜1982q (H:@) One of the process and pattern designs for reducing the gate resistance is configuring two or more gates (for example, four) in order to reduce the gate resistance Rf. It is known. FIGS. 3 and 4 show a typical conventional field effect transistor in a plane and a B-B'iMt plane 7. On the photo-insulating substrate (0), which is a compound semiconductor material (G to As), there is a buffer layer (with a gear 1) with a small concentration of mesa (with a mesa 4 structure) through a buffer layer (Bl). On the surface of the operation j threat TEI, VC is divided into three source electrodes (r81) (S2) (35) and four gate electrodes (G+) (G2) (Gs) which are divided into four.
(G4) and the drain electrode (D+ 1
(Dg). Two gate electrodes (G1)
(Gt) and [G5) (Oa) are the buffer layer (
Two bonding pads (PI 1
When the source, gate, and drain electrodes, which are connected to (Pz ) and are separately discussed, are combined into one source, gate, and drain lead in the casing, the gate metal resistance Ry is is divided into four parts and placed in parallel with the input signal, making it smaller. Therefore, the minimum noise figure can be reduced. Another important thing in gate pattern formation is the idea of reducing the gate/source question 30Ps.

そのためゲート長(ゲート1)mの、ソース・ドレイン
を結ぶ方向の幅)を1μ零以下に短縮することが重要で
既に実施されている。更にこの容量CIsは、ソース・
ドレイン間上の動作層に形成されるシーツトキゲート電
他領域と、該動作層を除去した領域(バッファ層)上に
形成される該ゲート電極用のポンディングパッド領域の
両方にて発生する。一般にこの容fIkCpsはゲート
電極或いはパッド領域t−構成する金属の面積及び該金
属下のキャリア濃度で決まる0面積が小さくまたキャリ
ア濃度が低いときにこのゲート・ソース間容量0fsf
小さくすることができる。上記パッド領域における容量
成分はキャリア濃度が動作層のキャリア濃度に比べて少
なくとも3〜4桁低いのであま9大きな値にならず0.
10〜0.20pF程度であるからゲート電極の面積が
大きく該電極下の容量成分が大きい場合には問題になら
ない。しかし、ゲート長が十分小さく(例えばα5μm
以下)なってゲート電極の面積が小さくなると該ゲート
ー極下の容量成分が著しく小さくなり(例えば、動作層
のキャリア濃度が2 X I Q”fi”’−’でゲー
ト長がo、 s 、a mの場合、約[1)5pF’に
なる)、上記パッド領域の容量成分に漸近してくる。従
って。
Therefore, it is important to shorten the gate length (width of gate 1 m in the direction connecting the source and drain) to 1 micron or less, and this has already been done. Furthermore, this capacitance CIs is
This phenomenon occurs both in the sheet gate electrode region formed in the active layer between the drains and in the bonding pad region for the gate electrode formed on the region (buffer layer) from which the active layer is removed. Generally, this capacitance fIkCps is determined by the area of the gate electrode or pad region t, the area of the metal constituting it, and the carrier concentration under the metal.When the 0 area is small and the carrier concentration is low, this gate-source capacitance 0fsf
Can be made smaller. The carrier concentration of the capacitive component in the pad region is at least 3 to 4 orders of magnitude lower than that of the active layer, so it does not reach a value much larger than 0.0.
Since it is about 10 to 0.20 pF, it does not pose a problem if the gate electrode has a large area and the capacitance component under the electrode is large. However, the gate length is sufficiently small (e.g. α5 μm)
(below) and the area of the gate electrode becomes smaller, the capacitance component below the gate becomes significantly smaller (for example, when the carrier concentration in the active layer is 2 m, it becomes approximately [1) 5 pF'), and approaches the capacitance component of the pad region. Therefore.

最小雑音指数をより低減するにはこのパッド領域の容量
成分を更に減少する必要がある。パッド領域の最小面積
はボンディング条件で制約を受は現状では約5oxso
μ〃lである。
In order to further reduce the minimum noise figure, it is necessary to further reduce the capacitive component of this pad area. The minimum area of the pad area is limited by bonding conditions and is currently approximately 5 oxso.
It is μ〃l.

シ1 発明7:J柱γ決しようとする問題点上述の従来
例ではゲート電極を4分割しているのでゲート全屈抵抗
Ryの低減化に寄与できる反面、ゲート4極用のポンデ
ィングパッド領域を2個所に分散配置する必要がありゲ
ートソース間容量Oy3を低減化するのに限度があった
1本発明はゲート金属抵抗Rf及びゲート・ソーヌ問答
量ヲ何九も低下てきる新規構成の電界効果トランジスタ
t−提供しようとするものであろうに)問題点を解決す
るための手段 本発明は動作層を左右に分離する凹部の表面上に1つの
電極パッドを配置し、該成極パッドから前記各動作td
に回けてそれぞれ複数のゲート電極を配置してなる1界
効果トランジスタである。
C1 Invention 7: Problems trying to resolve J column γ In the conventional example described above, the gate electrode is divided into four parts, which can contribute to reducing the gate total bending resistance Ry, but on the other hand, the bonding pad area for the gate quadrupole There was a limit to reducing the gate-source capacitance Oy3 because it required dispersion of the gate-source capacitance Oy3 in two locations.1 The present invention uses a new electric field configuration that reduces the gate metal resistance Rf and the gate-to-saune response rate by nine times. Means for Solving the Problems of Effect Transistor T-Means for Solving the Problems The present invention provides an electrode pad disposed on the surface of a recess that separates the active layer into left and right sides, and Each of the above operations td
This is a single field effect transistor in which a plurality of gate electrodes are arranged in each direction.

動作層は化合物半導体材料(GaA3 )よりなる半絶
縁性基板(抵抗率P−〜10Ω−1上に配備したキャリ
ア濃度が5 X i Q”3−’以下のバッファ層の上
に形成されている。又、複数のゲート1極は左右各動作
層に付き2本宛、計4本で構成されている。動作層はキ
ャリア濃度が1〜3X10瀉−5のGaAs虐でありゲ
ート電極はそのゲート電極特性がシ冒ットキパリア型で
あることを特徴とする。
The active layer is formed on a semi-insulating substrate (resistivity P-~10Ω-1) made of a compound semiconductor material (GaA3) and a buffer layer having a carrier concentration of 5XiQ"3-' or less. In addition, the plurality of gate poles is composed of four gate poles, two for each of the left and right active layers.The active layer is made of GaAs with a carrier concentration of 1 to 3×10 -5, and the gate electrode is the gate electrode. It is characterized by its electrode characteristics being of the Schottkyparian type.

(ホ)作 用 本発明はMESF’ETに訃いてゲート4項を複数本に
分割しているのでゲート金属抵抗R2を低減させること
ができ最小雑音指数の低減に寄与する。圭た、これら各
ゲート訂i外部のゲート用す−ドVC後続するためのゲ
ート市極用ボンデインクハツトを、キャリア儂度が小さ
いパラ2)層上4て1つだけ配備すれば足りるのでゲー
トソース91トダ看Cps金小さくすることができ、最
小維音指数金Aつそう小さくすることができる。
(E) Function The present invention differs from the MESF'ET by dividing the gate 4 into a plurality of parts, so that the gate metal resistance R2 can be reduced, contributing to a reduction in the minimum noise figure. In addition, it is sufficient to provide only one bonding cap for the gate terminal for the subsequent gate VC for each of these gates on the layer 2) with a small carrier intensity, so the gate Source 91 Toda Cps gold can be made smaller, and the minimum frequency index gold A can be made much smaller.

N −A 施 例 ;X1Eコは本発明の1界効果トランジスタの部分平面
図、J2図は、g1図中のA−に断面図である。図にお
いて(1)は辛抱4性基板、(2)寸バッファr、1.
+31rj動1乍ノ3. (41(51t(31r憧そ
れぞれソース、ゲート、ドレイン電極である。
N-A Example: X1E is a partial plan view of a single field effect transistor of the present invention, and Figure J2 is a cross-sectional view taken at A- in Figure G1. In the figure, (1) is a 4-dimensional substrate, (2) a buffer r, 1.
+31rj motion 1 乍ノ3. (41 (51t) (31r) are the source, gate, and drain electrodes, respectively.

半絶縁性基板+1)は()aAs化合物半導体(抵抗率
アが10 Ω1程度までのもの)で1成されている。バ
ッファJf2)はこの半絶縁性基板(1)の上にキャリ
ア7.5rl fnlが5 X I Q′30−’  
と少ないGaAsを厚さくtl)が2〜3μmとなるよ
うに堆積されてなるbのである。動作層1.1)はパラ
フチ層(2+の上にキャリアIa 度(nlが1〜3x
10  n  であるcaxssを厚さくtl)が0.
15〜150μ肩となるように堆!資されて構成されて
hろ。本実晦例とVよ別にこの動作層の上VCざら−7
こキャリア濃度がl X i Q18f:’18−s以
−b17)n+AJt堆柘してもより。
The semi-insulating substrate +1) is made of an aAs compound semiconductor (with a resistivity of up to about 10 Ω1). Buffer Jf2) has carrier 7.5rl fnl on this semi-insulating substrate (1).
It is formed by depositing a small amount of GaAs (tl) to a thickness of 2 to 3 μm. The active layer 1.1) has a carrier Ia degree (nl is 1 to 3x
caxss with a thickness of 10 n and a thickness tl) of 0.
Lay it out so that it has a shoulder height of 15 to 150 μm! It will be constructed and contributed. Apart from this example and V, there is a VC on this operating layer -7
Even if the carrier concentration is lXiQ18f:'18-s-b17)n+AJt.

各堆積法としでは、2相法でのエピタキシャル成長法、
イオン注入法1分子4エビクキシνル(!14Bg)法
などが1用できる。
Each deposition method includes two-phase epitaxial growth method,
An ion implantation method such as a 1 molecule 4 electron injection method (!14Bg) can be used.

凹部(7)は動作iT4+、(Iを左右に分4するもの
でl:にさは図示の如くバッファ層(2)にさするよう
に設けられてhる・左側の動作lA(3a )と右側の
動作層(3b)の外側にはソースとドレインを分虐する
凹所「81(81が設けられており、この凹所もバッフ
ァta (2)に達するように構成されている。ソース
、ゲート、ドレイン各二極(,41+51+61は左右
各動作層(3a)(5b)上に対称的に配置されており
、以ド説明の便宜上、左偵1!の動作層(6a)上の各
rよi(添字a分付す。閥字すは右側の対応要於を示す
)について説明する。ソース1極(4a)は凹所(8)
tとプ囲むようにC字状に形成されてかり、このソース
αiの口縁(41a)(a2a)け上紀動作周(5a)
の上下位置にそtLぞれ対向配置澄されている。ドレイ
ン4極(6a)はこの口縁(41pi)(A2pl )
に挾まれるf!h作層(3a]上の中央部に図示の如く
ソース電極(4a)に対する対向口@(61al(,6
2a)f7I:持つように配置されている。ソース’I
ll愼(Aa)及びドレイン(巳(6a)は動作層(3
a)K対してオーミック特性を示す金4たとえばAu−
Cu8合金て構成されている。
The recess (7) divides the operation iT4+ (I into left and right parts), and the recess (7) is provided so as to touch the buffer layer (2) as shown in the figure. A recess 81 (81) is provided outside the right active layer (3b) to separate the source and drain, and this recess is also configured to reach the buffer ta (2). The gate and drain two poles (,41+51+61 are arranged symmetrically on the left and right active layers (3a) and (5b). Let's explain about yoi (subscript a is added. Subscript s indicates the corresponding point on the right side).The source 1 pole (4a) is in the recess (8)
It is formed in a C-shape surrounding the source αi (41a), (a2a) and the Johannian movement period (5a).
They are arranged opposite each other at the upper and lower positions of the upper and lower positions. The drain 4 poles (6a) are connected to this lip (41pi) (A2pl)
F! As shown in the figure, there is an opening facing the source electrode (4a) @(61al(,6
2a) f7I: Arranged to hold. Source'I
ll (Aa) and drain (6a) are active layer (3
a) Gold 4, which exhibits ohmic properties with respect to K, for example, Au-
It is made of Cu8 alloy.

ゲート:Il、極(51a ) (52a ) Liソ
fLソfL’/−”R,% (A a I FILびド
レイ:/1jiJ(6a)で挾まれる頭載の動作層上に
配備されており、各ゲート1項(51a)(52a)は
凹部(7)内のパラフチ層(2)表面上に配設してなる
1つのゲート電極用ポンディングパッド19)に連絡さ
れている。各ゲート・よ極(51a)(52a)けその
電碩金項が動作層(3a)に対してショットキバリア特
性を呈するもの例えばAI!で構成されている。
Gate: Il, pole (51a) (52a) LisofLsofL'/-"R,% (A a I FIL and Dray: /1jiJ (6a) Each gate 1 (51a) (52a) is connected to one gate electrode bonding pad 19) arranged on the surface of the para-edge layer (2) in the recess (7). - The positive electrodes (51a) and (52a) are made of, for example, AI!, in which the conductive metal element exhibits a Schottky barrier property with respect to the active layer (3a).

上記パッド(9)は右側の・動作層(3b)に配置イ9
シ九ゲート4へ(51b1(52b)とも疫、烙してお
り、1つのパッド(9)が左右各動作層(5a)(5b
1に向けてそルぞれ複a(実施例では2本)のゲート電
極を配備するようにしてAる。
The above pad (9) is placed on the right side active layer (3b).
To the gate 4 (51b1 (52b) are both exposed, one pad (9) is attached to each of the left and right operating layers (5a) (5b).
A plurality of (two in the embodiment) gate electrodes are provided respectively toward the gate electrode A.

左右各動1/I:層(Sa)(3b)上のソース電極及
びドレイン電極はそれぞれソースリード、ドレインリー
ドに5iさ1).、又パッド(91はゲートリードに、
Aaされ、パッケージングされる。
Left and right movement 1/I: The source and drain electrodes on the layer (Sa) (3b) are respectively 5i 1). , and pad (91 is the gate lead,
Aa and packaged.

以上、CkaAak158BFETの実施例につ込て説
明したが1本発明は半導体表面上のゲート電極パターン
に特産を有するものであるので、Ga^S以外t−用い
たM E S F E Tにも例えば工nP+InGa
Asなどの厘−v族化合物半導体にも適用できることは
明ら〃為である。
The above description has been made with reference to the example of CkaAak158BFET, but since the present invention has a special feature in the gate electrode pattern on the semiconductor surface, it can also be applied to MESFET using t- other than Ga^S, for example. Engineering nP+InGa
It is obvious that the present invention can also be applied to a Li-V group compound semiconductor such as As.

())    yAシ10スb果 本発明の′シ界効果トランジスタはゲート電極を複数本
(例えば4本)に分割配置すると共に、各ゲート41を
外部のゲートリードに中継するためのポンディングパッ
ドを中ヤリア1度が小さhバッファPjij上に1つだ
け配置すべく構成してなるものであるからゲート金1f
i抵抗R9とソースゲート間gQcPsとを何れも小さ
くすることができその結果として最小雑音指数を小さく
することができる。
()) The field effect transistor of the present invention has a gate electrode divided into a plurality of electrodes (for example, four electrodes), and a bonding pad for relaying each gate 41 to an external gate lead. Since it is configured so that only one is placed on the small h buffer Pjij, the gate metal is 1f.
Both the i-resistance R9 and the source-to-gate gQcPs can be made small, and as a result, the minimum noise figure can be made small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電界効果トランジスタの部分平面図、
第2圀は第1図中のA−p:断面図、第3図は従来の典
型的なMISFETの部分平面図。 第41は第3図中のB −B’断面■である。 C3)・−動作層、  (9)−4億パツド、 (4)
(51(63−・・ソース、ゲート、ドレイン電極、 
 +71・・・四部、(2)・・・バッフアノ■
FIG. 1 is a partial plan view of a field effect transistor of the present invention;
The second area is a sectional view taken along the line Ap in FIG. 1, and FIG. 3 is a partial plan view of a typical conventional MISFET. No. 41 is the BB' cross section (■) in FIG. C3) - Operating layer, (9) - 400 million pads, (4)
(51 (63-... source, gate, drain electrode,
+71...Four parts, (2)...Buffano■

Claims (5)

【特許請求の範囲】[Claims] (1)動作層を左右に分離する凹部の表面上に1つの電
極パッドを配置し、該電極パッドから前記各動作層に向
けてそれぞれ複数のゲート電極を配置してなる電界効果
トランジスタ。
(1) A field effect transistor in which one electrode pad is arranged on the surface of a recess that separates the active layer into left and right parts, and a plurality of gate electrodes are arranged from the electrode pad toward each of the active layers.
(2)前記凹部の表面は化合物半導体材よりなる半絶縁
性基板上のバッファ層に構成されていることを特徴とす
る特許請求の範囲第(1)項記載の電界効果トランジス
タ。
(2) The field effect transistor according to claim (1), wherein the surface of the recess is formed of a buffer layer on a semi-insulating substrate made of a compound semiconductor material.
(3)前記バッファ層はキャリア濃度が5×10^1^
5cm^−^3以下でありかつ層厚は2〜3μmである
特許請求の範囲第(2)項記載の電界効果トランジスタ
(3) The buffer layer has a carrier concentration of 5×10^1^
The field effect transistor according to claim 2, which has a layer thickness of 5 cm^-^3 or less and a layer thickness of 2 to 3 μm.
(4)前記複数のゲート電極は左右各動作層に付き2本
宛、計4本で構成されていることを特徴とする特許請求
の範囲第(1)項記載の電界効果トランジスタ。
(4) The field effect transistor according to claim (1), wherein the plurality of gate electrodes are comprised of four gate electrodes, two for each left and right active layer.
(5)前記動作層はGaAs層であり、前記ゲート電極
はその電極特性がショットキバリア型であることを特徴
とする特許請求の範囲第(1)項記載の電界効果トラン
ジスタ。
(5) The field effect transistor according to claim (1), wherein the active layer is a GaAs layer, and the gate electrode has Schottky barrier type electrode characteristics.
JP59184142A 1984-09-03 1984-09-03 field effect transistor Pending JPS6163062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59184142A JPS6163062A (en) 1984-09-03 1984-09-03 field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59184142A JPS6163062A (en) 1984-09-03 1984-09-03 field effect transistor

Publications (1)

Publication Number Publication Date
JPS6163062A true JPS6163062A (en) 1986-04-01

Family

ID=16148100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59184142A Pending JPS6163062A (en) 1984-09-03 1984-09-03 field effect transistor

Country Status (1)

Country Link
JP (1) JPS6163062A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263477A (en) * 1985-09-14 1987-03-20 Sharp Corp Field effect transistor
EP0455483A2 (en) * 1990-05-02 1991-11-06 Texas Instruments Incorporated Low parasitic FET topology for power and low noise GaAs FETs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263477A (en) * 1985-09-14 1987-03-20 Sharp Corp Field effect transistor
EP0455483A2 (en) * 1990-05-02 1991-11-06 Texas Instruments Incorporated Low parasitic FET topology for power and low noise GaAs FETs
EP0455483B1 (en) * 1990-05-02 2002-03-27 Texas Instruments Incorporated Low parasitic FET topology for power and low noise GaAs FETs

Similar Documents

Publication Publication Date Title
EP1901342A1 (en) Field effect transistor
US4455564A (en) Field effect transistor with a high cut-off frequency
US4624004A (en) Buried channel MESFET with backside source contact
US4921814A (en) Method of producing an MMIC
JP2003533888A (en) Field effect transistors and methods of fabricating field effect transistors.
CN101095233A (en) Enhancement - depletion semiconductor structure and method for making it
US4601096A (en) Method for fabricating buried channel field effect transistor for microwave and millimeter frequencies utilizing molecular beam epitaxy
JPH06349859A (en) Field effect transistor
JPS6163062A (en) field effect transistor
US4724220A (en) Method for fabricating buried channel field-effect transistor for microwave and millimeter frequencies
JPS63102270A (en) Inverting high electron mobility transistor
JP2533135B2 (en) Particulate transistor
JPS6393160A (en) Ultra-high speed semiconductor device
JPS58148464A (en) Mes type field effect transistor
US4833095A (en) Method for buried channel field effect transistor for microwave and millimeter frequencies utilizing ion implantation
JPH01120066A (en) Field effect semiconductor device with auxiliary electrode
JPH04184939A (en) Manufacture of semiconductor device
JPS61131564A (en) Field effect type semiconductor device
JPS6178174A (en) Junction gate field effect transistor
JPS63211771A (en) field effect transistor
JPS60137071A (en) Schottky gate field effect transistor
JPS60227478A (en) field effect transistor
JPH01175267A (en) semiconductor equipment
JPH0219623B2 (en)
JPS61237473A (en) field effect transistor