[go: up one dir, main page]

JPS6159872A - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS6159872A
JPS6159872A JP59182131A JP18213184A JPS6159872A JP S6159872 A JPS6159872 A JP S6159872A JP 59182131 A JP59182131 A JP 59182131A JP 18213184 A JP18213184 A JP 18213184A JP S6159872 A JPS6159872 A JP S6159872A
Authority
JP
Japan
Prior art keywords
region
semi
semiconductor
insulating
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59182131A
Other languages
Japanese (ja)
Inventor
Michio Arai
道夫 新井
Masashi Dosen
道仙 政志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59182131A priority Critical patent/JPS6159872A/en
Publication of JPS6159872A publication Critical patent/JPS6159872A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D10/00Bipolar junction transistors [BJT]
    • H10D10/60Lateral BJTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/177Base regions of bipolar transistors, e.g. BJTs or IGBTs
    • H10D62/184Base regions of bipolar transistors, e.g. BJTs or IGBTs of lateral BJTs

Landscapes

  • Bipolar Transistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、バイポーラI・ランラスタ。動作をなさしめ
る特殊な構成による半導体装置、特にその同速化を図っ
た半導体装置に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bipolar I-run raster. The present invention relates to a semiconductor device with a special configuration that allows it to operate, particularly to a semiconductor device that is designed to operate at the same speed.

〔従来の技術〕[Conventional technology]

半導体集積回路の回路素子としてのバイポーラトランジ
スタは、製造の簡易化、配線パターンの簡易化から、エ
ミッタ、ベース、コレクタの各領域が平面的に配置され
た、いわゆるラテラル構造が採られる。しかし、このラ
テラル構造のバイポーラトランジスタは、一般に電流増
幅率βが小さい。
A bipolar transistor as a circuit element of a semiconductor integrated circuit has a so-called lateral structure in which the emitter, base, and collector regions are arranged in a planar manner for the purpose of simplifying manufacturing and wiring patterns. However, this lateral structure bipolar transistor generally has a small current amplification factor β.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一方、本出願人は、先に特願昭58−224841号に
おいて、ラテラル構造をとり、しかも電流増幅率が大き
いバイポーラトランジスタ動作をなす半導体装置を提案
した。この半導体装置は第3図に示すように、半絶縁性
の半導体基体(1)の−主面に例えばh型のエミッタ領
域となる第1領域(2)及びコレクタ領域となる第2領
域(3)と、P型の第3領域(4)とを設け、夫々の領
域(2)、(3)及び(4)にエミッタ電極(5)、コ
レクタ領域(6)及びベース電極(7)を形成して構成
される。そして第1及び第3領域(2)及び(4)間に
順バイアス電圧を与えることによって、第1領域(2)
及び第3領域(4〕間の半絶縁性半導体基体+11に第
3領域(4)からの正孔が高濃度に注入されて仮想ベー
ス領域(+1が形成され、第1領域(2)から注入され
た電子か仮想ベース領域(8)を通じて正にバイアスさ
れている第2領域(3)に、そのコレクタ電界に引かれ
て到達し、n−p−n型のバイポーラトランジスタ動作
がなされる。
On the other hand, the present applicant previously proposed in Japanese Patent Application No. 58-224841 a semiconductor device which has a lateral structure and operates as a bipolar transistor with a large current amplification factor. As shown in FIG. 3, this semiconductor device has a first region (2) serving as an h-type emitter region and a second region (3) serving as a collector region on the main surface of a semi-insulating semiconductor substrate (1). ) and a P-type third region (4), and an emitter electrode (5), a collector region (6), and a base electrode (7) are formed in each region (2), (3), and (4). It is composed of By applying a forward bias voltage between the first and third regions (2) and (4), the first region (2)
Holes from the third region (4) are injected at a high concentration into the semi-insulating semiconductor substrate +11 between the third region (4) and the third region (4) to form a virtual base region (+1), and the holes are injected from the first region (2). The electrons are attracted by the collector electric field and reach the positively biased second region (3) through the virtual base region (8), thereby performing an npn type bipolar transistor operation.

ところで、この様な構成において、コレクタ電界は仮想
ベース領域(8)とコレクタ電極(6)の間に広く拡が
っているので、電子は半絶縁性半導体基体(1)の内部
にも拡がって流れる。このため、コレクタ走行時間の長
い電子が多くなり、半導体装置の晶周波性能を低下させ
る。また、半絶縁性半導体基体+1)の内部では電界が
弱いため、半絶縁性半導体基体11)内の電子トラップ
に捕えられた電子が長時間留まる現象が生じ、これが電
気的特性のドリフト、不安定性の原因となっていた。
By the way, in such a configuration, since the collector electric field widely spreads between the virtual base region (8) and the collector electrode (6), electrons also spread and flow inside the semi-insulating semiconductor substrate (1). Therefore, the number of electrons having a long collector transit time increases, which deteriorates the crystal frequency performance of the semiconductor device. In addition, since the electric field is weak inside the semi-insulating semiconductor substrate +1), a phenomenon occurs in which electrons trapped in the electron traps within the semi-insulating semiconductor substrate 11) remain for a long time, resulting in drift and instability of electrical characteristics. It was causing this.

本発明は、この様なバイポーラトランジスタ動作をなさ
しめる特殊な構成の半導体装置において上述の点を改良
して、より商運動作性にず(れた半導体装置を提供する
ものである。
The present invention improves the above-mentioned points in a semiconductor device having a special structure that enables such a bipolar transistor operation, and provides a semiconductor device with improved commercial operation.

c問題点を解決するための手段〕 本発明は、半絶縁性の半導体(13)に、1導電型のエ
ミッタ領域となる第1flJliJ成(14)とコレク
タ領域となる第2領域(15)とを所要の間隔を保持し
て配置61すると共に、これら第1及び第2領域(14
)及び(15)間に他の導電型の第3領域(16)を設
4フる。そして第3領域(+6)と第1領域(工4)と
の間に順バイアス電圧を与えて第3領域(16)からそ
の多数キャリアを第3領域(16)と第1領域(14)
間の半絶縁性半導体領域(20)に注入し、ごの領域(
20)に仮想ベース領域(21)を形成してバイポーラ
トランジスタ動作をなさしめるものであるが、更に特に
本発明においては、第11第2及び第3領域(14) 
、  (15)及び(16)の下にこれら領に3i (
14) 、  (15)及び(16)にわたって半絶縁
性の半導体(13)よりもエネルギーギャップの大きい
半導体#J域(I2)を設ける。ここで、半絶縁性の半
導体(13)としては、実質的に電流坦体濃度が少なく
、高抵抗例えば10’ 00以上を呈するm−v族化合
物半導体、或は半導体を用いることができる。
Means for Solving Problem c] The present invention provides a semi-insulating semiconductor (13) with a first flJliJ region (14) which becomes an emitter region of one conductivity type and a second region (15) which becomes a collector region. are arranged 61 while maintaining the required spacing, and these first and second areas (14
) and (15), a third region (16) of another conductivity type is provided. Then, by applying a forward bias voltage between the third region (+6) and the first region (step 4), the majority carriers are transferred from the third region (16) to the third region (16) and the first region (14).
The semi-insulating semiconductor region (20) between is implanted, and the region (
A virtual base region (21) is formed in the 11th second and third regions (14) in the present invention to perform bipolar transistor operation.
, 3i (
14) A semiconductor #J region (I2) having a larger energy gap than the semi-insulating semiconductor (13) is provided across (15) and (16). Here, as the semi-insulating semiconductor (13), an m-v group compound semiconductor or a semiconductor having a substantially low current carrier concentration and a high resistance, for example, 10'00 or more, can be used.

〔作用〕[Effect]

半!(!!縁外性半導体13)内に仮想ベース領域(2
1)が形成されることによって第1領域(14)から注
入された多数キャリアが仮想ベース領域(21)を通じ
て第2領域(15)に達し、バイポーラトランジスタ動
作がなされる。
half! (!! Extramarginal semiconductor 13) has a virtual base region (2
1), majority carriers injected from the first region (14) reach the second region (15) through the virtual base region (21), and a bipolar transistor operation is performed.

このとき第11第2及び第3領域(14) 、  (1
5)及び(16)の下方に設けられた半絶縁性半導体(
13)よりエネルギーギャップの大きい半導体領域(1
2)によってキャリアの流れが領域(13)に閉じ込め
られ、基体(if)内部へのキャリアの流れ込みが阻止
される。従って、キャリアが第3、第2領JIi(16
) 、  (15)に近い最短距離を流れることになり
、商運動作性が増し、電気的特性も安定する。またキャ
リアのコレクタ到達率が増して電流増幅率が上る。
At this time, the 11th second and third areas (14), (1
5) and (16) below the semi-insulating semiconductor (
13) Semiconductor region with larger energy gap (1
2) confines the flow of carriers in the region (13) and prevents them from flowing into the interior of the substrate (if). Therefore, the carrier is the third and second territory JIi (16
), (15), the commercial operation is increased and the electrical characteristics are stabilized. Furthermore, the rate at which carriers reach the collector increases, and the current amplification factor increases.

〔実施例〕〔Example〕

第1図を参照して本発明による半導体装置の一例を説明
する。本例においては、半絶縁性のGaΔ、S半導体基
体(11)を設け、これの−主面上にエピタキシャル成
長によってGaAsよりエネルギーギャップの大きい半
導体1d例えば不純物がドープされないへI×Ga1−
×八!!(0<x≦1)層(12)をノ杉成し、更にそ
の上にエピタキシャル成長によって半絶縁性、すなわち
実質的に電流坦体濃度が少く、高抵抗例えばlObΩc
an以上のGaAs1i (13)を所要の厚さに形成
する。この半絶縁性のGaAs層(13)め−主面(1
3a)に臨んで例えばn型の夫々上ミック及びコレクタ
の各領域となる高不純物濃度の第1及び第2領域(14
)及び(15)を、例えばイオン注入法、拡散法等によ
って所要の間隔を保持して平面的に所要の深さに配置形
成する。そして、これら第1及び第2の領域(14)及
び(15)間に、例えばp型の向不純物濃度の第3領域
(16)を、イオン注入法、拡散法等によっ”ζ領域(
14)  (15)が臨む主面(13a )に臨んでこ
れらとコHi面的に並置されるように、且つこれら領域
(14)及び(15)より浅い深さに形成する。第1、
第2及び第3領域(14)  、  (15)及び(1
6)には夫々エミッタ、コレクタ及びベース各電極(1
7)、(18)及び(19)がオーミックに被着される
。E、C及びBは夫々エミッタ、コレクタ及びベースの
各端子を示す。
An example of a semiconductor device according to the present invention will be described with reference to FIG. In this example, a semi-insulating GaΔ,S semiconductor substrate (11) is provided, and a semiconductor 1d having a larger energy gap than GaAs, for example, I×Ga1−, which is not doped with impurities, is formed by epitaxial growth on the main surface of the semi-insulating GaΔ,S semiconductor substrate (11).
×8! ! A layer (12) (0<x≦1) is formed on the layer (12) by epitaxial growth to make it semi-insulating, that is, the current carrier concentration is substantially low, and the resistance is high, for example, 1ObΩc.
GaAs1i (13) with a thickness of an or more is formed to a required thickness. This semi-insulating GaAs layer (13) - main surface (1
3a), the first and second regions (14
) and (15) are arranged and formed in a plane at a required depth while maintaining a required interval by, for example, an ion implantation method, a diffusion method, or the like. Then, between these first and second regions (14) and (15), a third region (16) having a p-type impurity concentration, for example, is formed by ion implantation, diffusion, etc.
14) It is formed so that it faces the main surface (13a) facing (15) and is juxtaposed with these in a co-Hi plane, and at a shallower depth than these regions (14) and (15). First,
Second and third areas (14), (15) and (1
6) have emitter, collector and base electrodes (1
7), (18) and (19) are ohmically deposited. E, C and B indicate emitter, collector and base terminals, respectively.

そして、このような構成において第1及び第3領域(1
4)及び(16)間に順バイアス電圧、第3及び第2領
域(16)及び(15)間に逆バイアス電圧を与える。
In such a configuration, the first and third regions (1
A forward bias voltage is applied between 4) and (16), and a reverse bias voltage is applied between the third and second regions (16) and (15).

このようにすると、第3領域(16)から多数キャリア
の止孔が、第1領域(14)と第3領jli3i(16
)間及び第3領域(16)下の半絶縁性半導体層(13
)による晶抵抗領域(20)に注入され、ここに仮想ベ
ース領域(21)を生成し、これによって第1領域(1
4)の多数キャリアの電子の注入を促し、これが仮想ベ
ース領域(21)を通じて第2領域(15)に達せしめ
°ζラテラル構造のn−p−n型バイポーラトランジス
タ動作をなさしめる。
In this way, the majority carrier stopper from the third region (16) is transferred to the first region (14) and the third region jli3i (16).
) and under the third region (16).
) is implanted into the crystal resistive region (20) to create a virtual base region (21) there, thereby causing the first region (1
4), the injection of majority carrier electrons is promoted, and these electrons reach the second region (15) through the virtual base region (21), thereby operating an n-p-n type bipolar transistor with a lateral structure.

この場合、半絶縁性GaAsJi (13)下に第1、
第2及び第3領域(14) 、  (15)及び(16
)にわたって、このGaAs層(13)に比しエネルギ
ーギャップの大きいAlGaAs層又は八1Aslt2
 (12)が形成されているので、電子の流れがGaA
s層(13)内に閉じ込められ、基体(11)内部への
電子の流れが阻止される。
In this case, the first layer under the semi-insulating GaAsJi (13)
Second and third areas (14), (15) and (16
), the AlGaAs layer (13) has a larger energy gap than the GaAs layer (13) or the AlGaAs layer (13).
(12) is formed, so the flow of electrons is
Confined within the s-layer (13), the flow of electrons into the interior of the substrate (11) is blocked.

尚、第1図では半絶縁性のGaAs基体(11)上に^
1)<Gat−×As層(12)を形成し、更にその上
に半絶縁性のGaAs1i (13)を形成したが、G
aAs基体(11)を省隙し、直接AIX Gat−x
 As基体を設け、これの上に半絶縁性のGaAs1−
(13)を形成するようにしてもよい。
In addition, in Fig. 1, it is placed on a semi-insulating GaAs substrate (11).
1)<Gat-×As layer (12) was formed, and semi-insulating GaAs1i (13) was further formed on it, but G
Skip the aAs substrate (11) and connect directly to AIX Gat-x
An As substrate is provided, and semi-insulating GaAs1-
(13) may be formed.

第1図の例では半絶縁性のGaAs1W (13)の下
にこれよりエネルギーギャップの大きいAIX Ga1
−×As層(12)を設けた場合であるが、第2図に示
すようにGaAs層(13)の下にAIX Gap、)
< As層(12)を設けると共に、GaAs1W (
13)の表面、すなわち−主面(13a)にも同様に不
純物がドープされないAIX Ga1−×As層(22
)を例えばヘテロ・エピタキシャル成長によって形成す
ることもできる。この場合には、表面の無効なベース電
流が抑えられる。
In the example shown in Figure 1, AIX Ga1 with a larger energy gap is placed below semi-insulating GaAs1W (13).
-×As layer (12) is provided, but as shown in FIG.
<In addition to providing the As layer (12), GaAs1W (
13), i.e., the − main surface (13a), is similarly not doped with impurities.
) can also be formed, for example, by heteroepitaxial growth. In this case, the invalid base current on the surface is suppressed.

〔発明の効果〕〔Effect of the invention〕

上述した本発明による半導体装置によれば、ラテラル構
造をとるものであるが、それにもかかわらず、その電流
増幅率βが大にできるという利益がある。すなわち、実
質的にベース領域、すなわら注入キャリアによる電流路
を西不純物濃度を有する第3領域(16)外の半絶縁性
の領域(20)に形成するようにしたので、注入キャリ
アの拡散長が極めて長く、また半導体表面の再結合速度
の大きい部分の影響を受けにくいこと、更にまた第3領
域(16)中に流れずに、半絶縁性領域(20)のポテ
ンシャルバリアが低く平坦でコレクタ電圧の影響を受け
にくい部分を流れるなどが相俟って電・流増幅率の高い
バイポーラトランジスタ動作がなされる半導体装置を構
成できるものである。
Although the semiconductor device according to the present invention described above has a lateral structure, it nevertheless has the advantage that its current amplification factor β can be increased. That is, since the base region, that is, the current path by the injected carriers is substantially formed in the semi-insulating region (20) outside the third region (16) having the west impurity concentration, the diffusion of the injected carriers is prevented. It has an extremely long length and is not easily affected by the high recombination rate portion of the semiconductor surface, and furthermore, it does not flow into the third region (16) and the potential barrier of the semi-insulating region (20) is low and flat. This makes it possible to construct a semiconductor device that operates as a bipolar transistor with a high current amplification factor due to the fact that the current flows through a portion that is not easily affected by the collector voltage.

また特に化合物半導体によって構成するときは、更に高
速動作にすぐれた半導体装置を得ることができる。
Further, especially when constructed from a compound semiconductor, it is possible to obtain a semiconductor device with even better high-speed operation.

更にまた、この特性は、その実質的ベース領域が半絶縁
性の半導体中に形成されるので、第3領域(16)の深
さ、特性等のばらつきによって受ける影響が小さく、こ
れがため、安定した均一な特性の半導体装置を容易に製
造することができる。
Furthermore, since the substantial base region is formed in a semi-insulating semiconductor, this characteristic is less affected by variations in the depth, characteristics, etc. of the third region (16). A semiconductor device with uniform characteristics can be easily manufactured.

また、第3領域(16)に対し、第1及び第2領域(1
4)及び(15)が対称性を有するのでエミッタ及びコ
レクタが対称性を有するトランジスタを構成できる。
In addition, the first and second areas (16) are
Since 4) and (15) are symmetrical, a transistor can be constructed in which the emitter and collector are symmetrical.

またラテラル構造をとるので、その電極を取り出し、配
線が容易となり、集積回路を構成する場合に有利となる
。また半絶縁性半導体に構成するので、集積回路に通用
した場合、素子間のアイソレージジンが簡単化される利
益がある。
Furthermore, since it has a lateral structure, it is easy to take out the electrodes and wire them, which is advantageous when constructing an integrated circuit. Furthermore, since it is constructed as a semi-insulating semiconductor, there is the advantage that isolation between elements can be simplified when used in integrated circuits.

そして、本発明半導体装置においては、−特に第1、第
2及び第3領域(14) 、  (15)及び(16)
■にこれら各領域(14)  (15)  (1G)に
わたる様に半絶縁性半導体(13)よりエネルギーキャ
ップの大きい半導体領域(12)を形成したので、第1
領域(14)から注入されたキャリアの流れが半絶縁性
の半導体領域(13)内に閉じ込められ、基体(11)
内部へのギ、トリアの流れ込みが1(■止される。
In the semiconductor device of the present invention, - especially the first, second and third regions (14), (15) and (16)
In (1), a semiconductor region (12) having a larger energy cap than the semi-insulating semiconductor (13) was formed so as to span each of these regions (14), (15), and (1G).
The flow of carriers injected from the region (14) is confined within the semi-insulating semiconductor region (13) and
The flow of Gi and Tria into the interior is stopped.

このため、キャリアが第3、第2領域(16) 。Therefore, the carrier is in the third and second regions (16).

(15)に近い最Mhli離を流れるごとになり、キャ
リアのコレクタ走行時間が短くなり高速動作性が増し、
高周波性能にすぐれた半導体装置が得られる。また、基
体(11)内部にトラップされたキャリアが長時間留る
現象が回避され電気的特性が安定する。更にキャリアの
コレクタ到達率が増し、より電流増幅率が向上する。ま
た第2図に示すように半絶縁の半導体(13)の表面に
も同様のエネルギーギャップの大きい半導体領域(22
)を形成した場合には、表面での無効なベース電流が抑
えられ、より電流増幅率を上げることが出来る。
As the maximum Mhli distance approaches (15), the carrier travel time to the collector becomes shorter and high-speed operability increases.
A semiconductor device with excellent high frequency performance can be obtained. Moreover, the phenomenon in which carriers trapped inside the base body (11) remain for a long time is avoided, and the electrical characteristics are stabilized. Furthermore, the rate at which carriers reach the collector is increased, and the current amplification factor is further improved. Moreover, as shown in FIG. 2, a similar semiconductor region (22
), the ineffective base current at the surface is suppressed and the current amplification factor can be further increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半一、V体装置iII′の一例を
ボず路線的拡大…1面図、第2図は本発明半導体装置の
他の例を示ず路線的拡大断面図、第3図は本発明の説明
に供する半導体装置の路線的拡大断面図である。 (11)は半絶縁性のGaAs基体、(12)はAI×
Gat−xへS層、(13)は半絶縁性のGa八へ層、
(14)  、  (15)  。 (16)は第1、第2、第3領域である。 代理人 伊)1tき 貞7γ・1.。 間  松llI!!秀盛・’−’:”、1゜第1図  
  “ 第2図 第3図
FIG. 1 is a horizontally enlarged front view of an example of the semiconductor device iII' according to the present invention, and FIG. FIG. 3 is an enlarged cross-sectional view of a semiconductor device used to explain the present invention. (11) is a semi-insulating GaAs substrate, (12) is AI×
S layer to Gat-x, (13) is semi-insulating Ga layer,
(14), (15). (16) are the first, second, and third regions. Agent Italy) 1t Ki Tei 7γ・1. . Between MatsullI! ! Hidemori・'-':”, 1゜Figure 1
“ Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性の半導体に1導電型のエミッタ領域となる第1
領域とコレクタ領域となる第2領域とを所要の間隔を保
持して配置し、該第1及び第2領域間に他の導電型の第
3領域を設け、該第3領域と上記第1領域との間に順バ
イアス電圧を与えて上記第3領域からのその多数キャリ
アの注入による仮想ベース領域を上記第3領域及び上記
第1領域間の上記半絶縁性の半導体に形成してバイポー
ラトランジスタ動作を行わしめるようになし、上記第1
、第2及び第3領域下にこれら領域にわたって上記半絶
縁性の半導体よりもエネルギーギャップの大きい半導体
領域が設けられて成る半導体装置。
A first layer that becomes an emitter region of one conductivity type in a semi-insulating semiconductor.
A third region of another conductivity type is provided between the first and second regions, the third region and the first region A forward bias voltage is applied between the third region and the majority carriers injected from the third region to form a virtual base region in the semi-insulating semiconductor between the third region and the first region to operate a bipolar transistor. In order to ensure that the
. A semiconductor device comprising a semiconductor region having a larger energy gap than the semi-insulating semiconductor above and extending over the second and third regions.
JP59182131A 1984-08-31 1984-08-31 semiconductor equipment Pending JPS6159872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59182131A JPS6159872A (en) 1984-08-31 1984-08-31 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59182131A JPS6159872A (en) 1984-08-31 1984-08-31 semiconductor equipment

Publications (1)

Publication Number Publication Date
JPS6159872A true JPS6159872A (en) 1986-03-27

Family

ID=16112869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59182131A Pending JPS6159872A (en) 1984-08-31 1984-08-31 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS6159872A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390850A (en) * 1986-10-03 1988-04-21 Nec Corp Hetero junction bipolar transistor
JPH01228771A (en) * 1988-03-04 1989-09-12 Sumitomo Electric Ind Ltd Convex polishing method for optical connectors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390850A (en) * 1986-10-03 1988-04-21 Nec Corp Hetero junction bipolar transistor
JPH01228771A (en) * 1988-03-04 1989-09-12 Sumitomo Electric Ind Ltd Convex polishing method for optical connectors

Similar Documents

Publication Publication Date Title
US5780887A (en) Conductivity modulated MOSFET
US4782379A (en) Semiconductor device having rapid removal of majority carriers from an active base region thereof at device turn-off and method of fabricating this device
EP0615292A1 (en) Insulated gate bipolar transistor
EP0080044A2 (en) Semiconductor device having rapid removal of majority carriers from an active base region thereof at device turn-off and method of fabricating this device
JPS643347B2 (en)
JPS589371A (en) Transistor
JPS63140570A (en) Semiconductor device
US3411054A (en) Semiconductor switching device
JPS6159872A (en) semiconductor equipment
US4910562A (en) Field induced base transistor
JPS62140463A (en) Thyristor with switchable emitter short circuit
EP0157207A2 (en) Gate turn-off thyristor
JPH05136015A (en) Semiconductor device
JP2587826B2 (en) Bipolar transistor and method of manufacturing the same
JPS6174369A (en) semiconductor equipment
JPS63314866A (en) Bipolar transistor
Yu et al. The effect of current suppression in the pn− n+ diode of integrated injection logic
JPH0416443Y2 (en)
Beasom High voltage dielectric isolation SCR integrated circuit process
CA1200018A (en) Semiconductor device having rapid removal of majority carriers from active base region thereof at device turn-off and method of fabricating this device
JP3353529B2 (en) Horizontal insulated gate bipolar transistor
JPH02208976A (en) Conductivity modulation type mosfet
JPS621261B2 (en)
JP3249032B2 (en) Compound semiconductor device
Liu Heterostructure bipolar transistors