[go: up one dir, main page]

JPS6158536B2 - - Google Patents

Info

Publication number
JPS6158536B2
JPS6158536B2 JP58043073A JP4307383A JPS6158536B2 JP S6158536 B2 JPS6158536 B2 JP S6158536B2 JP 58043073 A JP58043073 A JP 58043073A JP 4307383 A JP4307383 A JP 4307383A JP S6158536 B2 JPS6158536 B2 JP S6158536B2
Authority
JP
Japan
Prior art keywords
weight
less
alloy
content
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58043073A
Other languages
Japanese (ja)
Other versions
JPS59170231A (en
Inventor
Susumu Kawauchi
Masahiro Tsuji
Original Assignee
Nippon Mining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co filed Critical Nippon Mining Co
Priority to JP4307383A priority Critical patent/JPS59170231A/en
Publication of JPS59170231A publication Critical patent/JPS59170231A/en
Publication of JPS6158536B2 publication Critical patent/JPS6158536B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、トラジスタや集積回路(IC)など
の半導体機器のリード材や、コネクターなどのば
ね材に適する銅合金に関するものである。 従来、半導体機器のリード材としては熱膨張係
数が低く、素子及びセラミツクとの接着及び封着
性の良好なコバール合金(Fe−29Ni−16Co)、42
合金(Fe−42Ni合金)などの高ニツケル合金が
好んで使われてきた。しかし近年は半導体回路集
積度の向上に伴ない、消費電力の高いICが多く
なつてきた。又、コスト低減からセラミツク封止
型から樹脂封止型のパツケージが主流となつてき
た。従つて、使用されるリード材も放熱性のよ
い、すなわち熱伝導性の良好な、かつ樹脂との熱
膨張係数が近い銅基合金が使われるようになつて
きた。現在、無酸素銅、りん青銅、すず入り銅及
び鉄入り銅が使用されているが、リード材として
の要求特性が、放熱性が良い、耐熱性が良い、ハ
ンダ付け性・メツキ密着性が良い、繰返し曲げ強
さが大きい、廉価である等の諸特性にわたつてい
るため、これらすべてを満足した銅基合金は見当
らない。この中で高ニツケル合金と同等の強度と
繰返し曲げ強さ持つものはりん青銅であり、高ニ
ツケル合金のの代替用としてはりん青銅が使用さ
れているが、りん青銅の成分であるSnの価格が
高く、熱間加工性が悪いという欠点を有してい
る。また、コネクターなどに使われるばね材とし
ては従来からりん青銅がその優れた強度から多く
使用されているが、価格が高いため、より廉価な
材料が望まれている。 本発明はかかる点に鑑み、りん青銅のもつ優れ
た特性を維持しつつ、従来の銅基合金のもつ欠点
を改良し、廉価でかつ半導体機器のリード材及び
ばね材として好適な諸特性を有する銅合金を提供
するものである。 本発明の銅合金はSn0.8重量%以上5.0重量%以
下、P0.01重量%を超え0.4重量%以下を含み、さ
らに副成分としてZn0.05重量%以上5.0重量%以
下、Si0.2重量%を超え1.0重量%以下、Mn0.2重
量%を超え1.0重量%以下、Al 0.1重量%以上1.0
重量%以下、Pb0.01重量%以上0.3重量%以下か
ら成る群より選択された1種もしくは2種以上を
総量で0.01重量%以上8.0重量%以下を含み、残
部がCu及び不可避不純物から成る合金、あるい
は上記合金の不可避不純物のうち酸素の含有量が
0.0020重量%以下であることを特徴とする高力導
電銅合金である。 次に本発明合金を構成する合金成分の添加理由
とその組成範囲の限定理由を説明する。Snの含
有量を0.8重量%以上5.0重量%以下とする理由
は、Sn含有量が0.8重量%未満ではP及びその他
の添加元素を添加しても期待する強度が得られ
ず、逆にSn含有量が5.0重量%をこえると熱間加
工性が悪くなり、Snの占める原料価格も高くな
るため、価格の上昇が大きくなるためである。 P含有量を0.01重量%を超える0.4重量%以下
とする理由は、P含有量が0.01重量%を超えない
とP含有による強度と耐熱性の向上は顕著ではな
く、P含有量が0.4重量%こえると導電率の低下
及び加工性の低下が著しいためである。 副成分の含有量を個々に限定し、かつ総量で
0.01重量%以上8.0重量%以下に限定したのは、
ここに掲げた副成分は強度を向上させるが、0.01
重量%未満では、その効果があまり期待できず、
又8.0重量%をこえると導電率の低下が著しく、
加工性の低下をも招くことから0.01重量%以上
8.0重量%以下とした。 又、酸素含有量を0.0020重量%以下とした理由
は、0.0020重量%をこえるメツキ密着性が低下す
るためである。 このような本発明材料は、優れた強度、伸び等
の機械的性質を示すとともに、ハンダ付け性、メ
ツキ密着性も良好である。さらに熱間加工性も良
好でSn含有量も低いため、廉価な銅合金であ
る。又、熱膨張係数は樹脂に近く、樹脂封止型の
リード材に適している。 以下に本発明材料を実施例をもつて説明する。 実施例 第1表に示される本発明合金に係る各種成分組
成のインゴツトを、電気銅あるいは無酸素銅を原
料として、高周波溶解炉で大気、不活性又は還元
性雰囲気中で溶解鋳造した。次にこれを800℃で
熱間圧延して厚さ4mmの板とした後、面削を行な
つて、冷間圧延で厚さ1.0mmとした。これを500℃
にて1時間焼鈍したのち、冷間圧延で厚さ0.8mm
の板とした。このようにして
The present invention relates to a copper alloy suitable for lead materials for semiconductor devices such as transistors and integrated circuits (ICs), and spring materials for connectors and the like. Conventionally, Kovar alloy (Fe-29Ni-16Co), which has a low coefficient of thermal expansion and good adhesion and sealing properties with elements and ceramics, has been used as a lead material for semiconductor devices.
High nickel alloys such as Fe-42Ni alloy have been preferred. However, in recent years, as the degree of integration of semiconductor circuits has improved, the number of ICs with high power consumption has increased. Furthermore, due to cost reduction, resin-sealed packages have become mainstream instead of ceramic-sealed ones. Therefore, the lead material used has come to be a copper-based alloy that has good heat dissipation, that is, good thermal conductivity, and has a coefficient of thermal expansion close to that of the resin. Currently, oxygen-free copper, phosphor bronze, tin-containing copper, and iron-containing copper are used, but the required characteristics for lead materials are good heat dissipation, good heat resistance, and good solderability and plating adhesion. , high cyclic bending strength, low price, etc., and no copper-based alloy has been found that satisfies all of these properties. Among these, phosphor bronze has the same strength and repeated bending strength as high nickel alloys, and phosphor bronze is used as a substitute for high nickel alloys, but the price of Sn, which is a component of phosphor bronze, is It has the disadvantage of high hardness and poor hot workability. Additionally, phosphor bronze has traditionally been widely used as a spring material for connectors and the like due to its excellent strength, but due to its high price, cheaper materials are desired. In view of these points, the present invention improves the drawbacks of conventional copper-based alloys while maintaining the excellent properties of phosphor bronze, and has various properties that are inexpensive and suitable as lead materials and spring materials for semiconductor devices. It provides copper alloys. The copper alloy of the present invention contains 0.8% to 5.0% by weight of Sn, more than 0.01% by weight to 0.4% by weight of P, and further contains 0.05% to 5.0% by weight of Zn, and 0.2% by weight of Si. % but not more than 1.0% by weight, Mn more than 0.2% by weight and not more than 1.0% by weight, Al not less than 0.1% by weight and not more than 1.0
An alloy containing a total amount of 0.01% to 8.0% by weight of one or more selected from the group consisting of 0.01% to 0.3% by weight of Pb, and the balance consisting of Cu and inevitable impurities. , or if the oxygen content among the inevitable impurities in the above alloy is
It is a high-strength conductive copper alloy characterized by a content of 0.0020% by weight or less. Next, the reason for adding the alloy components constituting the alloy of the present invention and the reason for limiting the composition range will be explained. The reason why the Sn content is set to 0.8% by weight or more and 5.0% by weight or less is that if the Sn content is less than 0.8% by weight, the expected strength cannot be obtained even if P and other additive elements are added; This is because if the amount exceeds 5.0% by weight, hot workability deteriorates and the price of the raw material occupied by Sn also increases, resulting in a large increase in price. The reason why the P content is set to more than 0.01% by weight and 0.4% by weight or less is that unless the P content exceeds 0.01% by weight, the improvement in strength and heat resistance due to P content is not significant. This is because if it exceeds this, the conductivity and workability will be significantly lowered. Limiting the content of sub-ingredients individually and determining the total amount
The content was limited to 0.01% by weight or more and 8.0% by weight or less.
The subcomponents listed here improve strength, but 0.01
If the amount is less than % by weight, the effect cannot be expected much.
Moreover, when it exceeds 8.0% by weight, the conductivity decreases significantly,
0.01% by weight or more as it also causes a decrease in workability.
The content was 8.0% by weight or less. Further, the reason why the oxygen content is set to 0.0020% by weight or less is that the plating adhesion deteriorates when the oxygen content exceeds 0.0020% by weight. Such a material of the present invention exhibits excellent mechanical properties such as strength and elongation, and also has good solderability and plating adhesion. Furthermore, it has good hot workability and low Sn content, making it an inexpensive copper alloy. Furthermore, the coefficient of thermal expansion is close to that of resin, making it suitable for resin-sealed lead materials. The material of the present invention will be explained below using examples. Examples Ingots having various compositions of the alloy of the present invention shown in Table 1 were melted and cast using electrolytic copper or oxygen-free copper as a raw material in a high frequency melting furnace in air, an inert atmosphere, or a reducing atmosphere. Next, this was hot rolled at 800°C to form a plate with a thickness of 4 mm, followed by face cutting and cold rolling to a thickness of 1.0 mm. This is heated to 500℃
After annealing for 1 hour, it was cold rolled to a thickness of 0.8mm.
It was made into a board. In this way

【表】 調整された試料の評価として、強度、伸びを引張
試験により、耐熱性を加熱時間5分における軟化
温度により、電気伝導性(放熱性)を導電率(%
IACS)によつて示した。電気伝導性と熱伝導性
は相互に比例関係にあり、導電率で評価し得るか
らである。ハンダ付け性は、直垂式浸漬法で230
℃±5℃のハンダ浴(すず60%、鉛40%)に5秒
間浸漬し、ハンダのぬれの状態を目視観察するこ
とにより評価した。メツキ密着性は試料に厚さ3
μのAgメツキを施こし、450℃にて5分間加熱
し、表面に発生するフクレの有無を目視観察する
ことにより評価した。又、熱間加工性は、熱間圧
延後の試料の割れを目視観察した。これらの結果
を比較合金とともに第1表に示した。 第1表に示す如く本発明の合金は優れた強度、
導電性、耐熱性、ハンダ付け性、メツキ密着性、
熱間加工性を示すことが明白であり、廉価な半導
体機器のリード材及びばね材に適した材料といえ
る。
[Table] As for the evaluation of the prepared sample, strength and elongation were measured by tensile test, heat resistance was measured by softening temperature at a heating time of 5 minutes, and electrical conductivity (heat dissipation) was measured by conductivity (%).
IACS). This is because electrical conductivity and thermal conductivity are proportional to each other and can be evaluated by electrical conductivity. Solderability is 230 using vertical dipping method.
It was immersed in a solder bath (60% tin, 40% lead) at ±5°C for 5 seconds, and the wetting state of the solder was evaluated by visually observing it. The plating adhesion is determined by the thickness of 3
The sample was plated with μ Ag, heated at 450°C for 5 minutes, and evaluated visually for the presence or absence of blisters on the surface. In addition, hot workability was determined by visually observing cracks in the sample after hot rolling. These results are shown in Table 1 along with comparative alloys. As shown in Table 1, the alloy of the present invention has excellent strength,
Conductivity, heat resistance, solderability, plating adhesion,
It is clear that it exhibits hot workability, and it can be said to be a material suitable for inexpensive lead materials and spring materials for semiconductor devices.

Claims (1)

【特許請求の範囲】 1 Sn0.8重量%以上5.0重量%以下、P0.01重量
%を超え0.4重量%以下、 を含み、さらに副成分として Zn0.05重量%以上5.0重量%以下、Si0.2重量%
を超え1.0重量%以下、Mn0.2重量%を超え1.0重
量%以下、Al 0.1重量%以上1.0重量%以下、
Pb0.01重量%以上0.3重量%以下 から成る群より選択された1種もしくは2種以上
を総量で0.01重量%以上8.0重量%以下を含み、
残部がCu及び不可避的不純物から成ることを特
徴とする高力導電銅合金。 2 Sn0.8重量%以上5.0重量%以下、P0.01重量
%を超え0.4重量%以下、 を含み、さらに副成分として Zn0.05重量%以上5.0重量%以下、Si0.2重量%
を超え1.0重量%以下、Mn0.2重量%を超え1.0重
量%以下、Al 0.1重量%以上1.0重量%以下、
Pb0.01重量%以上0.3重量%以下 から成る群より選択された1種もしくは2種以上
を総量で0.01重量%以上8.0重量%以下を含み、
残部がCu及び不可避的不純物から成り、該不純
物のうち酸素の含有量が0.0020重量%以下である
ことを特徴とする高力導電銅合金。
[Claims] 1 Contains 0.8% to 5.0% by weight of Sn, 0.01% to 0.4% by weight of P to 0.4% by weight, and further contains as subcomponents Zn 0.05% to 5.0% by weight, Si0. 2% by weight
more than 1.0% by weight, Mn more than 0.2% by weight and less than 1.0%, Al more than 0.1% by weight and less than 1.0% by weight,
Contains one or more selected from the group consisting of 0.01% by weight or more and 0.3% by weight or less of Pb in a total amount of 0.01% by weight or more and 8.0% by weight or less,
A high-strength conductive copper alloy characterized in that the remainder consists of Cu and unavoidable impurities. 2 Contains Sn0.8% by weight or more and 5.0% by weight or less, P0.01% by weight or more and 0.4% by weight or less, and additionally contains Zn0.05% by weight or more and 5.0% by weight or less, and Si0.2% by weight.
more than 1.0% by weight, Mn more than 0.2% by weight and less than 1.0%, Al more than 0.1% by weight and less than 1.0% by weight,
Contains one or more selected from the group consisting of 0.01% by weight or more and 0.3% by weight or less of Pb in a total amount of 0.01% by weight or more and 8.0% by weight or less,
A high-strength conductive copper alloy characterized in that the remainder consists of Cu and unavoidable impurities, and the content of oxygen among the impurities is 0.0020% by weight or less.
JP4307383A 1983-03-17 1983-03-17 High tension conductive copper alloy Granted JPS59170231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4307383A JPS59170231A (en) 1983-03-17 1983-03-17 High tension conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4307383A JPS59170231A (en) 1983-03-17 1983-03-17 High tension conductive copper alloy

Publications (2)

Publication Number Publication Date
JPS59170231A JPS59170231A (en) 1984-09-26
JPS6158536B2 true JPS6158536B2 (en) 1986-12-12

Family

ID=12653670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4307383A Granted JPS59170231A (en) 1983-03-17 1983-03-17 High tension conductive copper alloy

Country Status (1)

Country Link
JP (1) JPS59170231A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346726U (en) * 1989-09-05 1991-04-30
JPH0523933Y2 (en) * 1988-03-15 1993-06-18
WO2014143614A1 (en) 2013-03-11 2014-09-18 Jan Remmereit Lipid compositions containing bioactive fatty acids
US10993925B2 (en) 2015-09-18 2021-05-04 Sciadonics, Inc. Lipid formulations containing bioactive fatty acids
US11058656B2 (en) 2015-11-25 2021-07-13 Sciadonics, Inc. Lipid formulations containing bioactive fatty acids

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174841A (en) * 1984-02-21 1985-09-09 Furukawa Electric Co Ltd:The Phosphor-bronze for electronic and electrical instrument
JP2516622B2 (en) * 1986-04-10 1996-07-24 古河電気工業株式会社 Copper alloy for electronic and electrical equipment and its manufacturing method
US5100617A (en) * 1990-01-05 1992-03-31 Midwest Thermal Spray Inc. Wires made of copper-based alloy compositions
US5236662A (en) * 1990-01-05 1993-08-17 Kiilunen David D Wires made of copper-based alloy compositions
USRE35624E (en) * 1990-01-05 1997-10-07 Kiilunen; David D. Wires made of copper-based alloy compositions
CN103555991B (en) * 2013-11-20 2016-01-20 苏州天兼金属新材料有限公司 A kind of leadless environment-friendly copper-base alloy pipe and manufacture method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153853A (en) * 1983-02-21 1984-09-01 Hitachi Metals Ltd Matrial for lead frame

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153853A (en) * 1983-02-21 1984-09-01 Hitachi Metals Ltd Matrial for lead frame

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523933Y2 (en) * 1988-03-15 1993-06-18
JPH0346726U (en) * 1989-09-05 1991-04-30
WO2014143614A1 (en) 2013-03-11 2014-09-18 Jan Remmereit Lipid compositions containing bioactive fatty acids
US10993925B2 (en) 2015-09-18 2021-05-04 Sciadonics, Inc. Lipid formulations containing bioactive fatty acids
US11058656B2 (en) 2015-11-25 2021-07-13 Sciadonics, Inc. Lipid formulations containing bioactive fatty acids

Also Published As

Publication number Publication date
JPS59170231A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
JP2670670B2 (en) High strength and high conductivity copper alloy
JPH0372691B2 (en)
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS6314056B2 (en)
JPS6158536B2 (en)
JPS5834537B2 (en) High-strength conductive copper alloy with good heat resistance
JPH02163331A (en) High strength and high conductivity copper alloy having excellent adhesion for oxidized film
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPS6239218B2 (en)
JPS6215621B2 (en)
JPS6215622B2 (en)
JPS60245752A (en) High strength and high conductivity copper alloy
JPH0424417B2 (en)
JPS594493B2 (en) Copper alloy for lead material of semiconductor equipment
JPS639574B2 (en)
JPS6393835A (en) Copper alloy for lead material of semiconductor equipment
JPS6157379B2 (en)
JPS5853700B2 (en) Copper alloy for lead material of semiconductor equipment
JPS6213823B2 (en)
JPH0219432A (en) High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material
JPS6283441A (en) High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat
JPS6218617B2 (en)
JPH0218375B2 (en)
JPS6033890B2 (en) High-strength conductive copper alloy with excellent heat resistance
JPH0357175B2 (en)