JPS6158422B2 - - Google Patents
Info
- Publication number
- JPS6158422B2 JPS6158422B2 JP54037691A JP3769179A JPS6158422B2 JP S6158422 B2 JPS6158422 B2 JP S6158422B2 JP 54037691 A JP54037691 A JP 54037691A JP 3769179 A JP3769179 A JP 3769179A JP S6158422 B2 JPS6158422 B2 JP S6158422B2
- Authority
- JP
- Japan
- Prior art keywords
- hydroxyapatite
- raw material
- sintered body
- firing
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 81
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 81
- 239000002994 raw material Substances 0.000 claims description 51
- 238000010304 firing Methods 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 38
- 239000007789 gas Substances 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 230000001603 reducing effect Effects 0.000 claims description 15
- 229910001868 water Inorganic materials 0.000 claims description 13
- 239000000843 powder Substances 0.000 claims description 12
- 238000000354 decomposition reaction Methods 0.000 claims description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000000465 moulding Methods 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 238000007731 hot pressing Methods 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- 239000011575 calcium Substances 0.000 description 51
- 238000005245 sintering Methods 0.000 description 42
- 238000007796 conventional method Methods 0.000 description 11
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 11
- 239000012535 impurity Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 229910052791 calcium Inorganic materials 0.000 description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 238000005452 bending Methods 0.000 description 7
- 239000001506 calcium phosphate Substances 0.000 description 7
- 239000007943 implant Substances 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 6
- 235000019731 tricalcium phosphate Nutrition 0.000 description 6
- 229940078499 tricalcium phosphate Drugs 0.000 description 6
- 239000012620 biological material Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 229910052586 apatite Inorganic materials 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229910004261 CaF 2 Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 iron ions Chemical class 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 235000013373 food additive Nutrition 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
- Dental Prosthetics (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】
本発明は生体材料として使用するヒドロオキシ
アパタイト焼結体の焼成方法の改良に関する。
従来主として骨や歯根等に用いられてきた生体
インプラント材は金属材料、高分子材料などがあ
る。これらはいずれも、生体の骨や歯根にとつて
異物であり、かつ生体との親和性に欠けるという
欠点がある。最近この欠点の改良を目的とした生
体材として、生体内で安定で、かつ無毒で無刺激
性材料であるセラミツクス系材がある。セラミツ
クス系生体インプラント材には生体ガラス、ガラ
ス状カーボン、アルミナ、ヒドロオキシアパタイ
ト〔CaX(PO4)YOH〕等が提案されている。こ
の中で、生体の無機質主成分と同一の組成を持
ち、生体と極めて親和性に優れたヒドロオキシア
パタイトが脚光をあびつつある。
ヒドロオキシアパタイトはCaX(PO4)YOHの
化学式で表わされ理論的なヒドロオキシアパタイ
トはX=5、Y=3であり、X/Yの比は1.67で
ある。しかし、実際の組成は製法に影響され、
X/Yの比1.33〜1.95程度の範囲のものが生成す
ることが知られている。このX/Yの比が広範囲
にわたる現象の原因として、異種相共存説、表面
吸着説、及びイオン欠陥説の各説が言われてお
り、いずれの説もヒドロオキシアパタイトの結晶
構造に由来している。
ヒドロオキシアパタイトを骨や歯根等の生体イ
ンプラント材として用いるためには焼結により高
密度で高強度の焼結体を得、これを使用する方法
が考えられている。この場合、生体インプラント
材に用いるヒドロオキシアパタイト焼結体は、内
部及び表面にクラツクがなく、かつ生体インプラ
ント材として用いるのに十分な大きさで高密度、
高強度のものが要望されている。またヒドロオキ
シアパタイトの合成に用いる各種出発原料に由来
する不純物や、添加物等で、含まれるCa、P以
外の元素及びイオンにより焼結体の着色という現
象を引き起す。これは生体インプラント材として
用いる場合、着色していない物質であることが
種々の要因により好ましい。故に白色あるいは乳
白色で半透明で生体の骨や歯に近い色を持つてい
るヒドロオキシアパタイト焼結体が要望されてい
る。
しかして従来法のヒドロオキシアパタイト成形
体の焼結方法は、ゲル状または粉末状の合成ヒド
ロオキシアパタイト原料を空気中、真空中または
不活性ガス雰囲気中で1000〜1300℃の温度範囲で
焼成するものであつた。ヒドロオキシアパタイト
はその示性式Ca5(PO4)3OHで明らかなように
OH基を有しているものの天然産のものはその構
造が安定で加熱によつて容易に分解されないとさ
れているが、合成原料を上記方法で焼結する場合
天然産のものより分解を生じやすく、一部が次式
にしたがつてリン酸三カルシウムCa3(PO4)2に
変化し、過剰のカルシウムは遊離石灰CaOとして
存在するものと考えられている。
Ca5(PO4)3OH→ Ca3(PO4)2+CaO+H2O
このような分解は出発原料のCa/PO4のモル比
(以下Ca/PO4の比と記す)や粒径、成形体の焼
成方法などによつて異なるが、500℃位から始ま
り高温になるほど分解が促進される。かくして生
成するリン酸三カルシウムはヒドロオキシアパタ
イトCa5(PO4)3OHの密度3.16g/cm3よりも低密
度であり、低温安定相のβ型で3.07g/cm3高温安
定相のα型で2.87g/cm3である。このようにして
焼結あるいはほとんど焼結が終了する時点におい
て、ヒドロオキシアパタイトの一部が低密度物質
に変化するため、焼結体内部に組織の不均質と膨
脹応力が生じる。このような不均質性は焼結体の
表層部や粒界で生じやすく微細クラツクの生成や
内部応力の不均質性がもたらされ、機械的及び熱
的強度の低い焼結体しか得られず、寸法も一辺が
10mm以下程度の小さなものしか得られなかつた。
例えば焼結体の形状が単純で寸法が小さい場合圧
縮強度1000〜3000Kg/cm2、曲げ強度200〜500Kg/
cm2程度しかなく、形状が複雑な場合又は形状が単
純でも寸法が大きい焼結体の場合は、焼成後炉よ
り取出した時既に焼結体に目に見えるクラツクが
存在しており、いずれにしても生体インプラント
材としては適さない。
ヒドロオキシアパタイト原料のCa/PO4の比が
低いと、焼結体の分解、すなわちリン酸三カルシ
ウムの生成が生じ易いためCa/PO4の比を理論比
乃至それ以上とすることも考えられるが従来のヒ
ドロオキシアパタイトの焼成方法によれば、ヒド
ロオキシアパタイト原料に過剰のカルシウムが存
在し、Ca/PO4の比が化学式Ca5(PO4)3OHで示
されるヒドロオキシアパタイトにおける理論比
1.67以上の場合はヒドロオキシアパタイトの焼結
性が悪く、焼結体密度/Ca5(PO4)3OHの理論密
度の比(以下焼結率と記す)が92%以下となり、
Ca/PO4の比が1.67以下の場合の焼結率96%程度
に比較して低い焼結体しか得られないという欠点
があつた。
ヒドロオキシアパタイトの焼結性の改善または
分解の防止を目的として少量の各種異種イオンを
添加焼成する方法も考えられてはいるが、十分な
ものはなく、また特殊な元素の添加は生体材料と
して毒性その他の面で好ましくなく、不純物を含
まない高密度高強度の焼結体の出現がまたれてい
た。
更にヒドロオキシアパタイト原料には出発原料
に起因する不純物又は製造されるヒドロオキシア
パタイト焼結体の物性改善のために添加する
Fe、Al、Mg、Si、Ti、Zn、Cu等の不純物を含
むことがあるが、従来のヒドロオキシアパタイト
の焼結体の製造法によれば、例えばヒドロオキシ
アパタイト原料の純度が99.8%以上の高純度であ
つても、鉄イオン等の着色を起すイオンが数十
ppm入つている場合は、そのイオンの色が出て
焼結体は着色するという欠点があつた。そのため
白色乃至乳白色で透明な焼結体を得るためには非
常に高純度のヒドロオキシアパタイト原料を用い
なければならず、製造コストは非常に高いものに
なる。
本発明は従来法の上記欠点を改善し、焼結率が
高く、機械的強度が大でしかも着色しないヒドロ
オキシアパタイト焼結体の焼成方法を提供するも
のである。
しかして本発明の要旨はヒドロオキシアパタイ
ト原料を、水蒸気を含む還元性ガス中で焼成する
ことを特徴とするヒドロオキシアパタイト焼結体
の焼成方法にある。
本発明に用いるヒドロオキシアパタイト原料と
しては、合成されたゲル状又は粉状のヒドロオキ
シアパタイト、これらを更に仮焼した仮焼ヒドロ
オキシアパタイト、又は動物等の骨灰又はこれら
の2つ以上の混合物を用いることができるが、何
れの場合もCa/PO4の比が1.33〜1.95のものが好
ましい。Ca/PO4の比が1.33以下の場合は密度が
小さくなり、従つて十分な機械的強度が得られ
ず、1.95以上の場合は焼結体に遊離のカルシウム
を生ずるので、強度上又は医学上好ましくない影
響を生ずるおそれがある。Ca/PO4の比が1.67〜
1.80の場合特に優れた物性のヒドロオキシアパタ
イト焼結体を得ることができる。このようなヒド
ロオキシアパタイト原料を調整するには、例えば
消石灰とリン酸を水の存在下PH9〜11で反応さ
せ、生成したヒドロオキシアパタイトの沈澱を水
洗することなく反応液から分離することにより
Ca/PO4の比が1.67〜1.80のヒドロオキシアパタ
イト原料が得られる。この際、合成時のPHと
Ca/PO4の比の間には相関々係があるので、合成
時のPHを調整することによりCa/PO4の比をコン
トロールすることができる。又上記生成したヒド
ロオキシアパタイトの沈澱は水洗するとカルシウ
ム分が流出するので、水洗しないのが好ましい。
ヒドロオキシアパタイト原料のCa/PO4の比を
調整するには、この他リン酸三カルシウムを加え
てCa/PO4の比を低下させ、又はCaO、CaCl2、
CaF2等のカルシウム分を添加してCa/PO4の比
を高めることもできる。更に本発明に用いるヒド
ロオキシアパタイト原料には必要に応じて焼結体
の物性に特徴を与えるためにMgO、Na2O、
K2O、CaF2、Al2O3、SiO2等の添加物を2重量%
以内添加してもよい。
このようにして調整したヒドロオキシアパタイ
ト原料はそのまま焼成してもよいし、必要があれ
ば金型又はラバープレスにより加圧成形して焼成
する。より焼結率の高い焼結体を得るためには通
常の圧力で加圧成形した方がよい。更に粉状のヒ
ドロオキシアパタイト原料は仮焼すれば嵩密度が
上るので予め800℃程度で仮焼して用いればより
焼結率の高い焼結体を得ることができる。
さて本発明においては上記のように調整または
前処理したヒドロオキシアパタイト原料を加圧成
形後水蒸気を含む還元性ガス中において1100〜
1350℃の温度範囲で焼成するところに特徴があ
る。還元雰囲気ではヒドロオキシアパタイト成形
体の焼結が促進され急速な緻密化が生じ、特に
Ca/PO4理論比以上の過剰のカルシウムが存在す
る場合、その結果が著るしい。ヒドロオキシアパ
タイトの焼成に際し、リン酸三カルシウムへの分
解が起きることは前述したが、本発明者らは還元
性ガスに水蒸気を添加することによつてこれを完
全に防止できることを見出し、理論密度の99%以
上の極めて緻密なしかも組織的に均一な焼結体の
製造が可能になり、従来法とは比較にならない高
強度化を実現できた。本方法によれば焼結促進の
ための添加剤を必要とせず純ヒドロオキシアパタ
イト焼結体が得られるので生体材料の製造方法と
して極めて適切なものである。さらに生体材料と
しての要求上異種元素を若干含有させる必要が生
じても本方法によれば焼結上何らの障害になら
ず、純アパタイトと同様高強度の焼結体が得られ
る。
本発明に用いる還元性ガスとしては水素、一酸
化炭素、水性ガス、アンモニア分解ガス及びこれ
らの混合ガス、又は不活性ガスとこれらのガスの
混合物をあげることができる。その他還元性ガス
ならば何でも用いることができるが、例えば炭化
水素類は還元性はあるが、焼成の際に分解した炭
素が焼結体の表面に付着するおそれがあるので、
着色を問題にする場合は好ましくない。
次に還元性ガスに添加する水蒸気の量は5℃に
おける飽和水蒸気の量以上にするのが好ましい。
これより少ない場合は焼結体の粒界にα―リン酸
三カルシウムが生成し、機械的強度が低下する。
水蒸気を還元性ガスに添加するには、還元性ガス
を5℃以上の水中に通して添加してもよいし、水
蒸気又は水を炉内に直接添加してもよい。
焼成温度は焼結方法により異なり、ゲル状の原
料をそのまま容器に入れて焼結させる場合、又は
未仮焼又は仮焼した粉末原料を前もつて加圧成形
して焼結させる場合は1100〜1350℃の温度範囲で
焼結するのが好ましく、加圧成形した場合は焼結
率94〜99.5%の焼結体が得られた。未仮焼又は仮
焼粉末原料をホツトプレスを用いて焼結する場合
は700〜1200℃の範囲が好ましく、95〜99%以上
の焼結率の焼結体を得ることができた。この場合
は圧力と焼結温度は相関関係があり、700℃でも
2000Kg/cm2の圧力を加えると99%以上の焼結率に
なる。圧力は100〜2000Kg/cm2の範囲が経済的に
有利な範囲である。
上記本発明の方法によれば従来法では焼成がし
にくく、92%の低焼結率しか得られなかつた
Ca/PO4の比が1.67以上のヒドロオキシアパタイ
トの原料組成範囲においても、高焼結率の焼結体
を得ることができる。これは前述の如くヒドロオ
キシアパタイトの焼結性を還元性雰囲気で焼成す
ることによつて著るしく向上させ、しかもリン酸
三カルシウムへの分解を水蒸気を添加することに
よつて防止することにある。特にCa/PO4の理論
比1.67以上とすることによつてその効果が顕著で
ある。しかしてヒドロオキシアパタイト原料の
Ca/PO4の比としては1.67〜1.80が最も好適であ
り、この範囲の原料を用いると、98〜99%の高焼
結率の焼結体を得ることができる。Ca/PO4の比
が1.67以下では結晶の粒成長が促進され、1.80以
上では結晶の粒成長が抑制され過ぎ、何れの場合
も焼結率はやや低下した。又Ca/PO4の比が1.67
〜1.80の範囲では勿論、前述のように1.95までは
焼結体中には遊離したカルシウムは存在しないこ
とが確認され、本発明の方法によるヒドロオキシ
アパタイト焼結体は物理的性質は変つたが、化学
的性質は何ら変化していないことが解つた。又、
Mg、Zn、Si等の焼結を阻害する元素が含まれて
いる合成ヒドロオキシアパタイト原料の場合も、
同様の理由で99%以上の焼結率の焼結体を得るこ
とができた。
本発明の方法で製造したヒドロオキシアパタイ
ト焼結体は焼結率が高く、クラツクがなく、又膨
脹応力が内包されていないので圧縮強度4000〜
7000Kg/cm2、曲げ強度1000〜1600Kg/cm2の高い機
械的強度があり、ヒドロオキシアパタイト粉末を
用いた従来の焼結体の機械的強度の2〜3倍の値
であり、生体インプラント材として極めて優れて
いる。
次にヒドロオキシアパタイト原料に出発原料に
起因する不純物又は製造されるヒドロオキシアパ
タイト焼結体の物性改善のために添加する不純物
を含む場合がある。このようなヒドロオキシアパ
タイト原料を用いた場合でも、本発明の方法にお
いては還元性ガス中で焼成するため焼結体は上記
不純物に起因する着色を生ずることはない。例え
ば生体の骨にはCa、P以外にNa、K、Mg、Sr、
Fe、Zn、Al、F、Cl等の元素が混入しているの
で、生体の骨又は骨灰を原料とし又はこれ等を合
成アパタイト原料に混入して従来法により焼成す
ると青色又は薄赤色に着色した焼結体が得られた
が、本発明の方法により焼成した場合白色乃至乳
白色の透明な焼結体が得られた。尚上記の場合不
純物の量は2重量%であつた。合成アパタイト原
料にMg、Zn、Si、Na、K、Al、Ti、Cuの不純
物を2重量%混入し、本発明の方法により焼成し
た場合も同様に白色乃至乳白色の透明な焼結体が
得られた。
以下実施例によつて本発明の方法を更に詳述す
る。
実施例 1
空気中800℃、3時間仮焼し造粒したヒドロオ
キシアパタイト原料を用い成形体を作製し、1050
〜1350℃で水素ガスを200c.c./min流しながら、
これに時間当り1gの水蒸気を炉内に直接加えて
焼結を行ない、ヒドロオキシアパタイトの焼結体
を得た。なお、焼成時間は30分乃至9時間の最大
密度の焼結体を得るよう選択して行つた。用いた
ヒドロオキシアパタイトはCa/PO4の比が1.62〜
1.85になるように合成した物である。
比較として同じヒドロオキシアパタイト原料を
用い、同様な方法で成形体を作製し、空気中で焼
成した焼結体を作製した。第1図〜第3図にその
結果を示す。第1図はCa/PO4の比を1.62〜1.70
に変えて従来法により空気中で焼成した場合の焼
成温度と焼結率の関係を示す。図から最適な
Ca/PO4の比は1.62〜1.65で焼成温度1200〜1300
℃の場合焼結率は94〜95%に達するが、Ca/PO4
の比が1.67以上、即ち第1図における1.70の場合
は焼結率は大巾に低下していることが解る。第2
図はCa/PO4の比を1.65〜1.85に変化させ、本発
明の方法により水蒸気を含む水素ガス雰囲気中で
焼成した場合の焼成温度と焼結率の関係を示す。
図からCa/PO4の比が1.65〜1.85の広い範囲にわ
たりいずれも従来法の空中焼成の場合より優れた
焼結体が得られることが解る。第3図は第2図と
同じデータを用い、各焼成温度別にCa/PO4の比
と焼結率の関係を示したグラフである。第2図及
び第3図からCa/PO4の比が1.67〜1.80の場合焼
結率の最も高い優れた焼結体が得られることが解
る。第4図は焼成温度が1250℃で1時間焼成した
場合の本発明の方法と従来法による焼結体の
Ca/PO4の比と曲げ強度の関係を示す。図から
Ca/PO4の比1.60〜1.85の全ての範囲にわたり、
本発明法により得られた焼結体は従来法により得
られた焼結体の2〜6倍の曲げ強度を有し、
Ca/PO4の比が1.67〜1.80の範囲で曲げ強度は最
も大で、1400〜1600Kg/cm2に達していることが解
る。
又従来法により空気中で焼成して得た焼結体は
不透明で青く着色していたが、本発明の水蒸気を
含む水素ガス中で焼成して得た焼結体は白色乃至
乳白色の透明なものであつた。尚本実施例に用い
た合成ヒドロオキシアパタイト原料は試薬特級を
出願原料として使用し、純度は99.8%以上であつ
た。
実施例 2
実施例1で用いたと同じヒドロオキシアパタイ
ト原料を用い、還元性ガスとしてアンモニア分解
ガス、CO、水性ガスを用い、これらのガスを200
c.c./minの流量で流しながら、これに1時間当り
1gの水蒸気を加え1250℃で1時間焼結を行な
い、焼結体を製造した。その結果実施例1のH2
ガスを用いた場合と同程度の焼結率及び機械的強
度を示し、色も白色乃至乳白色の透明なものであ
つた。
実施例 3
合成ヒドロオキシアパタイトのCa/PO4の比が
1.75の粉末を用いた成形体を1250℃で1時間焼成
した。焼成の雰囲気は水素ガスを各種温度に調節
した水の中を通し、その温度の水の飽和蒸気を含
む水素ガスを用いた。その結果を第5図に示す。
5℃以下の飽和蒸気を含む水素ガスの雰囲気の
場合焼結率も低下し、またその焼結体はクラツク
を生じることがあり、機械的強度も800〜1000
Kg/cm2の曲げ強度と低い値になつた。しかし5℃
以上においては実施例1、2と同じ結果を示し
た。また直接炉内に上記条件と同じ量の水蒸気ま
たは水を添加しても同様な結果となつた。
水素ガスの流量を0.5c.c./min〜500c.c./minま
で変化させたが同様な結果しか得られなかつた。
実施例 4
消石灰として工業用消石灰を用い、リン酸とし
て食添用リン酸を用い、PH9.5で合成したヒドロ
オキシアパタイト原料をH2ガスを用いる実施例
1の方法で焼成し、焼結体を得た。上記合成ヒド
ロオキシアパタイト原料は第1表に示す不純物を
含んでいたが、得られた焼結体は白色乃至乳白色
の透明なものであつた。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for firing a sintered hydroxyapatite body used as a biomaterial. Biological implant materials that have conventionally been mainly used for bones, tooth roots, etc. include metal materials and polymer materials. All of these have the disadvantage that they are foreign substances to the bones and roots of the living body and lack compatibility with the living body. Recently, ceramic materials, which are stable in vivo, non-toxic, and non-irritating, have been developed as biomaterials aimed at improving this drawback. Biomedical glass, glassy carbon, alumina, hydroxyapatite [Ca x (PO 4 ) Y OH], etc. have been proposed as ceramic-based bioimplant materials. Among these, hydroxyapatite, which has the same composition as the main inorganic component of living organisms and has excellent affinity with living organisms, is attracting attention. Hydroxyapatite is represented by the chemical formula Ca x (PO 4 ) Y OH, and the theoretical hydroxyapatite is X=5, Y=3, and the X/Y ratio is 1.67. However, the actual composition is influenced by the manufacturing method,
It is known that products with an X/Y ratio of about 1.33 to 1.95 are produced. Various theories have been proposed as the cause of this wide range of X/Y ratio phenomena: heterogeneous phase coexistence theory, surface adsorption theory, and ion defect theory.All theories are derived from the crystal structure of hydroxyapatite. There is. In order to use hydroxyapatite as a biological implant material for bones, tooth roots, etc., a method of obtaining a high-density and high-strength sintered body by sintering and using this has been considered. In this case, the hydroxyapatite sintered body used as a biological implant material has no cracks inside or on the surface, is large enough to be used as a biological implant material, has high density,
High strength is required. Further, elements and ions other than Ca and P contained in impurities and additives derived from various starting materials used in the synthesis of hydroxyapatite cause the phenomenon of coloring of the sintered body. When used as a biological implant material, it is preferable to use an uncolored substance due to various factors. Therefore, there is a demand for a hydroxyapatite sintered body that is white or milky white, translucent, and has a color similar to that of living bones and teeth. However, the conventional method for sintering hydroxyapatite compacts involves firing a synthetic hydroxyapatite raw material in the form of a gel or powder at a temperature range of 1000 to 1300°C in air, vacuum, or an inert gas atmosphere. It was hot. Hydroxyapatite is manifested by its characteristic formula Ca 5 (PO 4 ) 3 OH
Naturally produced materials that have OH groups are said to have a stable structure and are not easily decomposed by heating, but when synthetic raw materials are sintered using the above method, they tend to decompose more easily than naturally produced materials. It is believed that a portion of the calcium phosphate is easily converted into tricalcium phosphate Ca 3 (PO 4 ) 2 according to the following formula, and that excess calcium exists as free lime CaO. Ca 5 (PO 4 ) 3 OH→ Ca 3 (PO 4 ) 2 +CaO+H 2 O This type of decomposition depends on the starting material Ca/PO 4 molar ratio (hereinafter referred to as Ca/PO 4 ratio), particle size, and molding. Although it varies depending on the method of firing the body, it starts at around 500 degrees Celsius and decomposition accelerates as the temperature gets higher. Tricalcium phosphate thus produced has a density lower than that of hydroxyapatite Ca 5 (PO 4 ) 3 OH, which has a density of 3.16 g/cm 3 , and is in the β form of the low temperature stable phase and 3.07 g/cm 3 of the high temperature stable phase. The mold weight is 2.87g/ cm3 . In this manner, at the time when sintering or almost sintering is completed, a portion of the hydroxyapatite changes into a low-density substance, resulting in structural heterogeneity and expansion stress within the sintered body. Such heterogeneity tends to occur in the surface layer and grain boundaries of the sintered body, resulting in the formation of fine cracks and heterogeneity in internal stress, resulting in a sintered body with low mechanical and thermal strength. , the dimensions are also
Only small pieces of less than 10 mm could be obtained.
For example, if the sintered body has a simple shape and small dimensions, the compressive strength is 1000 to 3000 Kg/ cm2 , and the bending strength is 200 to 500 Kg/cm2.
If the size is only about 2 cm2 and the shape is complex, or the sintered body is simple but large in size, there will already be visible cracks in the sintered body when it is taken out of the furnace after firing. However, it is not suitable as a biological implant material. If the Ca/PO 4 ratio of the hydroxyapatite raw material is low, the decomposition of the sintered body, that is, the formation of tricalcium phosphate, is likely to occur, so it is also possible to set the Ca/PO 4 ratio to the theoretical ratio or higher. However, according to the conventional hydroxyapatite firing method, excess calcium is present in the hydroxyapatite raw material, and the Ca/PO 4 ratio is the theoretical ratio in hydroxyapatite represented by the chemical formula Ca 5 (PO 4 ) 3 OH.
If it is 1.67 or more, the sinterability of hydroxyapatite is poor, and the ratio of sintered body density/theoretical density of Ca 5 (PO 4 ) 3 OH (hereinafter referred to as sintering rate) is 92% or less.
The drawback was that only a low sintered body could be obtained compared to the sintering rate of about 96% when the Ca/PO 4 ratio was 1.67 or less. A method of adding small amounts of various different ions and firing them to improve the sinterability of hydroxyapatite or prevent its decomposition has been considered, but there is no sufficient method, and the addition of special elements is not suitable for biomaterials. This is unfavorable in terms of toxicity and other aspects, and the emergence of high-density, high-strength sintered bodies that do not contain impurities has occurred. Furthermore, it is added to the hydroxyapatite raw material to eliminate impurities caused by the starting material or to improve the physical properties of the hydroxyapatite sintered body produced.
Although it may contain impurities such as Fe, Al, Mg, Si, Ti, Zn, Cu, etc., according to the conventional manufacturing method of sintered hydroxyapatite, for example, the purity of the hydroxyapatite raw material is 99.8% or more. Even with high purity, there are dozens of ions that cause coloring, such as iron ions.
When ppm is contained, the disadvantage is that the color of the ions comes out and the sintered body becomes colored. Therefore, in order to obtain a white to milky white and transparent sintered body, it is necessary to use a hydroxyapatite raw material of extremely high purity, and the manufacturing cost becomes extremely high. The present invention improves the above-mentioned drawbacks of the conventional method and provides a method for firing a hydroxyapatite sintered body that has a high sintering rate, high mechanical strength, and does not become colored. The gist of the present invention, therefore, lies in a method for firing a hydroxyapatite sintered body, which comprises firing a hydroxyapatite raw material in a reducing gas containing water vapor. The hydroxyapatite raw materials used in the present invention include synthesized gel-like or powder-like hydroxyapatite, calcined hydroxyapatite obtained by further calcining these, bone ash of animals, etc., or a mixture of two or more of these. However, in any case, one with a Ca/PO 4 ratio of 1.33 to 1.95 is preferable. If the Ca/PO 4 ratio is less than 1.33, the density will be low and therefore sufficient mechanical strength will not be obtained, and if it is more than 1.95, free calcium will be produced in the sintered body, which is important for strength or medical reasons. May cause undesirable effects. Ca/ PO4 ratio is 1.67~
When the value is 1.80, a hydroxyapatite sintered body with particularly excellent physical properties can be obtained. In order to prepare such a hydroxyapatite raw material, for example, slaked lime and phosphoric acid are reacted at pH 9 to 11 in the presence of water, and the resulting hydroxyapatite precipitate is separated from the reaction solution without washing with water.
A hydroxyapatite raw material with a Ca/PO 4 ratio of 1.67 to 1.80 is obtained. At this time, the pH during synthesis and
Since there is a correlation between the Ca/PO 4 ratio, the Ca/PO 4 ratio can be controlled by adjusting the pH during synthesis. Further, if the hydroxyapatite precipitate formed above is washed with water, the calcium content will flow out, so it is preferable not to wash it with water. To adjust the Ca/PO 4 ratio of the hydroxyapatite raw material, add tricalcium phosphate to lower the Ca/PO 4 ratio, or add CaO, CaCl 2 ,
It is also possible to increase the Ca/PO 4 ratio by adding a calcium component such as CaF 2 . Furthermore, the hydroxyapatite raw material used in the present invention may contain MgO, Na 2 O,
2% by weight of additives such as K 2 O, CaF 2 , Al 2 O 3 , SiO 2 etc.
It may be added within The hydroxyapatite raw material prepared in this manner may be fired as it is, or if necessary, it may be pressure-molded using a mold or a rubber press and then fired. In order to obtain a sintered body with a higher sintering rate, it is better to perform pressure molding at normal pressure. Furthermore, if the powdered hydroxyapatite raw material is calcined, its bulk density increases, so if it is calcined at about 800°C before use, a sintered body with a higher sintering rate can be obtained. Now, in the present invention, the hydroxyapatite raw material prepared or pretreated as described above is molded under pressure and then heated to a temperature of 1100~
It is unique in that it is fired at a temperature range of 1350℃. In a reducing atmosphere, sintering of the hydroxyapatite compact is promoted and rapid densification occurs, especially
If there is an excess of calcium above the theoretical Ca/PO 4 ratio, the consequences are significant. As mentioned above, when hydroxyapatite is fired, it decomposes into tricalcium phosphate, but the present inventors discovered that this can be completely prevented by adding water vapor to the reducing gas, and the theoretical density It has become possible to produce an extremely dense and structurally uniform sintered body with a density of more than 99%, resulting in an increase in strength that is incomparable to conventional methods. According to this method, a pure hydroxyapatite sintered body can be obtained without the need for additives to promote sintering, so it is extremely suitable as a method for producing biomaterials. Furthermore, even if it becomes necessary to contain a small amount of a different element due to the requirements as a biomaterial, this method does not cause any hindrance to sintering, and a sintered body with the same high strength as pure apatite can be obtained. Examples of the reducing gas used in the present invention include hydrogen, carbon monoxide, water gas, ammonia decomposition gas, mixed gases thereof, and mixtures of these gases with inert gases. Any other reducing gas can be used; for example, hydrocarbons have reducing properties, but there is a risk that carbon decomposed during firing may adhere to the surface of the sintered body.
Not preferable if coloring is a problem. Next, the amount of water vapor added to the reducing gas is preferably greater than the amount of saturated water vapor at 5°C.
When the amount is less than this, α-tricalcium phosphate is generated at the grain boundaries of the sintered body, resulting in a decrease in mechanical strength.
To add steam to the reducing gas, the reducing gas may be added by passing it through water at 5° C. or higher, or the steam or water may be added directly into the furnace. The firing temperature varies depending on the sintering method, and is 1,100 to 1,000 yen when the gel-like raw material is directly placed in a container and sintered, or when uncalcined or calcined powder raw material is pressure-formed in advance and sintered. It is preferable to sinter at a temperature range of 1350°C, and when pressure molding was performed, a sintered body with a sintering rate of 94 to 99.5% was obtained. When uncalcined or calcined powder raw materials are sintered using a hot press, the temperature is preferably in the range of 700 to 1200°C, and it was possible to obtain a sintered body with a sintering rate of 95 to 99% or more. In this case, there is a correlation between pressure and sintering temperature, even at 700℃.
Applying a pressure of 2000Kg/cm 2 results in a sintering rate of over 99%. An economically advantageous pressure range is 100 to 2000 Kg/cm 2 . According to the method of the present invention, sintering was difficult with the conventional method and only a low sintering rate of 92% could be obtained.
A sintered body with a high sintering rate can be obtained even in a raw material composition range of hydroxyapatite in which the Ca/PO 4 ratio is 1.67 or more. As mentioned above, the sinterability of hydroxyapatite can be significantly improved by firing it in a reducing atmosphere, and its decomposition into tricalcium phosphate can be prevented by adding water vapor. be. In particular, the effect is remarkable when the theoretical ratio of Ca/PO 4 is set to 1.67 or more. However, the hydroxyapatite raw material
The most suitable Ca/PO 4 ratio is 1.67 to 1.80, and when raw materials in this range are used, a sintered body with a high sintering rate of 98 to 99% can be obtained. When the Ca/PO 4 ratio is 1.67 or less, crystal grain growth is promoted, and when it is 1.80 or more, crystal grain growth is suppressed too much, and the sintering rate slightly decreases in both cases. Also, the Ca/PO 4 ratio is 1.67.
It was confirmed that free calcium does not exist in the sintered body within the range of 1.80 to 1.95 as mentioned above, and the hydroxyapatite sintered body produced by the method of the present invention has a different physical property. It was found that the chemical properties did not change at all. or,
In the case of synthetic hydroxyapatite raw materials that contain elements that inhibit sintering, such as Mg, Zn, and Si,
For the same reason, we were able to obtain a sintered body with a sintering rate of 99% or more. The hydroxyapatite sintered body produced by the method of the present invention has a high sintering rate, no cracks, and does not contain expansion stress, so it has a compressive strength of 4000~
It has a high mechanical strength of 7000Kg/cm 2 and a bending strength of 1000 to 1600Kg/cm 2 , which is 2 to 3 times the mechanical strength of conventional sintered bodies using hydroxyapatite powder, making it an excellent biological implant material. It is extremely excellent. Next, the hydroxyapatite raw material may contain impurities originating from the starting raw material or impurities added to improve the physical properties of the produced hydroxyapatite sintered body. Even when such a hydroxyapatite raw material is used, in the method of the present invention, the sintered body is not colored due to the above-mentioned impurities because it is fired in a reducing gas. For example, in addition to Ca and P, living bones contain Na, K, Mg, Sr,
Because elements such as Fe, Zn, Al, F, and Cl are mixed in, if living bone or bone ash is used as a raw material, or if these are mixed into a synthetic apatite raw material and fired using the conventional method, it will be colored blue or light red. A sintered body was obtained, and when fired by the method of the present invention, a white to milky white transparent sintered body was obtained. In the above case, the amount of impurities was 2% by weight. Similarly, when 2% by weight of impurities such as Mg, Zn, Si, Na, K, Al, Ti, and Cu are mixed into the synthetic apatite raw material and fired by the method of the present invention, a white to milky white transparent sintered body can be obtained. It was done. The method of the present invention will be explained in more detail with reference to Examples below. Example 1 A molded body was produced using a hydroxyapatite raw material that had been calcined and granulated at 800°C in air for 3 hours.
While flowing hydrogen gas at ~1350℃ at 200c.c./min,
Sintering was performed by directly adding 1 g of steam per hour into the furnace to obtain a sintered body of hydroxyapatite. The firing time was selected from 30 minutes to 9 hours to obtain a sintered body with maximum density. The hydroxyapatite used has a Ca/ PO4 ratio of 1.62~
It was synthesized to have a value of 1.85. For comparison, a molded body was produced in the same manner using the same hydroxyapatite raw material, and a sintered body was produced by firing in air. The results are shown in FIGS. 1 to 3. Figure 1 shows the Ca/PO 4 ratio of 1.62 to 1.70.
The relationship between firing temperature and sintering rate when firing in air using the conventional method is shown below. Optimal from the diagram
The Ca/PO 4 ratio is 1.62-1.65 and the firing temperature is 1200-1300.
℃, the sintering rate reaches 94-95%, but Ca/PO 4
It can be seen that when the ratio is 1.67 or more, that is, 1.70 in Figure 1, the sintering rate is significantly reduced. Second
The figure shows the relationship between firing temperature and sintering rate when the Ca/PO 4 ratio was varied from 1.65 to 1.85 and firing was performed in a hydrogen gas atmosphere containing water vapor by the method of the present invention.
From the figure, it can be seen that sintered bodies with a Ca/PO 4 ratio in a wide range of 1.65 to 1.85 are superior to those obtained by conventional air firing. FIG. 3 is a graph showing the relationship between the Ca/PO 4 ratio and the sintering rate at each firing temperature using the same data as in FIG. 2. It can be seen from FIGS. 2 and 3 that an excellent sintered body with the highest sintering rate can be obtained when the Ca/PO 4 ratio is 1.67 to 1.80. Figure 4 shows the results of sintered bodies produced by the method of the present invention and by the conventional method when the firing temperature was 1250°C for 1 hour.
The relationship between Ca/PO 4 ratio and bending strength is shown. From the diagram
Over the entire range of Ca/ PO4 ratios 1.60 to 1.85,
The sintered body obtained by the method of the present invention has a bending strength 2 to 6 times that of the sintered body obtained by the conventional method,
It can be seen that the bending strength is highest when the Ca/PO 4 ratio is in the range of 1.67 to 1.80, reaching 1400 to 1600 Kg/cm 2 . Furthermore, the sintered body obtained by firing in air according to the conventional method was opaque and colored blue, but the sintered body obtained by firing in hydrogen gas containing water vapor according to the present invention was white to milky white and transparent. It was hot. The synthetic hydroxyapatite raw material used in this example was a special grade reagent and had a purity of 99.8% or more. Example 2 The same hydroxyapatite raw material as used in Example 1 was used, and ammonia decomposition gas, CO, and water gas were used as reducing gases, and these gases were
per hour while flowing at a flow rate of cc/min.
1 g of water vapor was added and sintering was performed at 1250°C for 1 hour to produce a sintered body. As a result, H 2 of Example 1
The sintering rate and mechanical strength were comparable to those using gas, and the color was white to milky white and transparent. Example 3 The Ca/PO 4 ratio of synthetic hydroxyapatite is
A molded body using 1.75 powder was fired at 1250°C for 1 hour. For the firing atmosphere, hydrogen gas was passed through water adjusted to various temperatures, and hydrogen gas containing saturated vapor of water at that temperature was used. The results are shown in FIG. In the case of a hydrogen gas atmosphere containing saturated steam at a temperature of 5℃ or less, the sintering rate will decrease, and the sintered body may crack, and its mechanical strength will be 800 to 1000.
The bending strength was as low as Kg/ cm2 . But 5℃
The above results showed the same results as Examples 1 and 2. Further, even when the same amount of steam or water as the above conditions was added directly into the furnace, similar results were obtained. Although the flow rate of hydrogen gas was varied from 0.5 cc/min to 500 c.c./min, only similar results were obtained. Example 4 A hydroxyapatite raw material synthesized at pH 9.5 using industrial slaked lime as slaked lime and food additive phosphoric acid as phosphoric acid was sintered by the method of Example 1 using H 2 gas to produce a sintered body. I got it. Although the synthetic hydroxyapatite raw material contained the impurities shown in Table 1, the obtained sintered body was white to milky white and transparent. 【table】
第1図は従来法における焼成温度と焼結率の関
係を示すグラフ、第2図は本発明の方法における
焼成温度と焼結率の関係を示すグラフ、第3図は
本発明の方法におけるCa/PO4の比と焼結率の関
係を示すグラフ、第4図は本発明の方法と従来法
による焼結体の焼成温度と曲げ強度の関係を示す
グラフ、第5図は本発明の方法において還元性ガ
スに水蒸気を与える水の温度と得られた焼結体の
焼結率の関係を示すグラフである。
Figure 1 is a graph showing the relationship between firing temperature and sintering rate in the conventional method, Figure 2 is a graph showing the relationship between firing temperature and sintering rate in the method of the present invention, and Figure 3 is a graph showing the relationship between firing temperature and sintering rate in the method of the present invention. /PO 4 ratio and sintering rate, Figure 4 is a graph showing the relationship between sintering temperature and bending strength of sintered bodies according to the method of the present invention and the conventional method, and Figure 5 is a graph showing the relationship between the method of the present invention and the sintering rate. 2 is a graph showing the relationship between the temperature of water that provides steam to the reducing gas and the sintering rate of the obtained sintered body.
Claims (1)
還元性ガス中で焼成することを特徴とするヒドロ
オキシアパタイト焼結体の焼成方法。 2 前記還元性ガスが水素、一酸化炭素、水性ガ
ス及びアンモニア分解ガスの中から選ばれた1つ
又は2つ以上又はこれらと不活性ガスとの混合ガ
スよりなることを特徴とする特許請求の範囲第1
項に記載のヒドロオキシアパタイト焼結体の焼成
方法。 3 前記水蒸気の量が5℃における飽和蒸気量以
上であることを特徴とする特許請求の範囲第1項
又は第2項に記載のヒドロオキシアパタイト焼結
体の焼成方法。 4 前記ヒドロオキシアパタイト原料として湿式
法にて生成したゲルをそのまま用い、該ゲルを
1100〜1350℃の温度で焼成することを特徴とする
特許請求の範囲第1項、第2項又は第3項に記載
のヒドロオキシアパタイト焼結体の焼成方法。 5 前記ヒドロオキシアパタイト原料として未仮
焼の粉末原料を用い、該粉末原料を加圧成形して
1100〜1350℃の温度で焼成することを特徴とする
特許請求の範囲第1項、第2項又は第3項に記載
のヒドロオキシアパタイト焼結体の焼成方法。 6 前記ヒドロオキシアパタイト原料として仮焼
された粉末原料を用い、該仮焼粉末原料を加圧成
形して1100〜1350℃の温度で焼成することを特徴
とする特許請求の範囲第1項、第2項又は第3項
に記載のヒドロオキシアパタイト焼結体の焼成方
法。 7 前記ヒドロオキシアパタイト原料として未仮
焼の粉末原料を用い、該粉末原料をホツトプレス
により700〜1200℃の温度で焼成することを特徴
とする特許請求の範囲第1項、第2項又は第3項
に記載のヒドロオキシアパタイト焼結体の焼成方
法。 8 前記ヒドロオキシアパタイト原料として仮焼
された粉末原料を用い、該仮焼粉末原料をホツト
プレスにより700〜1200℃の温度で焼成すること
を特徴とする特許請求の範囲第1項、第2項又は
第3項に記載のヒドロオキシアパタイト焼結体の
焼成方法。 9 前記ヒドロオキシアパタイト原料にNa、
K、Mg、Sr、Si、Fe、Zn、Ti、Al、F、Cu又
はClの元素が1種以上混入していることを特徴
とする特許請求の範囲第1項乃至第8項の何れか
に記載のヒドロオキシアパタイト焼結体の焼成方
法。 10 前記ヒドロオキシアパタイト原料のCa/
PO4のモル比が1.67〜1.80であることを特徴とす
る特許請求の範囲第1項乃至第9項の何れかに記
載のヒドロオキシアパタイトの焼成方法。[Scope of Claims] 1. A method for firing a hydroxyapatite sintered body, which comprises firing a hydroxyapatite raw material in a reducing gas containing water vapor. 2. A patent claim characterized in that the reducing gas is composed of one or more selected from hydrogen, carbon monoxide, water gas, and ammonia decomposition gas, or a mixed gas of these and an inert gas. Range 1
A method for firing a hydroxyapatite sintered body as described in . 3. The method for firing a hydroxyapatite sintered body according to claim 1 or 2, wherein the amount of water vapor is greater than or equal to the saturated vapor amount at 5°C. 4 Using the gel produced by the wet method as it is as the hydroxyapatite raw material, the gel is
A method for firing a hydroxyapatite sintered body according to claim 1, 2, or 3, characterized in that the firing is performed at a temperature of 1100 to 1350°C. 5. Using an uncalcined powder raw material as the hydroxyapatite raw material, pressure molding the powder raw material.
A method for firing a hydroxyapatite sintered body according to claim 1, 2, or 3, characterized in that the firing is performed at a temperature of 1100 to 1350°C. 6. Claims 1 and 2, characterized in that a calcined powder raw material is used as the hydroxyapatite raw material, and the calcined powder raw material is pressure-molded and fired at a temperature of 1100 to 1350°C. A method for firing a hydroxyapatite sintered body according to item 2 or 3. 7. Claims 1, 2, or 3, characterized in that an uncalcined powder raw material is used as the hydroxyapatite raw material, and the powder raw material is fired at a temperature of 700 to 1200°C by hot pressing. A method for firing a hydroxyapatite sintered body as described in . 8. Claims 1, 2, or 8, characterized in that a calcined powder raw material is used as the hydroxyapatite raw material, and the calcined powder raw material is fired at a temperature of 700 to 1200°C using a hot press. The method for firing a hydroxyapatite sintered body according to item 3. 9 Na in the hydroxyapatite raw material,
Any one of claims 1 to 8, characterized in that one or more of the following elements are mixed: K, Mg, Sr, Si, Fe, Zn, Ti, Al, F, Cu, or Cl. A method for firing a hydroxyapatite sintered body as described in . 10 Ca/ of the hydroxyapatite raw material
The method for firing hydroxyapatite according to any one of claims 1 to 9, characterized in that the molar ratio of PO 4 is 1.67 to 1.80.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3769179A JPS55130854A (en) | 1979-03-31 | 1979-03-31 | Method of burning hydroxyyapatite sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3769179A JPS55130854A (en) | 1979-03-31 | 1979-03-31 | Method of burning hydroxyyapatite sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS55130854A JPS55130854A (en) | 1980-10-11 |
JPS6158422B2 true JPS6158422B2 (en) | 1986-12-11 |
Family
ID=12504577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3769179A Granted JPS55130854A (en) | 1979-03-31 | 1979-03-31 | Method of burning hydroxyyapatite sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS55130854A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1247960A (en) | 1983-03-24 | 1989-01-03 | Hideki Aoki | Transcutaneously implantable element |
JPS59189841A (en) * | 1983-04-09 | 1984-10-27 | 三菱鉱業セメント株式会社 | Sealing gasket for filling bone carnal |
JPS59200642A (en) * | 1983-04-28 | 1984-11-14 | 三菱鉱業セメント株式会社 | Bone fixing nail |
JPS6171059A (en) * | 1984-09-13 | 1986-04-11 | 名神株式会社 | Composition for filling bone and tooth and its production |
JPS6171060A (en) * | 1984-09-13 | 1986-04-11 | 名神株式会社 | Alpha-calcium triphosphate composition for filling bone and tooth and its production |
JPS61127658A (en) * | 1984-11-26 | 1986-06-14 | セントラル硝子株式会社 | Manufacture of porous calcium phosphate ceramics |
NL8501848A (en) * | 1985-06-27 | 1987-01-16 | Philips Nv | METHOD FOR THE MANUFACTURE OF HYDROXYPHOSPHATE MOLDINGS |
JPS6456056A (en) * | 1987-08-26 | 1989-03-02 | Dental Chem Co Ltd | Hydroxyapatite bone filling material |
JP2801022B2 (en) * | 1988-09-29 | 1998-09-21 | 株式会社サンギ | Antimicrobial hydroxyapatite composition and method for producing the same |
-
1979
- 1979-03-31 JP JP3769179A patent/JPS55130854A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS55130854A (en) | 1980-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1042222B1 (en) | Process for the preparation of magnesium and carbonate substituted hydroxyapatite | |
US5470803A (en) | Method for the preparation of carbonated hydroxyapatite compositions | |
JP2567888B2 (en) | Solid calcium phosphate material | |
US4149894A (en) | Process for producing an apatite powder having improved sinterability | |
EP0705802A1 (en) | TYPE $g(a) TRICALCIUM PHOSPHATE CERAMIC AND PROCESS FOR PRODUCING THE SAME | |
JP2010100521A (en) | Single-phase carbonate-substituted hydroxyapatite composition | |
JPS6158422B2 (en) | ||
JPS6287406A (en) | Production of beta-tricalcium phosphate | |
US20030235622A1 (en) | Method of preparing alpha-and-beta-tricalcium phosphate powders | |
JP2756703B2 (en) | Spherical apatite, method for producing the same, and molded article with porous structure | |
JPS5924726B2 (en) | Production method of hydroxyapatite | |
RU2392007C2 (en) | Manufacture method of calcium phosphate-based porous material | |
Salahi et al. | Synthesis and thermal behaviour of β tricalcium phosphate precipitated from aqueous solutions | |
JP3082503B2 (en) | Precursor for artificial bone production and method for producing artificial bone | |
JPH0627025B2 (en) | Hydroxyapatite filter cake dried product | |
Matsumoto et al. | Preparation of Beta‐Tricalcium Phosphate Powder Substituted with Na/Mg Ions by Polymerized Complex Method | |
WO2000068144A1 (en) | Method for the preparation of carbonated hydroxyapatite compositions | |
JPH0333048A (en) | Corrosion resistant ceramic vessel | |
EP1473273A1 (en) | Method of preparing alpha-and beta-tricalcium phosphate powders | |
JPH07291723A (en) | Alpha-tricalcium phosphate ceramics and production thereof | |
JPS6025384B2 (en) | Manufacturing method of high-density magnesia sintered body | |
JPS6366790B2 (en) | ||
JPS6158425B2 (en) | ||
JPH0761861A (en) | Production of sintered apatite carbonate | |
JPS621733B2 (en) |