JPS6155031B2 - - Google Patents
Info
- Publication number
- JPS6155031B2 JPS6155031B2 JP55132892A JP13289280A JPS6155031B2 JP S6155031 B2 JPS6155031 B2 JP S6155031B2 JP 55132892 A JP55132892 A JP 55132892A JP 13289280 A JP13289280 A JP 13289280A JP S6155031 B2 JPS6155031 B2 JP S6155031B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- compressor
- conduit
- liquid
- product gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Separation By Low-Temperature Treatments (AREA)
Description
【発明の詳細な説明】
本発明は空気分離装置に利用可能なブロー液体
酸素の寒冷有効利用法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for effectively utilizing blown liquid oxygen for cooling, which can be used in an air separation device.
まず、第1図により従来技術を説明する。原料
空気は導管10より空気圧縮機1に入り約5Kg/
cm2Gに昇圧し、導管11より冷却器2に入り常温
まで冷却して導管12より保冷槽3に入り、酸素
および窒素等に精留分離される。製品ガス酸素
は、導管15より酸素圧縮機5に入り昇圧され圧
送される。また、保冷槽3内精留塔部より防爆対
策としてブロー液体酸素が導管13より抽出さ
れ、液酸ブロー蒸発器4により大気または水と熱
交換し、常温まで温度回復して導管14より前記
製品ガス酸素と合流する。 First, the prior art will be explained with reference to FIG. Raw material air enters the air compressor 1 through the conduit 10, approximately 5 kg/
It is pressurized to cm 2 G, enters a cooler 2 through a conduit 11, cools to room temperature, enters a cold storage tank 3 through a conduit 12, and is rectified and separated into oxygen, nitrogen, and the like. The product gas oxygen enters the oxygen compressor 5 through the conduit 15 and is pressurized and sent under pressure. In addition, blow liquid oxygen is extracted from the rectification tower section in the cold storage tank 3 through a conduit 13 as an explosion-proof measure, and is exchanged with air or water in the liquid acid blow evaporator 4 to recover the temperature to room temperature. Combines with gas oxygen.
本発明は上記酸素圧縮機の消費動力を低下させ
ることを目的としたもので、従来有効に利用され
ていなかつたブロー液体酸素の寒冷を利用するよ
うにしたものである。すなわち、従来ではブロー
液体酸素は大気または水と熱交換し、常温まで温
度回復した後製品ガス酸素と合流し酸素圧縮機に
入つていたのに対し、本発明ではブロー液体酸素
の液体のまま製品ガス酸素と合流させることによ
り、製品ガス酸素の酸素圧縮機入口温度を低下さ
せ消費動力を低下させることを可能ならしめたも
のである。 The present invention aims to reduce the power consumption of the oxygen compressor, and utilizes the cooling of blown liquid oxygen, which has not been effectively utilized in the past. In other words, in the past, blown liquid oxygen exchanged heat with the atmosphere or water, and after recovering to room temperature, merged with product gas oxygen and entered the oxygen compressor, whereas in the present invention, blown liquid oxygen remains as a liquid. By merging the product gas with oxygen, it is possible to lower the temperature of the product gas oxygen at the oxygen compressor inlet, thereby reducing power consumption.
以下、本発明を第2図の一実施例により詳細に
説明する。原料空気は導管10より空気圧縮機1
に入り約5Kg/cm2Gに昇圧し、導管11より冷却
器2に入り常温まで冷却して導管12より保冷槽
3に入り、酸素および窒素等に精留分離される。
製品ガス酸素は導管15より酸素圧縮機5に入り
昇圧され圧送される。また、保冷槽3内精留塔部
より防爆対策としてブロー液体酸素が導管13よ
り抽出され、液状のまま前記製品ガス酸素に合流
する。液状のブロー液体酸素は常温の製品ガス酸
素により蒸発加温され、一方製品ガス酸素自体の
温度が低下する。 Hereinafter, the present invention will be explained in detail with reference to an embodiment shown in FIG. Raw material air is sent from conduit 10 to air compressor 1
It is pressurized to approximately 5 kg/cm 2 G, enters a cooler 2 through a conduit 11, cools to room temperature, enters a cold storage tank 3 through a conduit 12, and is rectified and separated into oxygen, nitrogen, and the like.
The product gas oxygen enters the oxygen compressor 5 through the conduit 15 and is pressurized and sent under pressure. Further, blow liquid oxygen is extracted from the rectifying column section in the cold storage tank 3 through a conduit 13 as an explosion-proof measure, and joins the product gas oxygen in a liquid state. The liquid blow liquid oxygen is evaporated and heated by the product gas oxygen at room temperature, while the temperature of the product gas oxygen itself is lowered.
次に、具体的数値により酸素圧縮機の消費動力
の低下について説明する。 Next, the reduction in power consumption of the oxygen compressor will be explained using specific numerical values.
製品ガス酸素量を10000Nm3/hとすると、ブロ
ー液体酸素量は約100Nm3/hである。また、酸素
圧縮機5の入口条件は、従来法においては2000mm
Aq、25℃が一般的である。理論動力Hiは次式で
計算されることが一般に知られている。 If the product gas oxygen amount is 10000Nm 3 /h, the blow liquid oxygen amount is approximately 100Nm 3 /h. In addition, the inlet condition of the oxygen compressor 5 is 2000 mm in the conventional method.
Aq, 25℃ is common. It is generally known that the theoretical power Hi is calculated using the following formula.
Hi=98/60×Ps×Ws×loPd/Ps
ここで、Ps:酸素圧縮機吸入圧力(Kg/cm2ab
s)
Pd:酸素圧縮機吐出圧力(Kg/cm2abs)
Ws:吸入状態における流量(m3/min)
またWsは次式で計算される。H i =98/60×P s ×W s ×l o P d /P s Here, P s : Oxygen compressor suction pressure (Kg/cm 2 ab
s) P d : Oxygen compressor discharge pressure (Kg/cm 2 abs) W s : Flow rate in suction state (m 3 /min) In addition, W s is calculated by the following formula.
Ws=W×1.0332/Ps×(273.2+Ts)
/273.2×1/60
ここで、W:全製品ガス酸素量(Nm3/h)
Ts:酸素圧縮機吸入温度(℃)
したがつて、従来法の場合、Pd=30Kg/cm2abs
とすると
W:10100Nm3/h
Ps:1.2332Kg/cm2abs
Ts:25℃
であるので、Hi=98/60×1.2332×10100/
60×1.0332/1.2332×
273.2+25/273.2×lo30/1.233
2=990KW.となる。W s = W×1.0332/P s ×(273.2+T s )
/273.2×1/60 Where, W: Total product gas oxygen amount (Nm 3 /h) T s : Oxygen compressor suction temperature (°C) Therefore, in the case of the conventional method, P d = 30Kg/cm 2 abs
Then, W: 10100Nm 3 /h P s : 1.2332Kg/cm 2 abs T s : 25℃, so H i =98/60×1.2332×10100/
60×1.0332/1.2332× 273.2+25/273.2×l o 30/1.233
2=990KW.
次に本発明の場合について説明する。2000mm
Aqの液体酸素を約20℃まで温度回復させるため
には、約135kcal/Nm3LO2が必要である。したが
つて寒冷量としては
Q=135×100=13500kcal/hとなる。 Next, the case of the present invention will be explained. 2000mm
Approximately 135 kcal/Nm 3 LO 2 is required to recover the temperature of Aq liquid oxygen to approximately 20°C. Therefore, the amount of cooling is Q = 135 x 100 = 13,500 kcal/h.
一方、ガス酸素の比熱は2000mmAq、20℃前後
で約0.3kcal/Nm3GO2であるので、前記寒冷によ
る温度降下は
Δt=13500/0.3×10100=4.4℃
となり、Ts=25−4.4=20.6℃
故に、Hi=98/60×1.2332×10100/60
×1.0332/1.2332×
273.2+20.6/273.2×lo30/1.2
332=975KW.となる。 On the other hand, the specific heat of gaseous oxygen is 2000 mmAq and about 0.3 kcal/Nm 3 GO 2 at around 20°C, so the temperature drop due to the cold is Δt = 13500/0.3 x 10100 = 4.4°C, and T s = 25- 4.4=20.6℃ Therefore, H i =98/60×1.2332×10100/60
×1.0332/1.2332× 273.2+20.6/273.2×l o 30/1.2
332=975KW.
したがつて、従来法と比較すると理論動力にお
いて1.5%本発明の方が優れていることが明らか
である。圧縮機の等温効率は従来法も本発明法も
同一と考えられるので、消費動力においても本発
明法が従来法より1.5%優れていることになる。 Therefore, when compared with the conventional method, it is clear that the present invention is superior in terms of theoretical power by 1.5%. Since the isothermal efficiency of the compressor is considered to be the same for both the conventional method and the method of the present invention, the method of the present invention is 1.5% superior to the conventional method in terms of power consumption.
以上述べたように、本発明によれば酸素圧縮機
の消費動力を低下することができる効果がある。 As described above, the present invention has the effect of reducing the power consumption of the oxygen compressor.
第1図は従来法による空気分離装置の系統図、
第2図は本発明法による空気分離装置の系統図で
ある。
1……空気圧縮機、2……冷却器、3……保冷
槽、5……酸素圧縮機。
Figure 1 is a system diagram of an air separation device using the conventional method.
FIG. 2 is a system diagram of an air separation apparatus according to the method of the present invention. 1... Air compressor, 2... Cooler, 3... Cold storage tank, 5... Oxygen compressor.
Claims (1)
れるブロー液体酸素を液体の状態で製品酸素ガス
の常温配管部で合流させて配素圧縮機に導入する
ようにしたことを特徴とするブロー液体酸素の寒
冷有効利用法。1. In an air separation device, blown liquid oxygen is characterized in that blown liquid oxygen extracted from a cold storage tank is combined in a liquid state at a normal temperature piping section for product oxygen gas and introduced into a distribution compressor. Effective use of cold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13289280A JPS5758061A (en) | 1980-09-26 | 1980-09-26 | Effective utilization of cold of blow liquified oxygen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13289280A JPS5758061A (en) | 1980-09-26 | 1980-09-26 | Effective utilization of cold of blow liquified oxygen |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5758061A JPS5758061A (en) | 1982-04-07 |
JPS6155031B2 true JPS6155031B2 (en) | 1986-11-26 |
Family
ID=15091984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13289280A Granted JPS5758061A (en) | 1980-09-26 | 1980-09-26 | Effective utilization of cold of blow liquified oxygen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5758061A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58182253A (en) * | 1982-04-19 | 1983-10-25 | Mitsubishi Electric Corp | Mounting method for non-volatile semiconductor memory device |
JPS5996838U (en) * | 1982-12-20 | 1984-06-30 | 日本電気株式会社 | semiconductor equipment |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54118263U (en) * | 1978-02-03 | 1979-08-18 |
-
1980
- 1980-09-26 JP JP13289280A patent/JPS5758061A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5758061A (en) | 1982-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2063928C (en) | Process for low-temperature air fractionation | |
CN104406364B (en) | The argon of a kind of double tower coupling reclaims purifier apparatus and argon reclaims purification process | |
GB1329861A (en) | Separation of nitrogen and oxygen from gaseous mixtures containing the same | |
CN217785616U (en) | Carbon dioxide compression refrigeration and purification dehydrogenation system for decarburization working section | |
CN211716983U (en) | Device for separating and purifying krypton and xenon | |
US4325719A (en) | Process for recovering nitrogen under pressure in air separation apparatus | |
KR890004398B1 (en) | Method and apparatus for separating of product gas from raw gas | |
JPS6155031B2 (en) | ||
CN102506560B (en) | Method for producing pure argon from waste argon | |
CN220070763U (en) | Device for separating high-purity hydrogen chloride from byproduct hydrogen chloride of sucralose | |
US4529417A (en) | Process for the isothermal absorption of ethylene oxide using film absorbers | |
JPS54115691A (en) | Liquefied carbon dioxide producing equipment | |
CN209442638U (en) | A kind of F32 device by-product HCl purification apparatus | |
CN107062800A (en) | The method and its device of a kind of superpure nitrogen dehydrogenation | |
CN207035674U (en) | A kind of device of superpure nitrogen dehydrogenation | |
CN207123117U (en) | A kind of new double tower nitrogen device for making | |
JPS5527034A (en) | Pressure swing adsorption system used with heat regeneration method | |
US4299607A (en) | Process for recovering nitrogen in low pressure type air separation apparatus | |
CN111442607B (en) | Nitrogen self-pressurizing air separation unit | |
IE35360L (en) | Manufacture of nitric acid | |
JP3237892B2 (en) | Pressurized air separation device | |
CN222468561U (en) | Tail gas treatment device for polycrystalline silicon production | |
CN119022705B (en) | Ammonia extraction device for photovoltaic waste gas and working method thereof | |
JPH0563717B2 (en) | ||
CN209464628U (en) | The production system of environmental protection refrigerant R32 |