[go: up one dir, main page]

JPS6154748B2 - - Google Patents

Info

Publication number
JPS6154748B2
JPS6154748B2 JP57034559A JP3455982A JPS6154748B2 JP S6154748 B2 JPS6154748 B2 JP S6154748B2 JP 57034559 A JP57034559 A JP 57034559A JP 3455982 A JP3455982 A JP 3455982A JP S6154748 B2 JPS6154748 B2 JP S6154748B2
Authority
JP
Japan
Prior art keywords
oxide
adhesive
fluoride
ceramics
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57034559A
Other languages
Japanese (ja)
Other versions
JPS58151376A (en
Inventor
Yoshihiro Ehata
Saburo Ose
Ryozo Hayamizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3455982A priority Critical patent/JPS58151376A/en
Priority to US06/418,753 priority patent/US4447283A/en
Publication of JPS58151376A publication Critical patent/JPS58151376A/en
Publication of JPS6154748B2 publication Critical patent/JPS6154748B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセラミツクス用接着剤及びその接着方
法に関し、特に窒化珪酸、炭化珪酸、サイアロン
等の非酸化物系セラミツクス相互またはこれと他
のセラミツクス材料との接着に用いるのに好適な
接着剤及びそれ等の接着方法に関する。 炭化珪酸、窒化珪酸、サイアロン等の非酸化物
系セラミツクスは、特に高温における強度、耐熱
衝撃性、耐薬品性等に優れる所から、金属酸化物
系セラミツクス材料とは異なつた新しい高温耐熱
材料として、近年脚光をあび、その応用分野の開
発が種々進められている。例えばこれ等材料は、
高温機器、高精密機械部品、熱交換器等に、また
瞬間的に高温になる磁器部品や特殊な高温絶縁体
等としての用途にその利用の開発が検討されつつ
ある。 これ等非酸化物系セラミツクスを利用し、その
特性を充分に発揮させるためには、各種機器類や
その部品等の製造過程でこれ等非酸化物系セラミ
ツクスをこれ等相互間または他の材料と接着させ
る必要があり、特に種々の形状に成形された非酸
化物系セラミツクスの接着技術の開発が不可欠と
なる。 しかしながら非酸化物系セラミツクスは、一般
に溶融物の親和性所謂需れ性が極めて悪く、しか
もアルミナ、マグネシア等の金属酸化物系セラミ
ツクス材料とは異なつて共有給合性が強く、また
他の化合物との反応性も非常に低く、加えて熱膨
張係数もアルミナの半分以下であり、その接着は
極めて困難である。事実従来該非酸化物系セラミ
ツクスの接着は、専ら高温高圧下でのホツトプレ
ス法が知られているにすぎず、該ホツトプレス法
では高温高圧下で操作せねばならないため、大型
複雑異形の材料の接着は至難であり、たとえ接着
できたとしてもその接着強度は尚不充分である欠
点がある。 本発明者は上記現状に鑑み、ホツトプレス法に
よることなく、より温和な条件で容易にしかも大
型複雑異形の材料をも充分な接着強度をもつて接
着できる新しい接着剤及び接着方法を開発すべく
種々研究を重ねた。しかるに上記非酸化物系セラ
ミツクス用接着剤には、これを充分な接着力にて
接着できる特長を有することは勿論のこと、これ
と共に、形成される接着層自体が化学的に安定で
あり、しかも上記非酸化物系セラミツクスの特性
を損わない程度の優れた耐熱性、耐熱衝撃性等を
具備することが要望され、現在知られている接着
剤乃至その有効成分は、到底上記要件を有するも
のではなかつた。本発明者らは引き続く研究にお
いて、特にフツ化ナトリウム及び(又は)フツ化
カルシウムが上記要件を具備するものであること
及びこれらは非酸化物系セラミツクスのみならず
酸化物系セラミツクスの接着にも好適であること
を見い出し、これに基づく発明を完成しすでに出
願した。この発明に係る接着剤は極めて優れたも
のであり、更にその応用分野に検討を加えている
過程に於いて次の新しい事実を発見した。即ち、 (イ) 上記フツ化ナトリウム及びフツ化カルシウム
以外のアルカリ金属フツ化物及びアルカリ土類
金属フツ化物についても同様な作用を発揮する
こと、 (ロ) アルカリ金属フツ化物(フツ化ナトリウムを
も含む)を有効成分として含有する場合には、
その含有量の増加に従つて処理温度を低下する
ことが出来るという大きな利点のある反面、得
られた接着層に若干の微少なピンホールが発生
する傾向が生じ、使用場所に依つては該ピンホ
ールが接着物に不測の悪影響を及ぼす場合が必
ずしも皆無とはいえないこと、 及び (ハ) 上記ピンホールの発生はイツトリア及びアル
カリ土類金属化合物の少くとも1種を共存せし
めることにより効率良く防止出来ること、 を見出した。本発明はこれ等の新しい発見に基ず
いて完成されたものであつて、即ち本発明はイツ
トリア及びアルカリ土類金属化合物(フツ化物を
除く。)の少くとも1種20〜80重量%とアルカリ
金属フツ化物、80〜20重量%との混合物を有効成
分とするセラミツクスの接合用接着剤及びイツト
リア及びアルカリ土類金属化合物(フツ化物を除
く。)の少くとも1種並びにアルカリ金属フツ化
物、又はこれ等とカオリンとの混合物を有効成分
とする接着剤を、非酸化物系セラミツクス相互間
若しくは酸化物系セラミツクス相互間または非酸
化物系セラミツクスと酸化物系セラミツクスとの
間に介在させ、これを上記フツ化物の分解温度以
上に加熱することを特徴とするセラミツクスの接
着方法に係るものである。 本発明の接着剤はイツトリア及びアルカリ土類
金属化合物(フツ化物を除く。)の少くとも1種
とアルカリ金属フツ化物とを有効成分とするもの
である。これらの成分の使用量は、本発明所期の
効果を得るべく、上記特定の範囲内とされる。 また、本発明接着剤は、更にカオリン又は(及
び)アルカリ土類金属フツ化物を含有することが
できる。その使用量は、特に限定されないが、通
常0〜60重量%である。 本発明接着剤は、これを単に非酸化物系セラミ
ツクス相互間若しくは酸化物系セラミツクス相互
間または非酸化物系セラミツクスと酸化物系セラ
ミツクスとの間に介在させ通常約1000〜1500℃好
ましくは約1000〜1300℃に加熱するのみで、何等
加圧することなく且つ何等のピンホールの発生も
なく容易にセラミツクスを接着することができ
る。この際、接着剤中のアルカリ金属フツ化物の
割合が増加するにつれて、上記加熱範囲内でより
低い温度で接着することが可能となる。 本発明接着剤は、特に非酸化物系セラミツクス
を接着できることを大きな利点としており、この
場合の接着強度は通常400Kg/cm以上、実に600Kg/
cmにも及ぶものであり、公知の方法では約300Kg/
cmが限度であつたことに比し約3割以上2倍もの
向上を図り得る。また、接着層にピンホールが発
生しない。更に本発明接着剤は、公知方法では接
着できない大型複雑異形な非酸化物系セラミツク
ス材料の接着にも容易に適用でき、之等材料をも
強力に接着させることができる。加えて本発明接
着剤は、その使用により形成される接着層が化学
的に安定であり、また非酸化物系セラミツクスに
ほぼ匹適する程度の耐熱性、耐熱衝撃性を有す
る。 本発明接着剤の利用によつて、上記各種の極め
て卓越する効果が発揮される理由は、現在尚明確
ではないが、以下の如く考えられる。即ち本発明
接着剤を構成するアルカリ金属フツ化物又はこれ
とアルカリ土類金属フツ化物とは、これを非酸化
物系セラミツクス相互間若しくは酸化物系セラミ
ツクス相互間または非酸化系セラミツクスと酸化
物系セラミツクスとの間に介在させその分解温度
以上の温度に加熱することにより、分解してフツ
素ガスを発生し、該フツ素ガスがセラミツクス材
料の表面を侵食する一方、分解生成物のアルカリ
金属又はこれとアルカリ土類金属、またはこれ等
とカオリンとの反応物が、上記により侵食された
材料内に浸透すると共に、被接着材料間に優れた
接着力を有する接着剤層を形成するものと考えら
れる。カオリンを併用された本発明接着剤の場合
には、該カオリンが、上記加熱により生成するア
ルカリ金属又は(及び)アルカリ土類金属を活性
化し、そのセラミツクス材料内への浸透を一層促
進させるものと思われる。この際本発明に於いて
はイツトリア及び(又は)アルカリ土類金属化合
物の存在によりアルカリ金属フツ化物を多量使用
することによるピンホールの発生を有効に防止し
得るが、その機構はなおいまだ判然としない、い
ずれにせよ、本発明はセラミツクスの新しい接着
技術を提供するものである。 本発明接着剤の適用される非酸化物系セラミツ
クスは、たとえば炭化珪素、窒化珪素、サイアロ
ン等を例示出来る。尚サイアロンとは珪素及びア
ルミニウムの窒化物である。これ等非酸化物相互
間の接着としてはたとえば炭化珪素一炭化珪素、
窒化珪素−窒化珪素、窒化珪素−炭化珪素、窒化
珪素−サイアロン、炭化珪素−サイアロン、サイ
アロン−サイアロン等の間の接着を例示できる。
また、本発明接着剤は上記非酸化物系セラミツク
スと酸化物系セラミツクスたとえばアルミナ、ム
ライト質セラミツクス、ジルコニア、ベリリア、
コージーライト、マグネシア等との接着あるいは
上記酸化物系セラミツクス相互の接着にも好適に
使用できる。 更には非酸化物系セラミツクスに上記酸化物系
セラミツクスを介して金属と接着することも出来
る。この場合は非酸化物系セラミツクスと金属と
は膨張係数が大きく異なるため、その中間に酸化
物系セラミツクスを存在せしめるものである。こ
の酸化物系セラミツクスがその厚みが5mm以下の
場合には該酸化物系セラミツクスは一種類だけで
も良いが、その厚みが5mmより大きくなると酸化
物系セラミツクスとして2種以上の膨張係数の異
なるものを組合せて使用することが好ましい。こ
の際の金属としては広く各種のものが包含され
る。 これ等非酸化物系、酸化物系、あるいは金属材
料は特にその形状や大きさに限定はなく、板状、
柱状、パイプ状、塊状等のあらゆる形状を有して
いてよく、しかも接着すべき材料相互が同一形状
でも異形状でもよい。 本発明接着剤において有効成分とするアルカリ
金属フツ化物としては、フツ化リチウム、フツ化
カリウム、フツ化ナトリウム、フツ化ルビジウム
等が挙げられ、又必要に応じ使用されるアルカリ
土類金属フツ化物としては、フツ化ベリリウム、
フツ化カルシウム、フツ化マグネシウウム、フツ
化ストロンチウム、フツ化バリウム等が挙げられ
る。これらフツ化物の純度は特に限定されないが
接着強度を高めるためには、できるだけ高純度で
あるのが好ましい。また本発明に於いて使用され
るアルカリ土類金属化合物としては酸化カルシウ
ム、酸化マグネシウム、酸化ベリリウム、酸化バ
リウム、酸化ストロンチウム等の酸化物及び炭酸
カルシウム、炭酸マグネシウム、炭酸ベリリウ
ム、炭酸バリウム、炭酸ストロンチウム等の炭酸
化合物等を具体例として例示出来る。 これ等アルカリ金属フツ化物、アルカリ土類金
属フツ化物、イツトリア及びアルカリ土類金属化
合物は通常入手される粉末状形態で有利に用いら
れる。また併用し得るカオリンとしては、市販の
ものをいずれも使用でき、特にその産地(原石の
種類)、結晶の大きさ、履歴等に限定されない。
またその成分組成もSiO2及びAl2O3を主とし他に
Fe2O3、TiO2、CaO、K2O等の若干量を含む通常
のものでよいが、純度の高いものの方が、その使
用によりアルカリ金属フツ化物及びアルカリ土類
金属フツ化物の接着強度をより高め得る傾向があ
る。また接着層の物性を向上させ得る。 本発明接着剤は、上記イツトリア及びアルカリ
土類金属化合物の少なくとも1種並びにアルカリ
金属フツ化物あるいはこれらとカオリン又は(及
び)アルカリ土類金属フツ化物とを単に粉体混合
した混合粉末状態でも使用でき、また之等を通常
のビヒクル(バルサム等の有機粘着物又はこれと
有機溶剤)に配合してペースト状態等の形態で用
いることもできる。 かくして得られる本発明接着剤は、その使用に
当つては、これを接着すべき材料間に介在させ次
いでアルカリ金属フツ化物またはアルカリ土類金
属フツ化物の分解温度以上に加熱される。ここで
本発明接着剤の材料間への適用は、接着剤の形態
に応じて、例えば粉末形態のものではこれを被接
着面に撤布すればよく、またペースト状のもので
は通常の接着剤と同様に塗付すればよい。その適
用量は、用いる接着剤の組成特にカオリンの併用
量、該接着剤適用後の加熱条件、被接着材とする
材料の種類や形状特に厚さ等に応じて適宜に決定
でき、特に限定されないが、本発明接着剤有効成
分重量換算で、被接着面積1cm当りに約0.01〜5
g、好ましくは0.1〜1g程度である。また本発
明接着剤を上記により施工後の加熱は、前記温度
即ちアルカリ金属フツ化物またはアルカリ土類金
属フツ化物が分解してフツ素を放出する温度とす
れば良い。 本発明では特に上記加熱に際して何らの加圧手
段を採用する必要はないが、被接着面の密着性を
確保するため若干加圧することもできる。また上
記加熱は、一般に空気中で容易に行ない得るが、
被接着材とする材料の加熱による酸化が起るおそ
れのある場合は、窒素雰囲気下で行なうこともで
きる。 以下本発明を更に詳しく説明するため実施例を
挙げる。 実施例 1 窒化珪素板とムライト質セラミツクス板〔日本
化学陶業(株)製〕間にイツトリア30重量%及びフツ
化ナトリウム70重量%からなる混合粉末を接着面
積1cm2当り0.5gとなる量で撤布介在させ、更に
ムライト質セラミツクス板上に銅板をおき、これ
を電気炉中で1100℃で20分間加熱した。 得られた接合体試料の接着強度をスパン20mm、
荷重速度0.5mm/mmの条件下、三点荷重曲げ強度測
定法に従い求めたところ、470Kg/cm2であつた。ま
た上記測定後の破断面を調べた所、接着部分の外
側(ムライト質セラミツクス板)で破壊されてい
た。 更に上記接合体試料を48%水酸化カリウム水溶
液中に、70℃下にて70時間浸漬して、耐薬品性を
調べた所、接着部には何等の異状も認められなか
つた。 また上記接合体試料を1100℃に加熱後空気中に
て急冷する急冷試験により、耐熱衝撃性を調べた
所、接着部には何等の異状も認められなかつた。 実施例 2〜4 実施例1において、イツトリア粉末とフツ化ナ
トリウム粉末との配合比を種々変化させて、本発
明接着剤を作成し、これらを用い、同様にして窒
化珪素板−ムライト質セラミツクス板−銅板を接
着した。得られた各接合体試料の接着強度、耐薬
品性及び耐熱衝撃性を、実施例1と同様にして求
めた結果を下記第1表に示す。
The present invention relates to an adhesive for ceramics and a bonding method thereof, and in particular to an adhesive suitable for bonding non-oxide ceramics such as silicic nitride, silicic carbide, and sialon to each other or to other ceramic materials, and the like. Regarding the adhesion method. Non-oxide ceramics such as silicic acid carbide, silicic nitride, and sialon have excellent strength, thermal shock resistance, and chemical resistance, especially at high temperatures, and are therefore being used as new high-temperature heat-resistant materials that are different from metal oxide ceramic materials. It has been in the spotlight in recent years, and development in various fields of application is progressing. For example, these materials are
The development of its use in high-temperature equipment, high-precision mechanical parts, heat exchangers, etc., as well as in porcelain parts that become instantly hot and special high-temperature insulators, is being considered. In order to utilize these non-oxide ceramics and fully demonstrate their characteristics, it is necessary to combine these non-oxide ceramics with each other or with other materials during the manufacturing process of various types of equipment and their parts. In particular, it is essential to develop bonding technology for non-oxide ceramics molded into various shapes. However, non-oxide ceramics generally have very poor compatibility with melts, so-called demand, and unlike metal oxide ceramic materials such as alumina and magnesia, they have strong covalent bonding properties, and they are difficult to bond with other compounds. The reactivity of alumina is also very low, and its coefficient of thermal expansion is less than half that of alumina, making it extremely difficult to bond. In fact, conventionally, the only known method for bonding non-oxide ceramics is the hot press method, which is performed under high temperature and high pressure.Since the hot press method requires operation under high temperature and high pressure, it is difficult to bond large, complex, irregularly shaped materials. This is extremely difficult, and even if it can be bonded, the adhesive strength is still insufficient. In view of the above-mentioned current situation, the present inventor has made various efforts to develop a new adhesive and bonding method that can easily bond large, complex, and irregularly shaped materials with sufficient bonding strength without using the hot press method under milder conditions. I did a lot of research. However, the above-mentioned adhesive for non-oxide ceramics not only has the feature of being able to bond with sufficient adhesive force, but also that the adhesive layer itself that is formed is chemically stable. There is a demand for excellent heat resistance, thermal shock resistance, etc. to a degree that does not impair the properties of the non-oxide ceramics mentioned above, and currently known adhesives and their active ingredients are unlikely to meet the above requirements. It wasn't. In subsequent research, the present inventors found that sodium fluoride and/or calcium fluoride in particular meet the above requirements and are suitable for bonding not only non-oxide ceramics but also oxide ceramics. He discovered that this is the case, completed an invention based on this, and has already filed an application. The adhesive according to the present invention is extremely excellent, and in the process of further examining its application fields, the following new facts were discovered. That is, (a) alkali metal fluorides and alkaline earth metal fluorides other than the above-mentioned sodium fluoride and calcium fluoride exhibit similar effects, and (b) alkali metal fluorides (including sodium fluoride) ) as an active ingredient,
As the content increases, the processing temperature can be lowered, which is a great advantage, but on the other hand, there is a tendency for some minute pinholes to occur in the resulting adhesive layer, and depending on the place of use, the pinholes may It cannot be said that there are always cases where holes have an unexpected adverse effect on the adhesive, and (c) the occurrence of the above pinholes can be effectively prevented by coexisting with itria and at least one kind of alkaline earth metal compound. I discovered what I could do. The present invention has been completed based on these new discoveries, namely, the present invention combines 20 to 80% by weight of at least one of yttria and alkaline earth metal compounds (excluding fluorides) and an alkali. An adhesive for bonding ceramics containing a mixture of 80 to 20% by weight of a metal fluoride as an active ingredient, and at least one kind of ittria and alkaline earth metal compounds (excluding fluorides) and an alkali metal fluoride, or An adhesive containing a mixture of these and kaolin as an active ingredient is interposed between non-oxide ceramics, between oxide ceramics, or between non-oxide ceramics and oxide ceramics. The present invention relates to a ceramic bonding method characterized by heating to a temperature higher than the decomposition temperature of the fluoride. The adhesive of the present invention contains at least one of yttoria and alkaline earth metal compounds (excluding fluorides) and an alkali metal fluoride as active ingredients. The amounts of these components to be used are within the above specified ranges in order to obtain the desired effects of the present invention. Moreover, the adhesive of the present invention can further contain kaolin and/or an alkaline earth metal fluoride. The amount used is not particularly limited, but is usually 0 to 60% by weight. The adhesive of the present invention is prepared by simply interposing the adhesive between non-oxide ceramics, between oxide ceramics, or between non-oxide ceramics and oxide ceramics, usually at a temperature of about 1000 to 1500°C, preferably about 1000°C. Ceramics can be easily bonded by simply heating to ~1300°C without applying any pressure and without generating any pinholes. At this time, as the proportion of alkali metal fluoride in the adhesive increases, it becomes possible to bond at a lower temperature within the above heating range. The adhesive of the present invention has the great advantage of being able to bond non-oxide ceramics in particular, and the adhesive strength in this case is usually over 400Kg/cm, in fact 600Kg/cm.
cm, and approximately 300 kg/cm using known methods.
Compared to cm, which was the limit, it is possible to achieve an improvement of about 30% or more. Furthermore, pinholes do not occur in the adhesive layer. Furthermore, the adhesive of the present invention can be easily applied to bonding non-oxide ceramic materials of large size, complicated irregular shapes, which cannot be bonded by known methods, and can also strongly bond such materials. In addition, the adhesive layer of the present invention is chemically stable and has heat resistance and thermal shock resistance comparable to those of non-oxide ceramics. The reason why the above-mentioned various outstanding effects are exhibited by the use of the adhesive of the present invention is not clear at present, but it is thought to be as follows. That is, the alkali metal fluoride or the alkaline earth metal fluoride constituting the adhesive of the present invention may be used between non-oxide ceramics, between oxide ceramics, or between non-oxide ceramics and oxide ceramics. When heated to a temperature higher than the decomposition temperature of the ceramic material, it decomposes and generates fluorine gas, which corrodes the surface of the ceramic material while alkali metals or It is thought that the reactants of kaolin and alkaline earth metals, or these and kaolin, penetrate into the material eroded by the above and form an adhesive layer with excellent adhesive strength between the adhered materials. . In the case of the adhesive of the present invention in which kaolin is used in combination, the kaolin activates the alkali metals and/or alkaline earth metals generated by the heating and further promotes their penetration into the ceramic material. Seem. In this case, in the present invention, the presence of ittria and/or alkaline earth metal compounds can effectively prevent the formation of pinholes caused by the use of large amounts of alkali metal fluoride, but the mechanism is still unclear. In any case, the present invention provides a new adhesive technology for ceramics. Examples of non-oxide ceramics to which the adhesive of the present invention is applied include silicon carbide, silicon nitride, and sialon. Sialon is a nitride of silicon and aluminum. Examples of adhesion between these non-oxides include silicon carbide monosilicon carbide,
Examples include adhesion between silicon nitride and silicon nitride, silicon nitride and silicon carbide, silicon nitride and Sialon, silicon carbide and Sialon, and Sialon and Sialon.
Further, the adhesive of the present invention can be applied to the above-mentioned non-oxide ceramics and oxide ceramics such as alumina, mullite ceramics, zirconia, beryllia,
It can also be suitably used for adhesion with cordierite, magnesia, etc., or adhesion between the above oxide ceramics. Furthermore, it is also possible to bond metal to non-oxide ceramics via the oxide ceramics. In this case, since non-oxide ceramics and metal have significantly different coefficients of expansion, oxide ceramics are placed between them. If the thickness of this oxide-based ceramic is 5 mm or less, only one type of oxide-based ceramic may be used, but if the thickness is greater than 5 mm, two or more types of oxide-based ceramics with different expansion coefficients may be used. Preferably, they are used in combination. The metal in this case includes a wide variety of metals. These non-oxide-based, oxide-based, or metallic materials are not particularly limited in shape or size; they may be plate-like,
It may have any shape such as columnar, pipe-like, block-like, etc., and the materials to be bonded may have the same shape or different shapes. Examples of the alkali metal fluorides used as active ingredients in the adhesive of the present invention include lithium fluoride, potassium fluoride, sodium fluoride, rubidium fluoride, etc.Alkaline earth metal fluorides used as necessary include is beryllium fluoride,
Examples include calcium fluoride, magnesium fluoride, strontium fluoride, barium fluoride, and the like. The purity of these fluorides is not particularly limited, but in order to increase adhesive strength, it is preferable that the purity is as high as possible. In addition, alkaline earth metal compounds used in the present invention include oxides such as calcium oxide, magnesium oxide, beryllium oxide, barium oxide, and strontium oxide, and calcium carbonate, magnesium carbonate, beryllium carbonate, barium carbonate, and strontium carbonate. Specific examples include carbonate compounds and the like. These alkali metal fluorides, alkaline earth metal fluorides, itria and alkaline earth metal compounds are advantageously used in their commonly available powdered forms. Moreover, as the kaolin that can be used in combination, any commercially available kaolin can be used, and there are no particular limitations on its production area (type of raw stone), crystal size, history, etc.
In addition, its composition mainly consists of SiO 2 and Al 2 O 3 , with other
Ordinary materials containing small amounts of Fe 2 O 3 , TiO 2 , CaO, K 2 O, etc. may be used, but the use of higher purity materials will improve the adhesive strength of alkali metal fluorides and alkaline earth metal fluorides. There is a tendency to increase the Moreover, the physical properties of the adhesive layer can be improved. The adhesive of the present invention can also be used in the form of a powder mixture of at least one of the above-mentioned ittria and alkaline earth metal compounds, an alkali metal fluoride, or these and kaolin or (and) an alkaline earth metal fluoride. , etc. can also be blended with a conventional vehicle (an organic adhesive such as balsam or an organic adhesive and an organic solvent) and used in the form of a paste or the like. When using the thus obtained adhesive of the present invention, it is interposed between materials to be bonded and then heated to a temperature higher than the decomposition temperature of the alkali metal fluoride or alkaline earth metal fluoride. The adhesive of the present invention can be applied between materials depending on the form of the adhesive. For example, if it is in powder form, it can be applied to the surface to be adhered, or if it is in paste form, it can be applied to the surface to be adhered. You can apply it in the same way. The amount to be applied can be determined as appropriate depending on the composition of the adhesive used, especially the amount of kaolin used, the heating conditions after applying the adhesive, the type and shape, especially the thickness, of the material to be bonded, and is not particularly limited. However, in terms of the weight of the active ingredient of the adhesive of the present invention, it is approximately 0.01 to 5% per cm of adhesive area.
g, preferably about 0.1 to 1 g. Further, the adhesive of the present invention may be heated at the temperature mentioned above after application, that is, the temperature at which the alkali metal fluoride or alkaline earth metal fluoride decomposes and releases fluorine. In the present invention, it is not particularly necessary to employ any pressure means during the above-mentioned heating, but a slight pressure may be applied in order to ensure the adhesion of the surfaces to be bonded. In addition, the above heating can generally be easily performed in air,
If there is a risk of oxidation of the material to be bonded due to heating, the bonding may be carried out in a nitrogen atmosphere. Examples will be given below to explain the present invention in more detail. Example 1 A mixed powder consisting of 30% by weight of ittria and 70% by weight of sodium fluoride was removed between a silicon nitride plate and a mullite ceramic plate (manufactured by Nippon Kagaku Ceramics Co., Ltd.) in an amount of 0.5 g per 1 cm 2 of adhesive area. A copper plate was placed on a mullite ceramic plate with cloth interposed therebetween, and this was heated in an electric furnace at 1100°C for 20 minutes. The adhesive strength of the obtained bonded body sample was measured at a span of 20 mm.
The bending strength was determined to be 470 Kg/cm 2 under the condition of a loading rate of 0.5 mm/mm according to the three-point loading bending strength measurement method. Further, when the fractured surface was examined after the above measurement, it was found that the fracture occurred on the outside of the bonded portion (mullite ceramic plate). Further, the above bonded body sample was immersed in a 48% potassium hydroxide aqueous solution at 70° C. for 70 hours to examine chemical resistance, and no abnormality was observed in the bonded portion. In addition, thermal shock resistance was examined by a rapid cooling test in which the above-mentioned joined body sample was heated to 1100° C. and then rapidly cooled in air, and no abnormality was observed in the bonded portion. Examples 2 to 4 In Example 1, adhesives of the present invention were prepared by varying the blending ratio of ittria powder and sodium fluoride powder, and these were used to prepare silicon nitride plates and mullite ceramic plates in the same manner. - Glued the copper plate. The adhesive strength, chemical resistance, and thermal shock resistance of each of the obtained joined body samples were determined in the same manner as in Example 1, and the results are shown in Table 1 below.

【表】 実施例 5 イツトリア30重量%及びフツ化ナトリウム70重
量%からなる混合粉末を2枚の窒化珪素板間に1
cm2当り0.5gなる量で撤布介在させ、これを実施
例1と同様に1100℃で20分間加熱して接合体を得
た。得られた接合体試料の接着強度を測定した
所、520Kg/cm2であつた。また実施例1と同様に行
なつた耐薬品性及び耐熱衝撃性はいずれも異状な
しであつた。 実施例 6〜8 実施例5において、イツトリア粉末とフツ化ナ
トリウム粉末との配合比を種々変化させて本発明
接着剤を作成し、これらを用いて同様に2枚の窒
化珪素板を接着し得られた各接合体試料について
の接着強度、耐薬品性及び耐熱衝撃性を実施例1
と同様にして求めた結果を下記第2表に示す。
[Table] Example 5 A mixed powder consisting of 30% by weight of ittria and 70% by weight of sodium fluoride was placed between two silicon nitride plates.
A bonded body was obtained by removing 0.5 g per cm 2 and heating it at 1100° C. for 20 minutes in the same manner as in Example 1. The adhesive strength of the resulting joined body sample was measured and found to be 520 Kg/cm 2 . Further, chemical resistance and thermal shock resistance were tested in the same manner as in Example 1, and no abnormalities were found. Examples 6 to 8 In Example 5, adhesives of the present invention were prepared by varying the blending ratio of ittria powder and sodium fluoride powder, and two silicon nitride plates could be bonded using these in the same manner. Example 1 The adhesive strength, chemical resistance, and thermal shock resistance of each bonded body sample
The results obtained in the same manner as above are shown in Table 2 below.

【表】 実施例 9 窒化珪素板とムライト質セラミツクス板〔日本
化学陶業(株)製〕間に、酸化カルシウム70重量%と
フツ化ナトリウム30重量%からなる混合粉末を用
いて、実施例1と同様に作成した試料について三
点曲げ強度を測定した結果、510Kg/cm2であつた。
また実施例1に従つて行なつた耐薬品性及び耐熱
衝撃性はいずれも異状なしであつた。 実施例 10〜13 実施例9において酸化カルシウムとフツ化ナト
リウムの配合比を種々変化させて本発明接着剤を
作成し、これらを用いて同様に窒化珪素板−ムラ
イト質セラミツクス板−銅板を接着して得られた
各接合体試料の接着強度、耐薬品性及び耐熱衝撃
性を実施例1と同様にして求めた結果を下記第3
表に示す。
[Table] Example 9 A mixed powder consisting of 70% by weight of calcium oxide and 30% by weight of sodium fluoride was used between a silicon nitride plate and a mullite ceramic plate (manufactured by Nippon Kagaku Togyo Co., Ltd.). The three-point bending strength of a similarly prepared sample was measured and found to be 510 Kg/cm 2 .
In addition, chemical resistance and thermal shock resistance were tested according to Example 1, and there were no abnormalities. Examples 10 to 13 Adhesives of the present invention were prepared by varying the blending ratio of calcium oxide and sodium fluoride in Example 9, and these were used to bond a silicon nitride plate, a mullite ceramic plate, and a copper plate in the same manner. The adhesive strength, chemical resistance, and thermal shock resistance of each bonded body sample obtained in Example 1 were determined in the same manner as in Example 1.
Shown in the table.

【表】 実施例 14 酸化カルシウム30重量%及びフツ化ナトリウム
70重量%からなる混合粉末を2枚の窒化珪素板間
に1cm2当り0.5gなる量で撤布介在させ、これを
実施例1と同様に加熱し、得られた接合体試料の
接着強度は560Kg/cm2であつた。また実施例1と同
様に行なつた耐薬品性及び耐熱衝撃性はいずれも
異状なしであつた。 実施例 15〜17 実施例14において酸化カルシウムとフツ化ナト
リウムの配合比を種々変化させて本発明接着剤を
作成し、これらを用いて同様に2板の窒化珪素板
間を接着した。得られた各接合体試料の接着強
度、耐薬品性及び耐熱衝撃性を実施例1と同様に
して求めた結果を下記第4表に示す。
[Table] Example 14 Calcium oxide 30% by weight and sodium fluoride
A mixed powder consisting of 70% by weight was interposed between two silicon nitride plates in an amount of 0.5 g per 1 cm 2 and heated in the same manner as in Example 1. The adhesive strength of the resulting bonded body sample was It was 560Kg/ cm2 . Further, chemical resistance and thermal shock resistance were tested in the same manner as in Example 1, and no abnormalities were found. Examples 15 to 17 In Example 14, adhesives of the present invention were prepared by varying the blending ratio of calcium oxide and sodium fluoride, and these were used to bond two silicon nitride plates together in the same manner. The adhesive strength, chemical resistance, and thermal shock resistance of each of the obtained bonded body samples were determined in the same manner as in Example 1, and the results are shown in Table 4 below.

【表】 実施例 18 炭酸カルシウム80重量%及びフツ化リチウム20
重量%からなる混合粉末を、窒化珪素板とムライ
ト質セラミツクス板間に、接着面積1cm2当り0.5
gとなる量で撤布介在させ、更にムライト質セラ
ミツクス板上に銅板をおき、これを電気炉中で
1100℃で20分間加熱した。 得られた接合体試料の接着強度を実施例1に従
い測定した所、550Kg/cm2であつた。また実施例1
と同様に行なつた耐薬品性及び耐熱衝撃性は、い
ずれも異状なしであつた。 実施例1〜18で得られた各接合体試料の接着層
にはピンホールが全く認められなかつた。
[Table] Example 18 Calcium carbonate 80% by weight and lithium fluoride 20%
A mixed powder consisting of 0.5% by weight was applied between a silicon nitride plate and a mullite ceramic plate at a rate of 0.5% per cm2 of adhesion area.
A copper plate was placed on the mullite ceramic plate, and this was placed in an electric furnace.
Heated at 1100°C for 20 minutes. The adhesive strength of the obtained bonded body sample was measured according to Example 1 and was found to be 550 Kg/cm 2 . Also, Example 1
Chemical resistance and thermal shock resistance were tested in the same manner as above, and no abnormalities were found. No pinholes were observed in the adhesive layers of the bonded body samples obtained in Examples 1 to 18.

Claims (1)

【特許請求の範囲】 1 イツトリア及びアルカリ土類金属化合物(フ
ツ化物を除く。)の少くとも1種20〜80重量%と
アルカリ金属フツ化物80〜20重量%との混合物を
有効成分とするセラミツクスの接合用接着剤。 2 アルカリ土類金属化合物がアルカリ土類金属
酸化物又はアルカリ土類金属炭酸化物である特許
請求の範囲第1項に記載の接着剤。 3 セラミツクスが非酸化物系である特許請求の
範囲第1項に記載の接着剤。 4 非酸化物系セラミツクスが炭化珪素、窒化珪
素及びサイアロンの少くとも1種である特許請求
の範囲第3項に記載の接着剤。 5 セラツミクスが酸化物系である特許請求の範
囲第1項に記載の接着剤。 6 イツトリア及びアルカリ土類金属化合物(フ
ツ化物を除く。)の少くとも1種20〜80重量%と
アルカリ金属フツ化物80〜20重量%との混合物を
有効成分とする接着剤を、非酸化物系セラミツク
ス相互間若しくは酸化物系セラミツクス相互間ま
たは非酸化物系セラミツクスと酸化物系セラミツ
クスとの間に介在させ、これを上記フツ化物の分
解温度以上に加熱することを特徴とするセラミツ
クスの接着方法。 7 非酸化物系セラミツクス、酸化物系セラミツ
クス及び該酸化物系セラミツクスより膨張係数の
大きい他の酸化物系セラミツクスをこれ等の間に
上記接着剤を介在させてこの順序で積層すること
を特徴とする特許請求の範囲第6項の接着方法。 8 上記膨張係数の大きい他の酸化物系セラミツ
クスがその一表面に予め金属が接着されたもので
ある特許請求の範囲第7項の接着方法。
[Claims] 1. Ceramics containing as an active ingredient a mixture of 20 to 80% by weight of at least one of yttoria and alkaline earth metal compounds (excluding fluorides) and 80 to 20% by weight of an alkali metal fluoride. Adhesive for joining. 2. The adhesive according to claim 1, wherein the alkaline earth metal compound is an alkaline earth metal oxide or an alkaline earth metal carbonate. 3. The adhesive according to claim 1, wherein the ceramic is non-oxide based. 4. The adhesive according to claim 3, wherein the non-oxide ceramic is at least one of silicon carbide, silicon nitride, and sialon. 5. The adhesive according to claim 1, wherein the ceramics are oxide-based. 6. An adhesive containing as an active ingredient a mixture of 20 to 80% by weight of at least one of ittria and alkaline earth metal compounds (excluding fluorides) and 80 to 20% by weight of an alkali metal fluoride is used as a non-oxide adhesive. A method for adhering ceramics, characterized by interposing the ceramics between two fluoride-based ceramics, between oxide-based ceramics, or between a non-oxide-based ceramic and an oxide-based ceramic, and heating the fluoride to a temperature higher than the decomposition temperature of the fluoride. . 7. A non-oxide ceramic, an oxide ceramic, and another oxide ceramic having a larger expansion coefficient than the oxide ceramic are laminated in this order with the adhesive interposed between them. The adhesion method according to claim 6. 8. The bonding method according to claim 7, wherein the other oxide ceramic having a large coefficient of expansion has a metal bonded to one surface thereof in advance.
JP3455982A 1982-03-04 1982-03-04 Adhesive for ceramics and adhesion Granted JPS58151376A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3455982A JPS58151376A (en) 1982-03-04 1982-03-04 Adhesive for ceramics and adhesion
US06/418,753 US4447283A (en) 1982-03-04 1982-09-16 Adhesive for ceramic articles and method for adhesion thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3455982A JPS58151376A (en) 1982-03-04 1982-03-04 Adhesive for ceramics and adhesion

Publications (2)

Publication Number Publication Date
JPS58151376A JPS58151376A (en) 1983-09-08
JPS6154748B2 true JPS6154748B2 (en) 1986-11-25

Family

ID=12417664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3455982A Granted JPS58151376A (en) 1982-03-04 1982-03-04 Adhesive for ceramics and adhesion

Country Status (1)

Country Link
JP (1) JPS58151376A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757858B2 (en) * 1990-01-10 1995-06-21 杉谷金属工業株式会社 Water-dispersible heat-resistant composition and use thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940846A (en) * 1972-08-25 1974-04-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940846A (en) * 1972-08-25 1974-04-17

Also Published As

Publication number Publication date
JPS58151376A (en) 1983-09-08

Similar Documents

Publication Publication Date Title
US3620799A (en) Method for metallizing a ceramic body
US4471026A (en) Ternary alloys in brazing ceramics
JPS5925754B2 (en) Adhesive for ceramics and its adhesion method
US4447283A (en) Adhesive for ceramic articles and method for adhesion thereof
JPS60122797A (en) Production of aluminum nitride single crystal
GB2066291A (en) Ternary alloys
JPS6154748B2 (en)
JPS6116751B2 (en)
JPS6150911B2 (en)
JPS58130546A (en) Silicon carbide substrate and manufacture thereof
JPH0134954B2 (en)
JP3154771B2 (en) Silicon nitride ceramic bonding agent
JPS5891083A (en) Ceramics adhesive composition and ceramics adhesion
JPS62113774A (en) Ceramic composite manufacturing method and adhesive used therein
JPS5876474A (en) Adhesive for silicon carbide
JPS62265184A (en) Adhesive for ceramics and adhesion
JPS6018627B2 (en) Adhesive for ceramics and its adhesion method
JPS6191086A (en) Metallization method for silicon carbide sintered bodies
JPH059396B2 (en)
SU643473A1 (en) Frit
JPH0242797B2 (en)
JPS6345194A (en) Aluminum nitride sintered body with metallized surface and manufacturing method thereof
JP2001048670A (en) Ceramics-metal joined body
JPH0240028B2 (en) SERAMITSUKUSUTOKINZOKU * DOSHUSERAMITSUKUSUDOSHIMATAHAISHUSERAMITSUKUSUKANNOSETSUGOHOHO
JPS58176187A (en) Silicon carbide substrate and manufacture