JPS6152101B2 - - Google Patents
Info
- Publication number
- JPS6152101B2 JPS6152101B2 JP57148672A JP14867282A JPS6152101B2 JP S6152101 B2 JPS6152101 B2 JP S6152101B2 JP 57148672 A JP57148672 A JP 57148672A JP 14867282 A JP14867282 A JP 14867282A JP S6152101 B2 JPS6152101 B2 JP S6152101B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- porcelain
- magnetic head
- sample
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052573 porcelain Inorganic materials 0.000 claims description 18
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 239000011148 porous material Substances 0.000 description 13
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- 238000009826 distribution Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000003754 machining Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000010304 firing Methods 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004901 spalling Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Magnetic Heads (AREA)
Description
産業上の利用分野
本発明は磁性材により記録再生を行なう磁気ヘ
ツドを支持する磁気ヘツド止め具用磁器に関する
ものである。
従来例の構成とその問題点
従来より磁性材から情報を読み取つたり、磁性
材に情報を記録させる磁気ヘツドを支持する磁気
ヘツド止め具はアルミナ、フオルステライト、ス
テアライト等の磁器により構成されていた。しか
しながらこれらの磁器は同一成分の系統であるた
め、熱膨張係数はほとんど変化しない。そのため
にフエライト素子又はガラス質材料と組み合わせ
て使用する場合、それらの熱膨張係数が種々異な
つていることにより、その選択が非常に難かしか
つた。
またたとえば磁気テープに磁気ヘツドを当接さ
せ記録再生を行なう際、磁気ヘツド止め具も同時
に磁気テープに当接する。ところが磁気ヘツドと
磁気ヘツド止め具とでは一般に摩耗性が異なるた
め、フエライトと磁気テープとの間にギヤツプが
生じ、磁気テープの磁化に悪影響を与えていた。
さらに磁気ヘツド止め具の磁器にもし60μm以
上の直径を有するポアが存在すると、磁気テープ
表面に損傷を与えることがある。
これらを解決するには、目的に応じて熱膨張係
数を自由に変化させることができ、熱衝撃性が強
く、機械的強度及びビツカース硬度が高く、磁気
ヘツドと同程度の摩耗性を有し、さらにはポアの
少ない磁気ヘツド止め具用磁器を開発しなければ
ならない。とりわけホツトプレス法やHIP(Hot
Isostatic Pressing)法により作製した多結晶フ
エライト、または単結晶により作製した単結晶フ
エライトを用いた電子計算機用、ビデオテープレ
コーダ用磁気ヘツド等の止め具用磁器は、機械的
強度、熱スポーリング、硬度、セラミツクポア分
布等が良好で、さらに熱膨張係数が+80〜+95×
10-7℃-1の範囲にある磁器が強く要望されてい
る。
現在、これら欠点のいくつかを解決した磁気ヘ
ツド止め具用磁器に関する文献として、特公昭51
−15528号公報、特公昭51−42606号公報、特公昭
52−29766号公報がある。しかしながら、これら
の文献に記載されているものはポア分布が改善さ
れていないため、ポア径60μm以上のポアが多数
存在し、記録再生が行なわれる磁性材表面に損傷
を与えてしまう。また、磁気ヘツド止め具用磁器
を焼成する際に炉内雰囲気が酸化雰囲気より中性
あるいは還元雰囲気へ変化すると、TiO2が還元
されその磁器の内部に色むらが生じる。なお他の
文献にはこれら欠点を解決したものもあるが、一
方では機械加工時にチツピングが発生しやすく、
精密加工が困難であるという欠点を有している。
発明の目的
本発明は係る従来の欠点を除去し、焼成雰囲気
に著しく安定しており、また機械精密加工時のチ
ツピング発生数が非常に少なく、さらには急熱急
冷の熱衝撃性を強くし、また、ポアを減少させた
磁気ヘツド止め具の磁器製造方法を提供するもの
である。
発明の構成
本発明は上記目的を達するために、MgをMgO
に換算して35〜60重量%、TiをTiO2に換算して
35〜60重量%、ZrをZrO2に換算して0.2〜5.0重量
%、稀土類元素酸化物の少なくとも1種を0.02〜
5.00重量%含んだ磁気ヘツド止め具用磁器を組成
した。
上記範囲内で成分割合を変化させる事により、
目的に応じて熱膨張係数値を+80〜+95×10-7℃
-1の範囲で自由に選択する事ができ、機械加工時
のチツピング発生が非常に少なく、焼成雰囲気変
化による色むらがなく、ポア分布が良好であり、
磁気ヘツドのフエライトと同程度の摩耗性を有
し、さらには熱衝撃特性が良く、フエライト素子
と磁気ヘツド止め具用磁器とをガラスを介して組
合せた場合でも亀裂が全く起らず安定で、且つ再
現性の高いものができる。
実施例の説明
以下、本発明について一実施例とともに説明す
る。試料の調整工程としては工業用原料(純度98
%以上)であるTiO2、MgO、ZrO2、Nd2O3、
La2O3を用い、混合は不純物混入を防止する為ウ
レタン内張ポツトミルを用い湿式混合した。試料
作成の順序としては、下記第1表に示す組成比に
なるよう原料を調合し、成型は機械プレスを用
い、50×150×15mmの試料を成型した。本焼成は
電気炉を用い、温度1300〜1400℃の間で焼成を行
なつた。
すなわち試料No.1から試料No.9までは磁気ヘ
ツド止め具用磁器が、MgをMgOに換算して35〜
60重量%、TiをTiO2に換算して35〜60重量%、
ZrをZrO2に換算して0.2〜5.0重量%、稀土類元素
酸化物の少なくとも1種を0.02〜5.00重量%含む
組成比となるよう原料を調合し、試料No.10から
試料No.13までは上記以外の組成比となるよう原
料を調合したものである。
INDUSTRIAL APPLICATION FIELD The present invention relates to a porcelain device for a magnetic head stopper that supports a magnetic head that performs recording and reproduction using a magnetic material. Conventional configurations and their problems Conventionally, magnetic head holders that support magnetic heads that read information from or record information on magnetic materials have been made of porcelain such as alumina, forstellite, and stearite. Ta. However, since these porcelains have the same composition, their thermal expansion coefficients hardly change. Therefore, when used in combination with a ferrite element or a glassy material, it has been very difficult to select one because the thermal expansion coefficients of these elements are different. For example, when a magnetic head is brought into contact with a magnetic tape to perform recording and reproduction, the magnetic head stopper also comes into contact with the magnetic tape at the same time. However, since the magnetic head and the magnetic head stopper generally have different abrasive properties, a gap occurs between the ferrite and the magnetic tape, which adversely affects the magnetization of the magnetic tape. Furthermore, if the porcelain of the magnetic head stopper contains pores having a diameter of 60 .mu.m or more, they may damage the magnetic tape surface. In order to solve these problems, it is possible to freely change the coefficient of thermal expansion according to the purpose, have strong thermal shock resistance, high mechanical strength and Vickers hardness, and have abrasion resistance comparable to that of magnetic heads. Furthermore, it is necessary to develop porcelain for magnetic head fasteners with fewer pores. In particular, the hot press method and HIP (Hot
Porcelain for fasteners such as magnetic heads for electronic computers and video tape recorders, which uses polycrystalline ferrite made by the isostatic pressing method or single crystal ferrite, has a high mechanical strength, thermal spalling, and hardness. , has good ceramic pore distribution, and has a thermal expansion coefficient of +80 to +95×
Porcelain in the 10 -7 °C -1 range is strongly desired. Currently, there is a document on porcelain for magnetic head fasteners that solves some of these drawbacks.
−15528 Publication, Special Publication No. 51-42606, Special Publication Sho
There is a publication No. 52-29766. However, since the pore distribution of the devices described in these documents is not improved, there are many pores with a pore diameter of 60 μm or more, which damage the surface of the magnetic material on which recording and reproduction are performed. Furthermore, when the atmosphere in the furnace changes from an oxidizing atmosphere to a neutral or reducing atmosphere when firing porcelain for a magnetic head stopper, TiO 2 is reduced and color unevenness occurs inside the porcelain. In addition, other documents have solved these drawbacks, but on the other hand, chipping is likely to occur during machining,
It has the disadvantage that precision machining is difficult. Purpose of the Invention The present invention eliminates the conventional drawbacks, is extremely stable in the firing atmosphere, has very few chippings during precision machining, and has strong thermal shock resistance during rapid heating and cooling. It also provides a method for manufacturing a magnetic head stopper in porcelain with reduced pores. Structure of the Invention In order to achieve the above object, the present invention replaces Mg with MgO
35-60% by weight in terms of TiO2
35-60% by weight, 0.2-5.0% by weight of Zr converted to ZrO2 , 0.02-5.0% of at least one rare earth element oxide
A porcelain for a magnetic head stopper containing 5.00% by weight was prepared. By changing the ingredient ratio within the above range,
Depending on the purpose, the thermal expansion coefficient value can be changed from +80 to +95×10 -7 ℃
-1 can be selected freely, there is very little chipping during machining, there is no uneven color due to changes in the firing atmosphere, and the pore distribution is good.
It has the same level of abrasion resistance as ferrite for magnetic heads, has good thermal shock properties, and is stable without any cracks even when the ferrite element and porcelain for magnetic head stoppers are combined through glass. Moreover, it is possible to produce products with high reproducibility. DESCRIPTION OF EMBODIMENTS The present invention will be described below along with one embodiment. In the sample preparation process, industrial raw materials (purity 98
% or more) TiO 2 , MgO, ZrO 2 , Nd 2 O 3 ,
La 2 O 3 was used, and wet mixing was performed using a urethane-lined pot mill to prevent contamination with impurities. The order of sample preparation was as follows: raw materials were mixed to have the composition ratios shown in Table 1 below, and a mechanical press was used to mold samples of 50 x 150 x 15 mm. The main firing was carried out using an electric furnace at a temperature of 1300 to 1400°C. In other words, from Sample No. 1 to Sample No. 9, the porcelain for the magnetic head stopper is 35~
60% by weight, 35-60% by weight when Ti is converted to TiO2 ,
The raw materials were mixed to have a composition ratio containing 0.2 to 5.0% by weight of Zr in terms of ZrO 2 and 0.02 to 5.00% by weight of at least one rare earth element oxide, and from Sample No. 10 to Sample No. 13. The raw materials were mixed to have a composition ratio other than the above.
【表】【table】
【表】
上記第1表の組成比により得られた素体の各諸
特性を第2表に示す。[Table] Table 2 shows various properties of the element body obtained from the composition ratios shown in Table 1 above.
【表】
なお上記第2表においてチツピング発生数の測
定方法としては10×10×100mmの試料を長さ方向
(100mm)に向つて、ダイヤモンド高速回転切断機
を用いて切断し、その切断面のチツピング数をマ
イクロメータ付光学顕微鏡によりカウントした。
ダイヤモンド高速回転切断機の使用条件(ダイヤ
モンドカツター回転数、試料送り速度)は一定と
する。また個数は100個テストとし、チツピング
数は切断断面積10cm2当たりの平均値として記し
た。さらに最下段には、従来磁気ヘツド止め具用
磁器の材料として用いられていたアルミナを比較
のために示しておく。
以上第2表から明らかなようにNo.1から試料
No.9までは、機械加工時のチツピング発生率が
著しく低く、また機械的強度、ポア分布、色むら
等、諸特性において優秀な特性を示している。ま
た試料No.10から試料No.13までは機械加工時の
チツピング発生、ポア等に悪影響が表われてく
る。すなわちMgOが35重量%未満では焼成雰囲
気による色むらが発生し、またフエライトより摩
耗度が高くなつた。さらに、MgOが60重量%を
超えると機械加工性が低下し、チツピング発生率
が上昇した。そして、TiO2が35重量%未満では
フエライトより摩耗度が低くなり、また焼結性が
低下した。さらにTiO2が60重量%をこえると異
常粒成長がおこり、ポア分布が悪く、また機械的
強度も低下する。ZrO2が0.2重量%未満では異常
粒成長を抑制する事が出来ず、また5重量%を超
すと焼結性が低下する。さらに稀土類元素酸化物
の1種または2種以上が0.02重量%未満では、
ZrO2相の偏析が起こり、5重量%を超えると稀
土類元素酸化物の偏析が起こり、チツピング発生
率が増加する。また磁気ヘツド止め具用磁器とし
てはフエライト素子に接着用ガラスを媒体として
磁器(止め具)に埋め込むため、熱膨張係数、熱
衝撃性、機械的強度、ポア分布等との関連性が非
常に重要であり、これら条件を満足する材料とし
て試料No.1から試料No.9までに示される組成物
で作製した磁器素体は熱膨張係数を自由に制御す
る事ができるものである。
なお実施例ではマグネシウム成分を得る原料と
してMgOを用いたがMgCO3、MgCl2、Mg
(OH)2でもよく、またネオジウム成分として
Nd2O3を用いたがNd2(CO3)3炭酸塩、シユウ酸
塩等の原料を用いても良好な特性が得られた。さ
らに稀土類元素酸化物としてNd2O3、La2O3を用
いたが、SmO2、Pr2O3CeO2等を用いても良好な
特性が得られた。
発明の効果
以上のように本発明によればMgをMgOに換算
して35〜60重量%、TiをTiO2に換算して35〜60
重量%、ZrをZrO2に換算して0.2〜5.0重量%、稀
土類元素酸化物の少なくとも1種を0.02〜5.00重
量%含む組成からなる磁気ヘツド止め具用磁器を
構成するもので、目的に応じて熱膨張係数を自由
に変化させることができ、磁気ヘツドと同程度の
摩耗性を与えることができ、また強い熱衝撃性及
び高い機械的強度を有する。さらには色むらを無
くして、ポア分布を良好なものとすることがで
き、その工業的価値は大なるものがある。[Table] In Table 2 above, the method for measuring the number of chippings is to cut a 10 x 10 x 100 mm sample in the length direction (100 mm) using a diamond high-speed rotary cutting machine, and measure the cut surface. The number of chips was counted using an optical microscope equipped with a micrometer.
The operating conditions of the diamond high-speed rotary cutting machine (diamond cutter rotation speed, sample feeding speed) are constant. In addition, 100 pieces were tested, and the number of chips was recorded as an average value per 10 cm 2 of cutting cross-sectional area. Further, at the bottom, alumina, which has been conventionally used as a material for porcelain for magnetic head fasteners, is shown for comparison. As is clear from Table 2 above, samples from No. 1
Up to No. 9, the incidence of chipping during machining is extremely low, and exhibits excellent properties such as mechanical strength, pore distribution, and color unevenness. In addition, from sample No. 10 to sample No. 13, adverse effects such as chipping and pores appeared during machining. That is, when MgO was less than 35% by weight, color unevenness occurred due to the firing atmosphere, and the wear rate was higher than that of ferrite. Furthermore, when MgO exceeded 60% by weight, machinability decreased and the incidence of chipping increased. When TiO 2 was less than 35% by weight, the degree of wear was lower than that of ferrite, and the sinterability was lowered. Furthermore, if TiO 2 exceeds 60% by weight, abnormal grain growth occurs, pore distribution becomes poor, and mechanical strength also decreases. If ZrO 2 is less than 0.2% by weight, abnormal grain growth cannot be suppressed, and if it exceeds 5% by weight, sinterability will decrease. Furthermore, if one or more rare earth element oxides are less than 0.02% by weight,
Segregation of the ZrO 2 phase occurs, and when it exceeds 5% by weight, segregation of rare earth element oxides occurs and the chipping incidence increases. In addition, since porcelain for magnetic head fasteners is embedded in the porcelain (fastener) using a ferrite element and adhesive glass as a medium, the relationship between coefficient of thermal expansion, thermal shock resistance, mechanical strength, pore distribution, etc. is very important. As materials that satisfy these conditions, the porcelain bodies made from the compositions shown in Sample No. 1 to Sample No. 9 can have their thermal expansion coefficients freely controlled. In the examples, MgO was used as a raw material for obtaining the magnesium component, but MgCO 3 , MgCl 2 , Mg
(OH) 2 may also be used, or as a neodymium component.
Although Nd 2 O 3 was used, good characteristics were also obtained using raw materials such as Nd 2 (CO 3 ) 3 carbonate and oxalate. Furthermore, although Nd 2 O 3 and La 2 O 3 were used as rare earth element oxides, good characteristics were also obtained using SmO 2 , Pr 2 O 3 CeO 2 and the like. Effects of the Invention As described above, according to the present invention, Mg is 35 to 60% by weight in terms of MgO, and Ti is 35 to 60% in terms of TiO2 .
It constitutes a porcelain for a magnetic head stopper having a composition containing 0.2 to 5.0 weight % of Zr (calculated as ZrO 2 ) and 0.02 to 5.00 weight % of at least one kind of rare earth element oxide. The coefficient of thermal expansion can be changed freely according to the requirements, and it can provide wear resistance comparable to that of a magnetic head, and also has strong thermal shock resistance and high mechanical strength. Furthermore, color unevenness can be eliminated and pore distribution can be improved, which has great industrial value.
Claims (1)
TiO2に換算して35〜60重量%、ZrをZrO2に換算
して0.2〜5.0重量%、稀土類元素酸化物の少なく
とも1種を0.02〜5.00重量%含む磁気ヘツド止め
具用磁器。1 35 to 60% by weight of Mg converted to MgO, Ti
A porcelain for a magnetic head stopper containing 35 to 60% by weight in terms of TiO2 , 0.2 to 5.0% by weight of Zr in terms of ZrO2 , and 0.02 to 5.00% by weight of at least one rare earth element oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57148672A JPS5939762A (en) | 1982-08-26 | 1982-08-26 | Ceramic for magnetic head lock |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57148672A JPS5939762A (en) | 1982-08-26 | 1982-08-26 | Ceramic for magnetic head lock |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5939762A JPS5939762A (en) | 1984-03-05 |
JPS6152101B2 true JPS6152101B2 (en) | 1986-11-12 |
Family
ID=15458029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57148672A Granted JPS5939762A (en) | 1982-08-26 | 1982-08-26 | Ceramic for magnetic head lock |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5939762A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60150614U (en) * | 1984-03-16 | 1985-10-07 | 東陶機器株式会社 | Magnetic head for floppy diskette |
JPS6113314U (en) * | 1984-06-21 | 1986-01-25 | 東陶機器株式会社 | VTR audio head |
-
1982
- 1982-08-26 JP JP57148672A patent/JPS5939762A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5939762A (en) | 1984-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4650774A (en) | Magnetic head slider material | |
JPS6152101B2 (en) | ||
JPH0335257B2 (en) | ||
JPH0335258B2 (en) | ||
JPS6077406A (en) | Substrate for thin film magnetic head and manufacture of the same | |
JPS63134559A (en) | Non-magnetic ceramics for magnetic head | |
JPH0530792B2 (en) | ||
JP2699104B2 (en) | A1 Lower 2 O Lower 3-TiC ceramic material | |
JP3078302B2 (en) | Non-magnetic ceramic composition | |
JPH05254938A (en) | Ceramic sintered compact | |
JPH05246763A (en) | Ceramics sintered body | |
JPS63170262A (en) | Method for manufacturing ZrO↓2-TiC-SiC sintered body | |
JPH0132184B2 (en) | ||
JPS6251224B2 (en) | ||
JPS60183709A (en) | Substrate for thin film magnetic head | |
JPH0712976B2 (en) | Porcelain sintered body for magnetic head and manufacturing method thereof | |
JPS6158428B2 (en) | ||
JPH0475866B2 (en) | ||
JPS6339115A (en) | Substrate material for thin film magnetic head | |
JPS63170257A (en) | Method for producing Al↓2O↓3-TiC-SiC-based sintered body | |
JPS6222945B2 (en) | ||
JPS63134558A (en) | Non-magnetic ceramics for magnetic head | |
JPS6378760A (en) | Sputtering target material for forming protective layer of thermal recording head | |
JPH11306711A (en) | Holding member for magnetic disc substrate | |
JPH02153860A (en) | Ceramic materials for thin film magnetic heads |