JPS6148505A - Manufacture of metallic mold for extrusion - Google Patents
Manufacture of metallic mold for extrusionInfo
- Publication number
- JPS6148505A JPS6148505A JP16855684A JP16855684A JPS6148505A JP S6148505 A JPS6148505 A JP S6148505A JP 16855684 A JP16855684 A JP 16855684A JP 16855684 A JP16855684 A JP 16855684A JP S6148505 A JPS6148505 A JP S6148505A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- powder
- metallic
- cavity
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
金属の押出加工に於いては高温に加熱された金属片をコ
ンテナに装着後、これに圧力を掛けて目的形状に加工さ
れた孔型より押出して製品を得ているのが通常であるが
、押出加工に使用される金型は製品品質を安定確保する
上で重要であるが、高温の金属片を、その孔型より押出
す際に摩耗、肌荒、亀裂等の損傷を受け、これによって
金型の品を得るためには以上の損傷に対して優れた耐久
性を有した金型が要望されている。[Detailed description of the invention] In metal extrusion processing, a metal piece heated to a high temperature is placed in a container, and then pressure is applied to the metal piece to extrude it through a hole machined into the desired shape to obtain a product. The mold used for extrusion processing is important to ensure stable product quality, but when extruding a high-temperature metal piece through the hole mold, it causes wear, roughness, cracks, etc. Therefore, in order to obtain molded products, there is a need for a mold that has excellent durability against such damage.
この金型用材料として各種の工具鋼が使用されており、
これらは何れも耐摩耗性に優れた性質を型部分はかなり
の高温にさらされており1容易に摩耗したり、割れを発
生するのが現状である。Various tool steels are used as materials for this mold,
All of these have excellent abrasion resistance, but the mold parts are exposed to quite high temperatures (1) and are easily abraded or cracked.
このため、孔型部に高温強度を有した材料を肉盛溶接し
たものや、表面処理した金型が使用されている。これに
よって金型の寿命は若干向上したものの1以下に説明す
る、如く金型の損傷は依然として問題となって改善が望
まれている。For this reason, molds whose holes are welded with a material having high-temperature strength or whose surfaces are treated are used. Although this has slightly improved the life of the mold, damage to the mold still remains a problem, as explained below, and improvements are desired.
第1図〜第3図は以上説明した各種の金型が示した顕微
鏡組織写真である。SKD −61は優れた熱間加工用
工具鋼であるが、被加工物である鋼インゴツトが約12
00℃に加熱され、孔型よりし
押出されるため孔型周辺も加熱され塑性流動を主人
じている。又第2図は、SKD −61に窒化処理を施
こしたものである。孔型部表面の硬さは高いが硬化層は
薄く、その為実際に使用すると硬化層を越えて母材部分
より塑性流動を生じている。更に第3図は高温強度の優
れたasc −16Or −16Mn鋼を孔型部に肉盛
溶接したものであるが、高温における強度が5KD−6
1より優れているために堅性流動は極めて少なく、金型
の寿命は著しく向上した。更に高強度の材料を肉盛すれ
ば金型の寿命が向上するが、複雑形状の孔型に高強度材
料を肉盛すれば溶接割れの危険が生じる理由で制限があ
る。FIGS. 1 to 3 are microscopic microstructure photographs showing the various molds described above. SKD-61 is an excellent tool steel for hot working, but the steel ingot that is the workpiece is about 12
Since it is heated to 00°C and extruded through a hole die, the area around the hole die is also heated and plastic flow occurs. Moreover, FIG. 2 shows SKD-61 subjected to nitriding treatment. Although the hardness of the surface of the hole is high, the hardened layer is thin, so when it is actually used, plastic flow occurs from the base material beyond the hardened layer. Furthermore, Fig. 3 shows a case in which asc-16Or-16Mn steel, which has excellent high-temperature strength, is overlay welded to the hole part, but the strength at high temperature is 5KD-6.
1, the rigidity flow was extremely small and the life of the mold was significantly improved. Furthermore, if a high-strength material is overlaid, the life of the mold will be improved, but there are limitations when overlaying a complex-shaped hole with a high-strength material because there is a risk of weld cracking.
また溶接金属の組織は粗大な結晶粒からなり、靭性が低
く割れに対する抵抗が低い。Furthermore, the structure of the weld metal is composed of coarse crystal grains, and has low toughness and low resistance to cracking.
以上説明した如く金型の耐久性を向上させる目的で多く
の製造方法が行なわれたにも拘らず、依然として金型損
傷は重大な問題として残されている。As explained above, although many manufacturing methods have been developed for the purpose of improving the durability of molds, mold damage still remains a serious problem.
本発明はかかる現状を改善し優れた金型を開発である。The present invention aims to improve the current situation and develop an excellent mold.
以下にその特長を図をもって説明する。The features will be explained below using diagrams.
第4図は本発明金型の製造方法を説明するもので、金型
母材口)の孔型部には金属粉末(2)を充填する為に溝
加工(3)がなされている。該溝(3)に粉末(2)を
充填した後、鋼製の蓋(4)で被い、蓋(4)は金型母
材11)に電子ビーム溶接(5)等、粉末充填部が減圧
密閉される状態で固定される。さらに、この容器を圧力
媒体にアルゴン等の不活性ガスを用いた700℃以上で
の加圧成形を行な―粉末材料で孔型部を成形した後、所
定形状の金型に加工する。FIG. 4 explains the method of manufacturing the mold according to the present invention, in which a groove (3) is formed in the hole of the mold base material opening for filling the metal powder (2). After the groove (3) is filled with powder (2), it is covered with a steel lid (4), and the powder filling part is welded to the mold base material 11) by electron beam welding (5) or the like. It is fixed in a vacuum sealed state. Further, this container is subjected to pressure molding at 700° C. or higher using an inert gas such as argon as a pressure medium, and after molding the hole portion with the powder material, it is processed into a mold of a predetermined shape.
この様にして出来た金型は次に述べる特長を有している
。The mold made in this way has the following features.
即ち、粉末を加圧成形してなる孔型部の性質は従来の溶
解、鍛造の工程を経て製造された金型より偏析が無く微
細な組織を有しており、同一の化学成分であれば靭性が
優れており割れに対する抵抗性が大である。In other words, the properties of the hole molded by pressure molding powder are less segregation and have a finer structure than molds manufactured through conventional melting and forging processes, and if they have the same chemical composition, It has excellent toughness and high resistance to cracking.
また金型の全体でなく孔型部周辺にのみ、任意の粉末を
充填することが出来るので1ステライト・N1基自溶合
金、CO基自溶合金、高速度鋼等の高価な粉末を利用出
来る点、経済性にも優れているO
さらには使用条件に合わせて任意の厚さに粉末を充填出
来、高温強度が優れているにも拘らず溶接が不可能であ
った材料も孔型周辺部に配設出来、しかも組織は溶接に
比較して著しく微細な靭性を有するので使用中の亀裂に
対する抵抗性も大であるO
更に不活性ガスを圧力媒体とするのは高強度の粉末を成
形するのに高い圧力が得易いためで、金属粉末の酸化を
防止する婿か、複雑な孔型部に充填された粉末をあらゆ
る方向から加圧成形する為である。In addition, since it is possible to fill the desired powder only around the hole rather than the entire mold, expensive powders such as 1-stellite/N1-based self-fluxing alloy, CO-based self-fluxing alloy, high-speed steel, etc. can be used. Furthermore, it is also possible to fill the powder to any thickness according to the usage conditions, and even materials that were previously impossible to weld despite their excellent high-temperature strength can be used around the hole. Furthermore, since the structure has a significantly finer toughness than that of welding, it is highly resistant to cracking during use.Furthermore, using an inert gas as a pressure medium allows molding of high-strength powder. This is because it is easy to obtain high pressure, and this is to prevent oxidation of the metal powder, or to pressure-form the powder filled into a complicated hole from all directions.
又、金属粉末の加圧成形のみであれば特にアルゴン等の
不活性ガスを圧力媒体として用いる必要は無いが、本発
明の如く金属粉末を成形するとともに、あらゆる方向に
面した複雑形状の孔型面に成形粉末を密着させるには本
発明の如くアルゴン等の不活性ガスを圧力媒体として用
いることが必要不可欠である。In addition, if only the pressure molding of metal powder is required, there is no need to use an inert gas such as argon as a pressure medium, but when molding metal powder as in the present invention, it is possible to form holes with complex shapes facing in all directions. In order to bring the compacted powder into close contact with the surface, it is essential to use an inert gas such as argon as a pressure medium as in the present invention.
また加熱温度を700℃以上としなければならない理由
は、本来金属粉末を成形するのには温度と圧力の相乗効
果によって行なうが、この様な目的に使用する高強度の
粉末にあっては700℃未満の温度では大きな圧力を加
えても充分に成形することが出来ないからであり、比較
的低強度の粉末の成形が出来ても本発明の如く、更にこ
れを一般に鋼製の金型母材に密着させるFcは700℃
以下では不可能だからなのである。The reason why the heating temperature must be 700°C or higher is that metal powder is originally molded by the synergistic effect of temperature and pressure, but for high-strength powder used for this purpose, the heating temperature is 700°C or higher. This is because, even if a large pressure is applied, it is not possible to form the powder sufficiently at a temperature below Fc in close contact with 700℃
This is because the following is not possible.
又粉末充填部を減圧密閉する手段としては電子ビーム溶
接によるシール溶接を行なう以外に、全体を容器に包ん
だ後容器内を減圧密閉し、容器全体を加圧成形すること
も行なわれる。In addition to sealing the powder-filled portion under reduced pressure, other than sealing by electron beam welding, the entire container may be wrapped in a container, the inside of the container may be sealed under reduced pressure, and the entire container may be press-molded.
以上説明した如く本件発明方法は金型の孔型部に高強度
金属粉末を配してなる優れた耐久性の押1+
質安定確保を実現する為のものである。As explained above, the method of the present invention is intended to ensure stable quality of the press with excellent durability by disposing high-strength metal powder in the hole portion of the mold.
第1図は従来からのS K D −61製金型に於ける
孔型部分の損傷状態を与した低倍率顕微鏡組織写真(X
50)、第2図は同8KD−iSI製金型に窒化処理を
施した金型の孔型部の損傷状態全厚した低倍率顕微鏡組
織写真(X50)、第3図はS K D−61製金型の
孔型部分に高温強度に富む材料を肉盛溶接した金型の孔
型部分の損傷状態を写した低倍率顕微鏡組織写真(XI
DO)、第4図は、本件特許発明方法の説明図。
図中、(盲) 金型母材
(2) 金属粉末
(3)溝
(4) ふた
(5) 電子ビーム溶接部Figure 1 is a low magnification micrograph (X
50), Figure 2 is a full-thickness, low-magnification micrograph (X50) of the damaged state of the hole part of the same 8KD-iSI mold that has been subjected to nitriding treatment, and Figure 3 is the 8KD-iSI mold that has been subjected to nitriding treatment. A low-magnification microscopic microstructure photograph (XI
DO), FIG. 4 is an explanatory diagram of the patented invention method. In the figure, (blind) Mold base material (2) Metal powder (3) Groove (4) Lid (5) Electron beam welding part
Claims (1)
填し、次いで該粉末充填部を減圧密閉した状態下で、不
活性ガスを圧力媒体として700℃以上で加圧成形する
ことを特徴とする押出し加工用金型の製造方法。1. Fill the grooves drilled in the hole shape of the mold with metal powder, and then press mold at 700°C or higher using inert gas as a pressure medium while the powder-filled part is sealed under reduced pressure. A method for manufacturing an extrusion mold, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16855684A JPS6148505A (en) | 1984-08-10 | 1984-08-10 | Manufacture of metallic mold for extrusion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16855684A JPS6148505A (en) | 1984-08-10 | 1984-08-10 | Manufacture of metallic mold for extrusion |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6148505A true JPS6148505A (en) | 1986-03-10 |
Family
ID=15870212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16855684A Pending JPS6148505A (en) | 1984-08-10 | 1984-08-10 | Manufacture of metallic mold for extrusion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6148505A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011207143A (en) * | 2010-03-30 | 2011-10-20 | Castem:Kk | Hybrid mold |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS546804A (en) * | 1977-06-20 | 1979-01-19 | Amada Co Ltd | Metal mold die |
JPS54142109A (en) * | 1978-04-28 | 1979-11-06 | Mitsubishi Metal Corp | Manufacture of mold for glass |
-
1984
- 1984-08-10 JP JP16855684A patent/JPS6148505A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS546804A (en) * | 1977-06-20 | 1979-01-19 | Amada Co Ltd | Metal mold die |
JPS54142109A (en) * | 1978-04-28 | 1979-11-06 | Mitsubishi Metal Corp | Manufacture of mold for glass |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011207143A (en) * | 2010-03-30 | 2011-10-20 | Castem:Kk | Hybrid mold |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5561829A (en) | Method of producing structural metal matrix composite products from a blend of powders | |
AU2013223879B2 (en) | Processing of metal or alloy objects | |
AU621684B2 (en) | Hollow charge with a metallic lining, method and device for its manufacturing | |
EP0202735B1 (en) | Process for making a composite powder metallurgical billet | |
EP2551040A1 (en) | Method of manufacturing a component by hot isostatic pressing | |
JP2007536431A (en) | Sputter target and method of forming by rotary axial forging | |
RU2291019C2 (en) | Method of manufacture of article by superplastic moulding and diffusion welding | |
US4137106A (en) | Super hard metal roll assembly and production thereof | |
CA2250955C (en) | Net shaped dies and molds and method for producing the same | |
US6761852B2 (en) | Forming complex-shaped aluminum components | |
US3834003A (en) | Method of particle ring-rolling for making metal rings | |
JPH04232203A (en) | Gear | |
US4323186A (en) | Manufacture of high performance alloy in elongated form | |
JPH0225961B2 (en) | ||
JP4133078B2 (en) | Method for producing fiber reinforced metal | |
JPS6148505A (en) | Manufacture of metallic mold for extrusion | |
US3861839A (en) | Diffusion molding apparatus | |
EP1565594A1 (en) | Process for improving the hot workability of a cast superalloy ingot | |
US5903813A (en) | Method of forming thin dense metal sections from reactive alloy powders | |
US20220097139A1 (en) | Method for the production of parts made from metal or metal matrix composite and resulting from additive manufacturing followed by an operation involving the forging of said parts | |
JPS61223106A (en) | Production of high alloy clad product | |
JPS5890385A (en) | Manufacture of composite wear resistance member | |
JPS5837362B2 (en) | Manufacturing method for glass molding molds | |
JP3257694B2 (en) | Manufacturing method of composite member | |
JPH11300461A (en) | Sleeve for die casting machine |