[go: up one dir, main page]

JPS6144437A - Semiconductor characteristics measurement equipment - Google Patents

Semiconductor characteristics measurement equipment

Info

Publication number
JPS6144437A
JPS6144437A JP15221685A JP15221685A JPS6144437A JP S6144437 A JPS6144437 A JP S6144437A JP 15221685 A JP15221685 A JP 15221685A JP 15221685 A JP15221685 A JP 15221685A JP S6144437 A JPS6144437 A JP S6144437A
Authority
JP
Japan
Prior art keywords
sample
phase
wafer
lifetime
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15221685A
Other languages
Japanese (ja)
Other versions
JPS6237531B2 (en
Inventor
Noriaki Honma
本間 則秋
Tadasuke Munakata
忠輔 棟方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15221685A priority Critical patent/JPS6144437A/en
Publication of JPS6144437A publication Critical patent/JPS6144437A/en
Publication of JPS6237531B2 publication Critical patent/JPS6237531B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PURPOSE:To enable the non-contact and non-breakdown measurement of the lifetime of minority carriers by a method wherein the difference in phase between the modulation frequency of light is detected by leading out a photo voltage generated in a semiconductor sample by irradiating this sample with a modulated light beam. CONSTITUTION:A clear electrode 3 is arranged in opposition to an Si wafer 1, and a photoelectromotive voltage generated in the wafer 1 is picked up by capacitance coupling. A beam emitted from a light source 8 is modulated in intensity by a modulator 7, partly split by a beam splitter 6, and converted into electric signals by a photoelectric converter 9. The other part of light transmitting through the splitter 6 is reflected on a reflection mirror and made to irradiate the sample of Si wafer 1 through a lens 4. The phase of the photo voltage generated between electrodes 2 and 3 is detected by a phase meter 10 as the relative ratio to the output signal of the converter 9, and then displayed by a signal processing circuit 11 in output as the lifetime of minority carriers.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、Siウェハのような半導体試料の少数キャリ
アの寿命を非接触、かつ、非破壊で測定する装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an apparatus for non-contact and non-destructive measurement of the lifetime of minority carriers in a semiconductor sample such as a Si wafer.

〔発明の背景〕[Background of the invention]

従来、半導体中の少数キャリアの寿命は、半導体試料に
オーミック接触を有する電極を取り付け、キセノンラン
プの光をインパルス照射して出力信号の減衰を測定する
ことによって求めていた。この測定は接触測定であり、
かつ、一種の破壊測定であるので抜取り検査にしか向か
ない。したがって、測定をオンラインで行うことができ
ない。
Conventionally, the lifetime of minority carriers in a semiconductor has been determined by attaching an electrode with ohmic contact to a semiconductor sample, irradiating it with impulse light from a xenon lamp, and measuring the attenuation of the output signal. This measurement is a contact measurement;
Moreover, since it is a type of destructive measurement, it is only suitable for sampling inspections. Therefore, measurements cannot be performed online.

他方、非接触で測定する方法として、光を照射して少数
キャリアを注入し、さらに、マイクロ波を当ててその吸
収の時間的応答から、少数キャリアの寿命を知る方法を
挙げることができる0例えば、ジャーナル オブ アプ
ライド フィジイクス 第30巻 第7号 1959年
7月第1054〜1060頁(Journal of 
AppliedPhysicsVoL、30.No、7
  ;uLy  1959pp1054〜1060)を
参照、しかしながら、この方法は、高価で複桜なマイク
ロ波発信器、受波器、その他を必要とし、装置全体が複
雑で、かつ、高価となるという欠点がある。更に、この
方法において信号が小さい場合には減衰特性からの読み
とり誤差が大きくなりやすい欠点がある。
On the other hand, as a non-contact measurement method, there is a method in which the minority carriers are injected by irradiating light, and then the lifetime of the minority carriers is determined from the time response of the absorption by applying microwaves. , Journal of Applied Physics, Vol. 30, No. 7, July 1959, pp. 1054-1060.
Applied Physics VoL, 30. No.7
; uLy 1959 pp. 1054-1060) However, this method has the disadvantage that it requires an expensive and complex microwave transmitter, receiver, etc., making the entire device complex and expensive. Furthermore, this method has the disadvantage that when the signal is small, reading errors from the attenuation characteristics tend to increase.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、非接触、かつ、非破壊でシリコンで代
表される半導体ウェハ中の少数キャリアの寿命をオンラ
インで測定するための簡単で安価な半導体特性測定装置
を提供することにある。
An object of the present invention is to provide a simple and inexpensive semiconductor characteristic measuring device for online non-contact and non-destructive measurement of the lifetime of minority carriers in a semiconductor wafer, typically silicon.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明では、試料台にのせ
られた試料(シリコンウェハ)と容量結合するよう設け
られた透明電極とを透過して、変調された光ビームを試
料に照射することにより該試料に発生した光電圧をとり
出し、光の変調周波数との位相差を検出し、その位相差
から少数キャリアの寿命を求めることを特徴とする。
In order to achieve the above object, the present invention irradiates a sample with a modulated light beam that passes through a transparent electrode provided to capacitively couple a sample (silicon wafer) placed on a sample stage. The method is characterized in that the photovoltage generated in the sample is extracted, the phase difference with the modulation frequency of the light is detected, and the lifetime of minority carriers is determined from the phase difference.

つまり1本発明は次のような動作原理に基づいてなされ
たものである。今、無限大に近い大きな入力インピーダ
ンスをもつ位相計で測定するとき、光電圧Voは、シリ
コンにおける光の吸収係数αが少数キャリアの拡散比1
1ffiLの逆数よりも充分小さい時、即ち、光の波長
が比較的長く、例えば900nmのときは近似的に次の
式で表わされる。
In other words, the present invention has been made based on the following operating principle. Now, when measuring with a phase meter with a large input impedance close to infinity, the optical voltage Vo is such that the optical absorption coefficient α in silicon is equal to the minority carrier diffusion ratio 1
When it is sufficiently smaller than the reciprocal of 1ffiL, that is, when the wavelength of the light is relatively long, for example, 900 nm, it is approximately expressed by the following equation.

VO=KZ、αL      ・・・・・・・・・(1
)尚、光電圧voはp型Stの場合は酸化膜の存在によ
り、n型Siの場合は過酸化水素やアンモニアなどによ
るアルカリ洗浄により発生することは知られている。さ
て、(1)式において、Kは定数、インピーダンスZd
はシリコンと酸化膜との間の接合抵抗R,と、接合容量
Cjを用いて。
VO=KZ, αL ・・・・・・・・・(1
) It is known that the photovoltage vo is generated in the case of p-type St due to the presence of an oxide film, and in the case of n-type Si due to alkaline cleaning with hydrogen peroxide, ammonia, or the like. Now, in equation (1), K is a constant and impedance Zd
using the junction resistance R, and junction capacitance Cj between silicon and oxide film.

周波数fの交流信号に対して次式で表わされる。It is expressed by the following equation for an AC signal of frequency f.

ここで、i=rである。また、拡散距離りは少数キャリ
アの拡散係数をDとすると、少数キャリア寿命τと次の
ように関係することはよく知らられている。
Here, i=r. Furthermore, it is well known that the diffusion distance is related to the minority carrier lifetime τ as follows, where D is the diffusion coefficient of minority carriers.

1十12πIτ (1)、(2)、(3)式から、光電圧の位相はTJ=
C,3RJとτの2つの時定数によって変化することが
わかる1通常、少数キャリア寿命τは1m5ec以下の
μsecオーダーであり、時定数TJは、10m5ec
よりも大きいオーダーである。
From equations (1), (2), and (3), the phase of the photovoltage is TJ=
It can be seen that C,3 changes depending on two time constants, RJ and τ.1 Normally, the minority carrier lifetime τ is on the order of μsec below 1 m5 ec, and the time constant TJ is 10 m5 ec.
It is an order of magnitude larger than that.

従って、周波数fを変えた時、少数キャリア寿命τによ
る位相変化と、時定数TJによる位相変化は十分に分離
できることになる。(3)式から、少数キャリア寿命τ
による位相変化は最大で45度であり、光電圧■oの位
相特性の例を第1図に示す0時定数TJによって45度
位相変化する周波数をfJ、少数キャリア寿命τによっ
て22.5度位相変化する周波数をfτとすると、通常
fJ<<fτである。すなわち、f7がわが求められる
Therefore, when the frequency f is changed, the phase change due to the minority carrier life τ and the phase change due to the time constant TJ can be sufficiently separated. From equation (3), minority carrier lifetime τ
The maximum phase change is 45 degrees, and an example of the phase characteristics of the photovoltage ■o is shown in Figure 1.The frequency at which the phase changes by 45 degrees due to the 0 time constant TJ is fJ, and the phase is 22.5 degrees due to the minority carrier life τ. If the changing frequency is fτ, then usually fJ<<fτ. In other words, f7 is found.

光電圧VOは容量結合で取り出すために、測定は非接触
、非破壊であり、シリコンウェハの表面の汚染、あるい
は、破壊を防いで測定できる。
Since the photovoltage VO is extracted through capacitive coupling, the measurement is non-contact and non-destructive, and can be measured without contaminating or destroying the surface of the silicon wafer.

以上、本発明によれば、非接触、非破壊でシリコンウェ
ハの少数キャリアのライフタイムでを測定でき、信号の
位相を測定するため信号強度が小さくなっても比較的読
みとりが容易であり、マイクロ波を使用しないため、装
置が簡単で安価に製造できる効果をもつ。
As described above, according to the present invention, it is possible to measure the lifetime of minority carriers in a silicon wafer in a non-contact and non-destructive manner, and since the phase of the signal is measured, it is relatively easy to read even if the signal strength is small, and Since no waves are used, the device is simple and can be manufactured at low cost.

〔発明の実施例〕[Embodiments of the invention]

以下に実施例を用いて説明する。第2@は本発明による
半導体特性測定装置の基本構造を示したものである。第
2図において、1はシリコンウェハ、2は電極兼試料台
(金属)、3は透明電極(ガラス板に酸化インジウムを
蒸着しである)である。透明電極3はシリコンウェハ1
と数10μm程度の間隔をおいて設置され、シリコンウ
ェハ1で発生した光起電圧を容量結合でピックアップで
きるようになっている。光源8で放射された光は変調器
7で強度変調されてビームスプリッタ6で一部分割され
、光電変換器9で電気信号に変換される。
This will be explained below using examples. The second @ shows the basic structure of the semiconductor characteristic measuring device according to the present invention. In FIG. 2, 1 is a silicon wafer, 2 is an electrode/sample stage (metal), and 3 is a transparent electrode (indium oxide is deposited on a glass plate). Transparent electrode 3 is silicon wafer 1
The photoelectromotive voltage generated in the silicon wafer 1 can be picked up by capacitive coupling. The light emitted by the light source 8 is intensity-modulated by the modulator 7, partially split by the beam splitter 6, and converted into an electrical signal by the photoelectric converter 9.

ビームスプリッタ6を透過したもう一方の光は反射鏡5
で反射され、レンズ4でシリコンウェハ1の試料上に照
射される。電極2と3との間に発生した光電圧の位相は
光電変換器9の出力信号に対する相対変化として位相計
10で検出され、信号処理回路11で少数キャリア寿命
でとして出力表示される。
The other light transmitted through the beam splitter 6 is sent to the reflecting mirror 5.
The light is reflected by the lens 4 and irradiated onto the silicon wafer 1 sample. The phase of the photovoltage generated between the electrodes 2 and 3 is detected by a phase meter 10 as a relative change with respect to the output signal of the photoelectric converter 9, and is output and displayed by a signal processing circuit 11 as a minority carrier lifetime.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によって、半導体ウェハの少数
キャリア寿命の非接触・非破壊測定が簡単な装置で安価
に実現できる。
As described above, according to the present invention, non-contact, non-destructive measurement of the minority carrier lifetime of a semiconductor wafer can be realized at low cost with a simple device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、光電圧の位相変化と周波数との関係を示す原
理説明図、第2図は、本発明による光電圧の位相から少
数キャリアの寿命を測定するための半導体特性測定装置
の基本構成図である。 1・・・・・・シリコンウェハ、2・・・・・・電極(
試料台)3・・・・・・透明電極、4・・・・・・レン
ズ、5・・・・・・反射鏡、6・・・・・・ビームスプ
リッタ、7・・・・・・変調器、8・・・・・・光源、
9・・・・・・光電変換器、10・・・・・・位相計、
11・・・・・・信号処理回路。 第  1  図 ↑
FIG. 1 is a principle explanatory diagram showing the relationship between the phase change of a photovoltage and frequency, and FIG. 2 is a basic configuration of a semiconductor characteristic measuring device for measuring the lifetime of minority carriers from the phase of a photovoltage according to the present invention. It is a diagram. 1... Silicon wafer, 2... Electrode (
Sample stage) 3...Transparent electrode, 4...Lens, 5...Reflector, 6...Beam splitter, 7...Modulation vessel, 8... light source,
9...Photoelectric converter, 10...Phase meter,
11...Signal processing circuit. Figure 1↑

Claims (1)

【特許請求の範囲】[Claims] 1、変調信号により変調された光ビームを発生する手段
と、試料台上に載置された半導体試料と、上記半導体試
料に対向して容量結合するように配置された透明電極と
、上記透明電極を透過して上記変調光ビームを上記半導
体試料に照射する手段と、上記半導体試料に発生した光
電圧を電気信号として取り出して上記変調信号との位相
差を検出する手段と、上記位相差から所定の関係式に基
づいて上記半導体試料の少数キャリア寿命を算出する信
号処理回路とを備えてなることを特徴とする半導体特性
測定装置。
1. A means for generating a light beam modulated by a modulation signal, a semiconductor sample placed on a sample stage, a transparent electrode disposed facing the semiconductor sample so as to be capacitively coupled, and the transparent electrode means for transmitting the modulated light beam onto the semiconductor sample; means for extracting the photovoltage generated in the semiconductor sample as an electrical signal and detecting a phase difference with the modulation signal; A semiconductor characteristic measuring device comprising: a signal processing circuit that calculates the minority carrier lifetime of the semiconductor sample based on the relational expression.
JP15221685A 1985-07-12 1985-07-12 Semiconductor characteristics measurement equipment Granted JPS6144437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15221685A JPS6144437A (en) 1985-07-12 1985-07-12 Semiconductor characteristics measurement equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15221685A JPS6144437A (en) 1985-07-12 1985-07-12 Semiconductor characteristics measurement equipment

Publications (2)

Publication Number Publication Date
JPS6144437A true JPS6144437A (en) 1986-03-04
JPS6237531B2 JPS6237531B2 (en) 1987-08-13

Family

ID=15535612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15221685A Granted JPS6144437A (en) 1985-07-12 1985-07-12 Semiconductor characteristics measurement equipment

Country Status (1)

Country Link
JP (1) JPS6144437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663385B2 (en) * 2002-12-13 2010-02-16 Nanometrics Incorporated Apparatus and method for electrical characterization by selecting and adjusting the light for a target depth of a semiconductor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119479U (en) * 1991-04-05 1992-10-26 矢崎総業株式会社 Vehicle display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663385B2 (en) * 2002-12-13 2010-02-16 Nanometrics Incorporated Apparatus and method for electrical characterization by selecting and adjusting the light for a target depth of a semiconductor
US8232817B2 (en) 2002-12-13 2012-07-31 Nanometrics Incorporated Apparatus and method for electrical characterization by selecting and adjusting the light for a target depth of a semiconductor
US9110127B2 (en) 2002-12-13 2015-08-18 Nanometrics Incorporated Apparatus and method for electrical characterization by selecting and adjusting the light for a target depth of a semiconductor

Also Published As

Publication number Publication date
JPS6237531B2 (en) 1987-08-13

Similar Documents

Publication Publication Date Title
US6556306B2 (en) Differential time domain spectroscopy method for measuring thin film dielectric properties
CN102331403B (en) Characterization method and test device for near-field terahertz THz time domain spectrum
US4581578A (en) Apparatus for measuring carrier lifetimes of a semiconductor wafer
KR101465377B1 (en) Thin-film semiconductor crystallinity evaluation apparatus, using m-pcd method
JPH08316276A (en) Electric charge measurement device
US4433288A (en) Method and apparatus for determining minority carrier diffusion length in semiconductors
CN110470965B (en) A kind of semiconductor surface state carrier lifetime test method
US7741833B1 (en) Non contact method and apparatus for measurement of sheet resistance of p-n junctions
Beck et al. Contactless scanner for photoactive materials using laser‐induced microwave absorption
WO2005022180A1 (en) Method and device for measuring electric field distribution of semiconductor device
CN110361643A (en) Ultraviolet-visible photosensitive composite dielectric gate MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor) detector test macro and method
JPS6144437A (en) Semiconductor characteristics measurement equipment
JPS6242537Y2 (en)
JPS58108752A (en) Semiconductor characteristics measurement equipment
JP3650917B2 (en) Semiconductor surface evaluation method and apparatus using surface photovoltage
JP3674738B2 (en) Minority carrier lifetime measurement device
JPS63133068A (en) Apparatus for detecting voltage of circuit
Betz et al. Non-Destructive Testing of Semiconductor Materials Using Microwave Photoconductivity
JP3732594B2 (en) Voltage waveform measuring device
JPH05226445A (en) Non-contact carrier diffusion length measuring device
RU2383081C1 (en) Method of determining photoelectric parametres of high-ohmic semiconductors
JPH02248061A (en) Lifetime measurement of semiconductor material
JPH01181434A (en) Beam modulated spectroscope
CN119510312A (en) A thermostat-based low-temperature measurement system and method for material spectrum
Takahashi et al. Ultrafast EO sampling using ZnTe crystal and Ti: sapphire laser