JPS6143689A - El element - Google Patents
El elementInfo
- Publication number
- JPS6143689A JPS6143689A JP16423884A JP16423884A JPS6143689A JP S6143689 A JPS6143689 A JP S6143689A JP 16423884 A JP16423884 A JP 16423884A JP 16423884 A JP16423884 A JP 16423884A JP S6143689 A JPS6143689 A JP S6143689A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- film
- luminescent
- light
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 150000002894 organic compounds Chemical class 0.000 claims abstract description 9
- 230000001186 cumulative effect Effects 0.000 claims description 21
- 239000010408 film Substances 0.000 abstract description 57
- 238000004020 luminiscence type Methods 0.000 abstract description 6
- 239000010409 thin film Substances 0.000 abstract description 6
- 229940125898 compound 5 Drugs 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 94
- 150000001875 compounds Chemical class 0.000 description 38
- 239000000758 substrate Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 31
- 239000000463 material Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 239000008346 aqueous phase Substances 0.000 description 6
- 125000001165 hydrophobic group Chemical group 0.000 description 6
- 125000001841 imino group Chemical group [H]N=* 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- -1 rare earth ion Chemical class 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 229940126062 Compound A Drugs 0.000 description 2
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910052771 Terbium Inorganic materials 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000005011 alkyl ether group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- QKLPIYTUUFFRLV-UHFFFAOYSA-N 1,4-bis[2-(2-methylphenyl)ethenyl]benzene Chemical compound CC1=CC=CC=C1C=CC(C=C1)=CC=C1C=CC1=CC=CC=C1C QKLPIYTUUFFRLV-UHFFFAOYSA-N 0.000 description 1
- XJKSTNDFUHDPQJ-UHFFFAOYSA-N 1,4-diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC=CC=2)C=C1 XJKSTNDFUHDPQJ-UHFFFAOYSA-N 0.000 description 1
- CNRNYORZJGVOSY-UHFFFAOYSA-N 2,5-diphenyl-1,3-oxazole Chemical compound C=1N=C(C=2C=CC=CC=2)OC=1C1=CC=CC=C1 CNRNYORZJGVOSY-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- 239000005725 8-Hydroxyquinoline Substances 0.000 description 1
- 229910004609 CdSn Inorganic materials 0.000 description 1
- 241000255925 Diptera Species 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229960003540 oxyquinoline Drugs 0.000 description 1
- 229930184652 p-Terphenyl Natural products 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 125000002743 phosphorus functional group Chemical group 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000004032 porphyrins Chemical class 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003220 pyrenes Chemical class 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical class C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- 125000004151 quinonyl group Chemical group 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 150000003303 ruthenium Chemical class 0.000 description 1
- 239000005394 sealing glass Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 125000005624 silicic acid group Chemical group 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- NVBFHJWHLNUMCV-UHFFFAOYSA-N sulfamide Chemical group NS(N)(=O)=O NVBFHJWHLNUMCV-UHFFFAOYSA-N 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- NLDYACGHTUPAQU-UHFFFAOYSA-N tetracyanoethylene Chemical group N#CC(C#N)=C(C#N)C#N NLDYACGHTUPAQU-UHFFFAOYSA-N 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、電気的な発光、すなわちELを用いたEL素
子に関し、更に詳しくは、発光層が3層構造からなり、
各々の層が隣接する他の層に対して相対的に電気陰性度
が異なる少なくとも1種の電気的発光性有機化合物を、
高秩序の分子配向性をもって配列させた薄膜からなるE
L素子に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an EL element using electrical light emission, that is, EL, and more specifically, the present invention relates to an EL element using electrical light emission, that is, EL, and more specifically, the light emitting layer has a three-layer structure,
each layer comprises at least one electroluminescent organic compound having a different electronegativity relative to other adjacent layers;
E consists of a thin film arranged with highly ordered molecular orientation.
Regarding L elements.
(従来の技術)
従来のEL素子は、Mn′l)るいはCuまたはRe
F3 (Re ;希土類イオン)等を付活剤として含
むZnSを発光母材とする発光層からなるものであり、
該発光層の基本構造の違いにより粉末型ELと薄膜型E
Lに大きく構造的に分類される。(Prior art) Conventional EL elements are made of Mn'l) or Cu or Re.
It consists of a luminescent layer whose luminescent base material is ZnS containing F3 (Re; rare earth ion) etc. as an activator,
Due to the difference in the basic structure of the light emitting layer, there are two types: powder type EL and thin film type E.
It is structurally classified into L.
実用化されている素子のうち、薄膜ELは、一般的に粉
末型ELに比べ輝度が高いが、薄II!ELは発光母材
を基板に蒸着して発光層を形成しているため、大面積素
子の製造が難しく、また製造コストが非常に高くなる等
の欠点を有していた。Among devices that have been put into practical use, thin-film ELs generally have higher brightness than powder-type ELs, but thin II! Since the light-emitting layer of EL is formed by vapor-depositing a light-emitting base material onto a substrate, it has drawbacks such as difficulty in manufacturing large-area devices and extremely high manufacturing costs.
そのため、最も量産性に富み、コスト的にS膜型素子の
数十分の一程度ですむ有機バインダー中に発光母材、す
なわち、ZnSを分散させた粉末型ELが注目されるよ
うになった。一般的には。For this reason, powder-type EL, in which a light-emitting base material, that is, ZnS, is dispersed in an organic binder, which is most easily mass-produced and costs only a few tenths of that of S-film type devices, has attracted attention. . In general.
EL発光においては、発光層の厚さが薄い程発光特性が
良くなる。しかし、該粉末型ELの場合は、発光母材が
不M続の粉末であるため1発光層を薄くすると、発光層
中にピンホールが生じ易く、層厚を薄くすることが困難
であり、従って十分な輝度特性が得られないという大き
な欠点を持っている。近時においても、該粉末型ELの
発光層内にフ、フ化ビニリデン系重合体から成る中間誘
電体層を配置した改良型素子が、特開1]B58−17
2891号公報に示されているが、未だ発光輝度、消費
電力等に十分な性能を得るにいたっていない、一方、最
近、有機材料の化学構造や高次機造を制御して、新しく
オプティカルおよびエレクトロニクス用材料とする研究
開発が活発に行なわれ、EC素子、圧電性素子、焦電性
素子、非線計光学素子1強舖電性液晶等、金属、S機材
料に比肩し得るか、またはそれらをw!駕する有機材料
が発表されている。このように、無機物を凌ぐ新しい機
能素材としての機能性有機材料の開発が要望される中で
、分子内に親木基と疎水基を持つアントラセン誘導体や
ピレン誘導体の単分子層の累積膜を電極基板上に形成し
たEL素子が特開昭52−35587号公報に提案され
ている。しかし、それらのEL素子は、その輝度、消費
電力等、現実のEL素子として十分な性能を得るに至っ
ておらず、更に、該有機EL素子の場合、キャリア電子
あるいはホールの密度が非常に小さく、キャリアの再結
合等による機部分子の励起確率が非常に小さくなり、効
率の良い発光が期待できないものである。In EL light emission, the thinner the thickness of the light emitting layer, the better the light emission characteristics. However, in the case of the powder type EL, since the luminescent base material is a non-continuous powder, when one luminescent layer is made thin, pinholes are likely to occur in the luminescent layer, making it difficult to reduce the layer thickness. Therefore, it has a major drawback in that sufficient brightness characteristics cannot be obtained. Recently, an improved device in which an intermediate dielectric layer made of vinylidene fluoride polymer is disposed within the light-emitting layer of the powder type EL has been disclosed in Japanese Patent Application Laid-Open No. 1] B58-17.
However, it has not yet achieved sufficient performance in terms of luminance and power consumption.On the other hand, recently, new optical and Research and development into materials for electronics is being actively carried out, and materials such as EC elements, piezoelectric elements, pyroelectric elements, non-radiometer optical elements, and strong electrostatic liquid crystals are comparable to metals and S mechanical materials. lol them! Compelling organic materials have been announced. As described above, there is a demand for the development of functional organic materials as new functional materials that surpass inorganic materials, and a cumulative film of monomolecular layers of anthracene derivatives and pyrene derivatives, which have a parent tree group and a hydrophobic group in the molecule, is being used as an electrode. An EL element formed on a substrate is proposed in Japanese Patent Laid-Open No. 52-35587. However, these EL devices have not yet achieved sufficient performance as a real EL device in terms of brightness, power consumption, etc. Furthermore, in the case of organic EL devices, the density of carrier electrons or holes is extremely low. The probability of excitation of mechanical molecules due to carrier recombination or the like becomes extremely small, and efficient light emission cannot be expected.
(発明の開示)
従って、未発11の目的は、上述のような従来技術の欠
点を解消して、低電圧駆動でも十分輝度の高い発光が得
られ、安価で、且つ製造が容易なEL素子を提供するこ
とである。(Disclosure of the Invention) Therefore, the purpose of Unexposed 11 is to eliminate the drawbacks of the prior art as described above, to provide an EL element that can emit light with sufficiently high brightness even when driven at a low voltage, is inexpensive, and is easy to manufacture. The goal is to provide the following.
上記本発明の目的は、EL素子の発光層を、特定の材料
を組合せて、且つ特定の構成に形成することにより達成
された。The above object of the present invention has been achieved by forming a light emitting layer of an EL element by combining specific materials and having a specific configuration.
すなわち1本発り1は、3層積層構造の発光層と、該発
光層を挟持する少なくとも1層が透明である2層の電極
層からなるEL素子において、上記第1および第3の発
光層が、第2の発光層に対して相対的に電子受容性の少
なくとも1種の電気的発光性有機化合物からなる単分子
膜またはその累積膜からなり、且つ第2の発光層が第1
および第3の発光層に対して相対的に電子供与性の少な
くとも1種の電気的発光性有機化合物からなる単分子膜
またはその累積膜からなることを特徴とする上記EL素
子である。In other words, 1 is an EL device consisting of a light emitting layer with a three-layer laminated structure and two electrode layers in which at least one layer sandwiching the light emitting layer is transparent, in which the first and third light emitting layers are is composed of a monomolecular film made of at least one electroluminescent organic compound that is electron-accepting relative to the second emissive layer, or a cumulative film thereof, and the second emissive layer is
and a monomolecular film made of at least one electroluminescent organic compound that is electron-donating relative to the third light-emitting layer, or a cumulative film thereof.
本発明の詳細な説明すると、本発明において使用し、主
として本発明を特徴づける電気的発光性有機化合物とは
、高い発光量子効率を有し、更に外部摂動を受は易いπ
電子系を有し、電気的な励起が可能な化合物であり、例
えば、基本的には、縮合多環芳香族炭化水素、p−ター
フェニル、2.5−ジフェニルオキサゾール、l、4−
ビス(2−メチルスチリル)−ベンゼン、キサンチン、
クマリン、アクリジン、シアニン色素、ベンゾフェノン
、フタロシアニンおよびその金属錯体、ポルフィリンお
よびその金属錯体、8−ヒドロキシキノリンとその金属
錯体、有機ルテニウム錯体、有機稀土類錯体およびこれ
らの化合物の誘導体等を挙げることができる。更に上記
化合物に対して電子受容体または電子供与体となり得る
化合物としては、前記以外の複素環式化合物およびそれ
らの誘導体、芳香族アミンおよび芳香族ポリアミン、キ
ノン構造をもつ化合物、テトラシアノキノジメタンおよ
びテトラシアノエチレン等を挙げることができる。To explain the present invention in detail, the electroluminescent organic compound used in the present invention and which mainly characterizes the present invention has a high luminescence quantum efficiency and is easily susceptible to external perturbation.
It is a compound that has an electronic system and can be electrically excited. For example, it basically includes fused polycyclic aromatic hydrocarbons, p-terphenyl, 2.5-diphenyloxazole, l, 4-
Bis(2-methylstyryl)-benzene, xanthine,
Examples include coumarin, acridine, cyanine dyes, benzophenone, phthalocyanine and its metal complexes, porphyrin and its metal complexes, 8-hydroxyquinoline and its metal complexes, organic ruthenium complexes, organic rare earth complexes, and derivatives of these compounds. . Furthermore, compounds that can serve as electron acceptors or electron donors for the above compounds include heterocyclic compounds other than those mentioned above and derivatives thereof, aromatic amines and aromatic polyamines, compounds with a quinone structure, and tetracyanoquinodimethane. and tetracyanoethylene.
本発明において、特に有用な化合物は、上記の如き電気
的発光性化合物を必要に応じて公知の方法で化学的に修
飾し、その構造中に少なくとも1個の疎水性部分と少な
くとも1個の親水性部分(これらはいずれも相対的な意
味においてである。)を併有させるようにした化合物で
あり、例えば下記の一般式CI)で表わされる化合物お
よびその他の化合物を包含する。Particularly useful compounds in the present invention are those obtained by chemically modifying the electroluminescent compound as described above by a known method if necessary, and having at least one hydrophobic moiety and at least one hydrophilic moiety in its structure. It is a compound having a sexual moiety (all of these are in a relative sense), and includes, for example, a compound represented by the following general formula CI) and other compounds.
[(X−R,)、2]、L−$−R2(I)上記式中に
おけるXは、水素原子、ハロゲン原子、アルコキシ基、
アルキルエーテル基、ニトロ基;カルポキシルノ^、ス
ルホン酸基、リンs基。[(X-R,), 2], L-$-R2(I) In the above formula, X is a hydrogen atom, a halogen atom, an alkoxy group,
Alkyl ether group, nitro group; carpoxyl group, sulfonic acid group, phosphorus group.
ケイ酸基、第1〜3アミノ基;これらの金Ii!塩。Silicic acid group, primary to tertiary amino group; these gold Ii! salt.
1〜3級アミン塩、酸塩;エステル基、スルホアミド基
、アミド基、イミノ基、4級アミン基およびそれらの塩
、水醜基等であり;R9は炭素数4〜30、好ましくは
10〜25個のアルキル基、好ましくは直鎖状アルキル
基であり;mは1または基(R,は水素原子、アルキル
基、アリール等の任意の置換基である)であり;φは後
に例示する如き電場発光性化合物の残基であり;R1は
Xと同様に、水素原子またはその他の任意の置換基であ
り:1個または複数のX、φおよびR2のうち少なくと
も1個は親水性部分であり、且つ少なくとも1個は疎水
性部分である。Primary to tertiary amine salts, acid salts; ester groups, sulfamide groups, amide groups, imino groups, quaternary amine groups and their salts, water-based groups, etc.; R9 has 4 to 30 carbon atoms, preferably 10 to 30 carbon atoms; 25 alkyl groups, preferably linear alkyl groups; m is 1 or a group (R is any substituent such as a hydrogen atom, an alkyl group, or an aryl); φ is as exemplified later is a residue of an electroluminescent compound; R1, like X, is a hydrogen atom or any other substituent; at least one of one or more of X, φ and R2 is a hydrophilic moiety; , and at least one is a hydrophobic moiety.
一般式(1)の化合物のφとして好ましいものおよびそ
の他の化合物を例示すれば、以下の通りである。Preferred examples of the compound φ of the general formula (1) and other compounds are as follows.
(以 下 余 白 )
Z=NH1O,S Z=CO,NHZ=CO1N
H%O,5Z=NH,0、S
Z = NH%0、S Z=NH
,0,5Z=Ss Se Z=S%Se
’ Z=Ss 5eZ=NH,OlS Z=
NH1αS Z=NH,O1SM=MgsZnsSn
hAtC1M=HzsBe*MghCa*CdSn、f
ilch% YbCI
M= Ers Tm Sm、 Eu、 Tb、
Z = 0、Nm、−′
M=A4 Gas Irs Tab a=3 PJ
I−Ers Smb EuDA−Zns Cd b M
g s pb s a=2 Gd 1Tb %D
yTm、Yb
Tb、 Dy、 Tm、 Yb Gd、 T
b、 DyTm、Yb
Z=O,S、Se O<p≦2
以上の如き発光性化合物は1本発明における各々の発光
層において単独でも混合物としても使用できる。なお、
これらの化合物は好ましい化合物の例示であって、同一
目的が達成される限り、他の銹導体または他の化合物で
も良いのは当然である。(Margin below) Z=NH1O, S Z=CO, NHZ=CO1N
H%O,5Z=NH,0,SZ=NH%0,SZ=NH
,0,5Z=Ss Se Z=S%Se
'Z=Ss 5eZ=NH,OlS Z=
NH1αS Z=NH, O1SM=MgsZnsSn
hAtC1M=HzsBe*MghCa*CdSn, f
ilch% YbCI M=Ers Tm Sm, Eu, Tb,
Z = 0, Nm, -' M=A4 Gas Irs Tab a=3 PJ
I-Ers Smb EuDA-Zns Cd b M
g s pb s a=2 Gd 1Tb %D
yTm, Yb Tb, Dy, Tm, Yb Gd, T
b, DyTm, Yb Z=O,S, Se O<p≦2 The above luminescent compounds can be used alone or as a mixture in each luminescent layer in the present invention. In addition,
These compounds are examples of preferred compounds, and it goes without saying that other rust conductors or other compounds may be used as long as the same purpose is achieved.
本発明においては、上記の如き発光性化合物をそれらの
電気的陰性度に応じて、本発明のEL素子の第1−第3
の発光層に分けて使用して発光層を3暦の積層構造とし
たことを特徴としている。In the present invention, the luminescent compounds as described above are used in the first to third stages of the EL device of the present invention, depending on their electronegativity.
The light emitting layer is divided into three light emitting layers, and the light emitting layer has a three-layered structure.
すなわち、上記の如き発光性化合物は、それぞれ電気陰
性度が異なるから、1種のまたは複数の前記化合物を第
1および第3の発光層を形成するための発光性化合物と
して採用したときには、これら採用した発光性化合物と
は、その電気的陰性度の異なる前記発光性化合物を第2
の発光層形成用化合物として選択すれば良い、このよう
な発光性化合物のなかで、電子供与性のものとして特に
好ましい化合物は、第1−tiSS級アミノアミノ基基
、アルコキシ基、アルキルエーテル基等の電子供与性基
を有するもの、あるいは窒素へテロ環化合物が主たるも
のであり、また電子受容性のものとしては、カルボニル
基、スルホニル基、ニトロ基、第4級アミノ基等の電子
吸引性基を有する化合物が主たるものである。このよう
な発光性化合物は本発明において、それぞれの発光層に
おいては単独または複数の混合物として使用することが
できる。That is, since the above-mentioned light-emitting compounds have different electronegativity, when one or more of the above-mentioned compounds are employed as the light-emitting compounds for forming the first and third light-emitting layers, these employed A second luminescent compound is a luminescent compound having a different electronegativity.
Among such light-emitting compounds that may be selected as compounds for forming a light-emitting layer, particularly preferable electron-donating compounds include 1-tiSS class amino amino groups, alkoxy groups, alkyl ether groups, etc. The main ones are those having an electron-donating group or nitrogen heterocyclic compounds, and the electron-accepting ones include electron-withdrawing groups such as carbonyl group, sulfonyl group, nitro group, and quaternary amino group. The main compounds are those having In the present invention, such luminescent compounds can be used alone or in combination in each luminescent layer.
本発明のEL素子を形成する他の要素、すなわち2暦の
電極層は、発光層を挟持するものであって、従来公知の
ものはいずれも使用できるが、少なくともその1層は透
明性である必要がある。透明電極としては、従来同様目
的の透明電極層がいずれも使用でき、好ましいものとし
ては1例えばポリメチルメタクリレート、ポリエステル
等の透明な合成樹脂、ガラ゛ス等の如き透明性フィルム
あるいはシートの表面に酸化インジウム、酸化賜、イン
ジウム−チン−オキサイド(ITo)等の透明導電材料
を全面にあるいはパターン状に被覆したものである。一
方の面に不透明電極を使用する場合は、これらの不透明
電極も、従来公知のものでよく、一般的且つ好ましいも
のは、厚さが約0.1〜0.3pmのアルミニウム、銀
、金等の蒸着膜である。また透明電極あるいは不透明電
極の形状は、板状、ベルト状、円筒状等任意の形状でよ
く、使用目的に応じて選択することができる。また、透
明電極の厚さは、約0.01〜0゜21Lm程度が好ま
しく、この範囲以下の厚さでは、素子自体の物理的強度
や電気的性質が不十分となり、また上記範囲以上の厚さ
では透明性や軽量性、小型性等に問題が生じるおそれが
ある。The other elements forming the EL element of the present invention, that is, the two electrode layers that sandwich the light emitting layer, can use any conventionally known electrode layer, but at least one of the layers is transparent. There is a need. As the transparent electrode, any desired transparent electrode layer can be used as in the past, and preferred ones are 1, for example, transparent synthetic resins such as polymethyl methacrylate and polyester, transparent films or sheets such as glass, etc. A transparent conductive material such as indium oxide, tin oxide, or indium tin oxide (ITo) is coated on the entire surface or in a pattern. When using opaque electrodes on one side, these opaque electrodes may be of conventionally known types, and are generally and preferably made of aluminum, silver, gold, etc. with a thickness of about 0.1 to 0.3 pm. This is the vapor-deposited film. Further, the shape of the transparent electrode or the opaque electrode may be any shape such as a plate, a belt, or a cylinder, and can be selected depending on the purpose of use. The thickness of the transparent electrode is preferably about 0.01 to 0.21 Lm. If the thickness is less than this range, the physical strength and electrical properties of the element itself will be insufficient, and if the thickness is more than the above range, Otherwise, problems may arise in terms of transparency, light weight, compactness, etc.
本発明のEL素子は、上記の如き2暦の電極層の間に、
前述の如き相対的に電気陰性度の異なる電気的発光性化
合物を別々に用いて3F!)からなる発光層を形成する
ことにより得られるものであり、形成された3層構造の
発光層を構成する分子が、それぞれ高秩序の分子配尚性
をもって配列した単分子膜あるいはその累積膜であるこ
とを特徴としている。In the EL element of the present invention, between the two electrode layers as described above,
Using electroluminescent compounds with relatively different electronegativities as described above, 3F! ), in which the molecules constituting the three-layered emissive layer are arranged in a monomolecular film or a cumulative film thereof with highly ordered molecular arrangement. It is characterized by certain things.
本発明において、このような単分子膜あるいはその累積
膜を形成する方法として、特に好ましい方法は、ラング
ミュア・ブロジェット法(LB法)である、このLB法
は1分子内に親木性基と疎水性基とを有する構造の分子
において1両者のバランス(両親媒性のバランス)が適
度に保たれているとき、分子は水面上で、親水性基を下
に向けて単分子の層になることを利用して、単分子膜ま
たはその累積膜を形成する方法である。具体的には水層
上に展開した単分子膜が、水相上を自由に拡散して広が
りすぎないように、仕切板(または浮子)を設けて展開
面積を制限して膜物質の集合状態を制御し、表面圧を徐
々に上昇させ、単分子膜あるいはその累積膜の製造に適
する表面圧を設定する。この表面圧を維持しながら静か
に清浄な基板を垂直に上昇または、降下させることによ
り、単分子膜が基板上に移しとられる。単分子膜は以上
で製造されるが、単分子膜の累8を膜は前記の操作を繰
り返すことにより所望の累積度の累積膜として形成され
る。In the present invention, a particularly preferred method for forming such a monomolecular film or a cumulative film thereof is the Langmuir-Blodgett method (LB method). When a molecule with a structure that has a hydrophobic group maintains an appropriate balance between the two (amphiphilic balance), the molecule forms a monomolecular layer on the water surface with the hydrophilic group facing down. This method utilizes this fact to form a monomolecular film or a cumulative film thereof. Specifically, in order to prevent the monomolecular film spread on the water layer from freely diffusing and spreading too much, a partition plate (or float) is provided to limit the spread area and control the aggregated state of the film material. is controlled, the surface pressure is gradually increased, and a surface pressure suitable for manufacturing a monomolecular film or a cumulative film thereof is set. By gently lifting or lowering the clean substrate vertically while maintaining this surface pressure, the monomolecular film is transferred onto the substrate. A monomolecular film is produced in the above manner, and a cumulative film having a desired degree of accumulation can be formed by repeating the above-mentioned operations.
単分子膜を基板上に移すには、上述した垂直浸漬法の他
、水平付着法1回転円筒法などの方法によっても可能で
ある。水平付着法は基板を水面に水平に接触させて移し
とる方法で、回転円筒法は1円筒型の基体を水面」二を
回転させて単分子膜を基体表面に移しとる方法である。In addition to the above-mentioned vertical dipping method, the monomolecular film can be transferred onto the substrate by methods such as a horizontal deposition method, a single rotation cylinder method, and the like. The horizontal deposition method is a method in which the substrate is brought into contact with the water surface horizontally and transferred, and the rotating cylinder method is a method in which a cylindrical substrate is rotated above the water surface and the monomolecular film is transferred onto the surface of the substrate.
前述した垂直浸漬法では、表面が親水性の基板を水面を
横切る方向に水中から引きにげると分子の親木性基が基
板側に向いた単分子膜が基板上に形成される。前述のよ
うに基板を上下させると、各行程ごとに1枚ずつ単分子
膜が重なっていく、成膜分子の向きが引き上げ行程と浸
漬行程で逆になるので、この方法によると各層間は分子
の親水性基と親水性基1分子の疎水性基と疎水性基が向
かい合うY型膜が形成される。それに対し、水平付着法
は、基板を水面に水平にJ!i着させて移しとる方法で
、分子の疎水性基が基板側に向いた単分子膜が基板上に
形成される。この方法では、単分子膜を累積しても、成
膜分子の向きの交代はなく、全ての層に □′おい
て、疎水性基が基板側に向いたX型膜が形成される0反
対に全ての層において親水性基が基板側に向いた累tn
MはZ型膜と呼ばれる0回転円筒法は、円筒法の基体水
面上を回転させて単分子膜を基体表面に移しとる方法で
ある。単分子膜を基板上に移す方法は、これらに限定さ
れるわけでなく、即ち、大面積基板を用いる時には、基
板ロールから水層中に基板を押し出していく方法なども
とり、得る。また、前述した親水性基、疎水性基の基板
への向きは原則であり、基板の表面処理等によって変え
ることができる。In the vertical immersion method described above, when a substrate with a hydrophilic surface is pulled out of water in a direction transverse to the water surface, a monomolecular film is formed on the substrate with the tree-philic groups of the molecules facing the substrate. As mentioned above, when the substrate is moved up and down, one monomolecular film is overlapped in each process.The direction of the film-forming molecules is reversed between the lifting process and the dipping process, so according to this method, the molecules between each layer are A Y-type film is formed in which the hydrophilic group of the molecule and the hydrophobic group of one molecule of the hydrophilic group face each other. On the other hand, in the horizontal attachment method, the substrate is placed horizontally on the water surface. By this method, a monomolecular film with the hydrophobic groups of the molecules facing the substrate is formed on the substrate. In this method, even if monomolecular films are accumulated, there is no change in the orientation of the film molecules, and in all layers an X-shaped film is formed with the hydrophobic groups facing the substrate. In all layers, the hydrophilic groups face the substrate side.
The 0-rotation cylinder method, in which M is referred to as a Z-type membrane, is a method in which the monomolecular film is transferred to the surface of the substrate by rotating the cylinder above the water surface of the substrate. The method of transferring the monomolecular film onto the substrate is not limited to these methods; in other words, when using a large-area substrate, a method of extruding the substrate from a substrate roll into a water layer may also be used. Furthermore, the directions of the above-mentioned hydrophilic groups and hydrophobic groups toward the substrate are in principle, and can be changed by surface treatment of the substrate, etc.
本発明のEL素子は、前述の如き発光層形成用材料を好
ましくは上述の如きLB法により、前述の如き2居の電
極層の間にそれぞれ電気陰性度の異なる化合物から、3
層構造として形成することによって得られるものである
。In the EL device of the present invention, the above-mentioned light-emitting layer forming material is preferably formed by the above-mentioned LB method, and between the above-mentioned two electrode layers, three compounds having different electronegativities are formed between the two electrode layers.
This can be obtained by forming it as a layered structure.
従来の1技術の項で述べた通り、LB法によりEL素子
を形成することは公知であるが、該公知の方法では、十
分な性能のEL素子が得られず。As described in the section on a conventional technique, it is known to form an EL element by the LB method, but with this known method, an EL element with sufficient performance cannot be obtained.
本発明者は1種々研究の結果1発光層を3層構造と−し
、それぞれの発光層を前述の如き電気陰性度の異なる、
・化合物を用いて単分子膜あるいはその累積膜として形
成することにより、従来技術のEL素子の性能が著しく
向上することを知見したものである。As a result of various studies, the present inventor has constructed a three-layer structure for one light-emitting layer, and each light-emitting layer has a different electronegativity as described above.
- It has been discovered that the performance of conventional EL elements can be significantly improved by forming a monomolecular film or a cumulative film of these compounds using a compound.
本9i明の1つの東要な態様は、各々の発光層が前記発
光性材料からなる単分子膜である態様である。この態様
のEL素子は、まず最初に、中間層として形成すべき第
2層に対して相対的に電子受容性である材料を、1適当
な有機溶剤1例えばクロロホルム、ジクロロメタン、ジ
クロロエタン等中z M
に約lO〜IO会学考程度の濃度に溶解し、該溶液を、
各種の金属イオンを含有してもよい適′当なpH(例え
ば、 PH約1〜8)の水相上に展開させ、溶剤を蒸発
除去して単分子膜を形成し、前述の如くのLB法で、一
方の電極基板上に移し取って第i5とし、十分に乾−燥
し1次いで、このように形成した第、1層に対ルて相対
的に電子供与性である材料を、同様にして単分子膜とし
て、その第1の発光層の表面に移しとって第2層とし、
該第2暦の表面に、上記と同様にして第2層に対して相
・射的に電子受容性の化合物から第3層を形成し、最後
に1例えばアルミニウム、銀、金等の電極材料を、好ま
しくは蒸着等により蒸着させて背面電極層を形成するこ
とによって得られる。One important aspect of the present invention is that each light-emitting layer is a monomolecular film made of the above-mentioned light-emitting material. In the EL device of this embodiment, first, a material that is relatively electron-accepting to the second layer to be formed as an intermediate layer is dissolved in a suitable organic solvent such as chloroform, dichloromethane, dichloroethane, etc. to a concentration of about 10 to IO, and the solution is
It is developed on an aqueous phase of an appropriate pH (e.g., pH about 1 to 8) which may contain various metal ions, and the solvent is evaporated to form a monomolecular film. A material having electron donating properties relative to the first layer formed in this way was then transferred in the same manner to the first layer formed in this manner. and transfer it as a monomolecular film to the surface of the first light emitting layer to form a second layer,
A third layer is formed on the surface of the second calendar in the same manner as above, and is made of a compound that is reciprocally electron-accepting to the second layer, and finally, an electrode material such as aluminum, silver, gold, etc. is formed on the surface of the second layer. , preferably by vapor deposition or the like to form a back electrode layer.
このようにして得られたEL素子の3層の単分子膜から
なる発光層の厚さは、使用した材料の種類によって異な
るが、一般的には約0.01−1μmの厚さが好適であ
る。The thickness of the luminescent layer consisting of three monomolecular layers of the EL device thus obtained varies depending on the type of material used, but generally a thickness of about 0.01-1 μm is suitable. be.
また、別の重要な態様は1本発明のEL素子の発光層を
構成する3層のうち少なくとも一層、好ましくは3層と
もが、上記の単分子膜の累積膜である態様である。該態
様は、前記のLB法を用いることにより、上記の如き単
分子膜を種々の方法で必要な暦数まで累積することによ
って得られる。Another important aspect is that at least one layer, preferably all three layers, of the three layers constituting the light emitting layer of the EL device of the present invention is a cumulative film of the above-mentioned monomolecular film. This embodiment can be obtained by accumulating monolayers as described above in various ways up to the required number of layers by using the LB method described above.
このようにして得られるEL素子の発光層の厚さ、すな
わち単分子膜の累積数は、任意に変更することができる
が、本発明においては、3層の合計で約4〜400の累
積数が好適である。The thickness of the light-emitting layer of the EL device thus obtained, that is, the cumulative number of monolayers, can be changed arbitrarily, but in the present invention, the cumulative number of the three layers is about 4 to 400. is suitable.
なお、基板として使用する一方の電極層あるいは両方の
電極層と発光層との接着は、LB法においては十分に強
固なものであり、発光層が剥離したり剥落したりするこ
とはないが、接着力を強化する目的で、基板表面をあら
かじめ処理してあいたり、あるいは基板と発光層との間
に適当な接着剤層を設けてもよい、更に1発光層の形成
用材料や使用する水層のpH、イオン種、水温、単分子
膜の転移速度あるいは単分子膜の表面圧等の種々の条件
を調節によっても接着力を強化することかできる。Note that the adhesion between one or both electrode layers used as a substrate and the light-emitting layer is sufficiently strong in the LB method, and the light-emitting layer will not peel or fall off. In order to strengthen the adhesion, the surface of the substrate may be treated in advance, or an appropriate adhesive layer may be provided between the substrate and the light emitting layer. The adhesive strength can also be strengthened by adjusting various conditions such as the pH of the layer, ionic species, water temperature, transfer rate of the monomolecular film, or surface pressure of the monomolecular film.
以上の如くして形成されたEL素子は、そのままでは空
気中の湿気や酸素の影響でその性能が劣化することがあ
るので、従来公知の手段で耐湿。Since the performance of the EL element formed as described above may deteriorate due to the influence of moisture and oxygen in the air, it is made moisture resistant by conventionally known means.
耐S*性の密封JIfI造とするのが望ましい。It is desirable to use a sealed JIfI structure that is S* resistant.
以上の如き本発明のEL素子は、その発光層の構造が、
超薄膜であり、且つEL素子の作動上必要な高度の分子
秩序性と機能を有しており、優れた発光性能を有するも
のである。また、製造面で 1は、大面積にわた
って5発光層の厚さが均一で。In the EL device of the present invention as described above, the structure of the light emitting layer is as follows:
It is an ultra-thin film, has a high degree of molecular order and functionality necessary for the operation of an EL device, and has excellent light-emitting performance. In addition, in terms of manufacturing, 1. The thickness of the 5 light-emitting layers is uniform over a large area.
欠陥のないEL素子とすることができ、また常温、常圧
またはそれに近い条件で作成することができるため、比
較的耐熱性のない発光機能材料も使用することができる
という利点がある。Since the EL element can be made without defects and can be produced at room temperature, normal pressure, or conditions close to it, there is an advantage that light-emitting functional materials with relatively low heat resistance can be used.
更に、本発明のEL素子の発光層は、第1図に図解的に
示すように、従来技術の単−暦からなる発光層とは異な
り、第2図に図解的に示すように、第1〜第3の発光層
とが均一な界面を有して夫々msされているので、それ
らの電気陰性度の異なる3層間での各種相互作用が極め
て容易であり、従来技術では達成しえない程度の優れた
発光性能を発揮するものである。すなわち、第1〜第3
の発光層との電気陰性度の差等を種々変更することによ
って、発光強度を向上させたり、あるいは発光色を任意
に変更でき、また、その耐用寿命も著しく延長させるこ
とができる。Furthermore, as schematically shown in FIG. 1, the light-emitting layer of the EL device of the present invention is different from the light-emitting layer of the prior art consisting of a single calendar, as schematically shown in FIG. ~Since the third light-emitting layer has a uniform interface with each other, various interactions between these three layers with different electronegativities are extremely easy, to a degree that cannot be achieved with conventional technology. It exhibits excellent light emitting performance. That is, the first to third
By variously changing the difference in electronegativity between the light emitting layer and the light emitting layer, the light emission intensity can be improved, the light emission color can be arbitrarily changed, and the service life can be significantly extended.
更に、従来技術では、発光性が優れているが。Furthermore, the prior art has excellent luminescence.
成膜性や膜強度が不十分な材料は実質上使用できなかっ
たが1本発明においては、このようなIIIk、ll!
2性や膜強度が劣るが、発光性に優れた材料でも、少、
なくとも1層に成膜性に優れた材料を使用することに声
って、発光性、成膜性および膜強度のいずれもが優れた
発光層を得ることができる。Materials with insufficient film formability or film strength could not be used in practice, but in the present invention, such IIIk, ll!
Even if the material is inferior in bipolar properties and film strength, but has excellent luminescence,
By using a material with excellent film-forming properties in at least one layer, a light-emitting layer with excellent luminescence properties, film-forming properties, and film strength can be obtained.
以上の本発明のELF子は、その発光層に好適な電界等
の電気エネルギーが作用するように、電極層間に、交流
またはパルスあるいは直流電流等の電気エネルギーを印
加することにより、優れたEL発光を示すものである。The ELF device of the present invention described above can achieve excellent EL luminescence by applying electrical energy such as alternating current, pulse, or direct current between the electrode layers so that electrical energy such as a suitable electric field acts on the light emitting layer. This shows that.
次に実施例をあげて本発明を更に具体的に説明する。な
お、文中部とあるのは重量基準である。Next, the present invention will be explained in more detail with reference to Examples. Note that the words in the middle of the text are based on weight.
実施例1
501角のガラス板の表面上にスパッタリング法により
膜厚1500AのITO層を蒸着して、透明電極を形成
した。この1膜基板を充分洗浄後、 Joyce −L
oebe1社製ノLangauir −Traugh4
(1)pH6、5に調整された水相中に浸漬した0次
に。Example 1 A transparent electrode was formed by depositing an ITO layer with a thickness of 1500 Å on the surface of a 501 square glass plate by sputtering. After thoroughly cleaning this one-layer substrate, Joyce-L
Langair-Traugh4 made by oebe1
(1) Zero-order immersed in an aqueous phase adjusted to pH 6.5.
A B上記化合物A
およびBをl=1のモル比で、クロロホルムに溶かした
( 10−jmol /見)後、上記水相上に展開させ
た。溶媒のクロロホルムを蒸発除去後1表面圧を高めて
(30dyne/ cm) 、上記の混合分子を膜状に
析出させた。その後、表面圧を一定に保ちながら、該成
膜基板を、水面を横切る方向に静かに上下させ(上下速
度2cm/xin)、混合単分子膜を基板上に移し取り
、単分子膜のみ、3.5,10および15層に累積した
単分子膜!IIQを作成した。この累積行程において。A BThe above compound A
and B were dissolved in chloroform at a molar ratio of l=1 (10-jmol/ml), and then developed on the aqueous phase. After the solvent chloroform was removed by evaporation, the surface pressure was increased (30 dyne/cm) to precipitate the above mixed molecules in the form of a film. Thereafter, while keeping the surface pressure constant, the film-forming substrate was gently moved up and down in the direction across the water surface (vertical speed 2 cm/xin), and the mixed monomolecular film was transferred onto the substrate. .5, 10 and 15 layers of accumulated monolayers! Created IIQ. In this cumulative process.
該基板を水槽から引きあげる都度、30分間以上放置し
て基板に付着している水分を蒸発除去した。Each time the substrate was taken out of the water tank, it was allowed to stand for 30 minutes or more to evaporate and remove the water adhering to the substrate.
次に、該水相表面に残った上記混合単分子膜を完全に取
り除き、新たにクロロホルムに溶解(10−3mol
/ fL ) t、たを該水相上に展開した。上記と
同じ方法により、すでに作成された単分子膜および単分
子累積膜表面上に新しい機能性単分子膜のみおよび2層
を累積した累積膜を形成した。Next, the mixed monomolecular film remaining on the surface of the aqueous phase was completely removed and newly dissolved in chloroform (10-3 mol
/fL) was developed on the aqueous phase. By the same method as above, new functional monolayers and two-layer cumulative films were formed on the surfaces of the monolayers and monolayer cumulative films that had already been produced.
再度、上記水相表面の単分子膜を完全に除去し、上記第
1層の形成に使用した同一材料を同一濃度で同様な方法
で上記282層の表面に1層の単分子8gおよび3,5
,10.15Wに累積して単分子累積膜とし、第3層と
した。Once again, the monomolecular film on the surface of the aqueous phase was completely removed, and a single layer of 8 g of monomolecules and 3, 5
, 10.15W to form a monomolecular cumulative film, which was used as the third layer.
最後に、上記のように形成された[を有する基板を蒸着
槽に入れて、核種を一度10 Torrの真空度まで減
圧した後、真空度10Torrに調整して蒸着速度20
A / seaで、1500Aの膜厚でAlt−該薄
膜上に蒸着して背面電極とした0作成されたEL素子を
図3に例示したように、シールガラスでシールしたのち
、従来方法に従って、精製および脱気、脱水されたシリ
コンオイルをシール中に注入して、本発明の4個のEL
発光セルを形成した。これらのEL発光セルに5V、5
0Hzの交流電圧を印加したところ、使用した材料特有
の色を有するEL光発光得た。評価結果を表1に示す。Finally, the substrate having [formed as described above] was placed in a vapor deposition tank, and the nuclide was once reduced to a vacuum level of 10 Torr, and then the vacuum level was adjusted to 10 Torr, and the vapor deposition rate was increased to 20 Torr.
At A/sea, a film thickness of 1500 A was deposited on the Alt thin film to form a back electrode.The prepared EL element was sealed with a sealing glass as shown in FIG. 3, and then purified according to a conventional method. and degassed and dehydrated silicone oil is injected into the seal to form the four ELs of the present invention.
A light emitting cell was formed. 5V, 5 to these EL light emitting cells
When an alternating current voltage of 0 Hz was applied, EL light emission having a color unique to the material used was obtained. The evaluation results are shown in Table 1.
上記の本発明のEL素子は、従来例のZnSを発光母体
としたEL素子と比較し、駆動電圧が低く、発光輝度特
性の良いEL素子であった。The above-mentioned EL element of the present invention had a lower driving voltage and better luminance characteristics than the conventional EL element using ZnS as a light emitting matrix.
比較例1
実施例1において、発光性化合物として化合物Aのみを
使用し、且つ単−暦にしたことを除いて、他は実施例1
と同様にして比較用のEL素子を得、且つ実施例1と同
様に評価した。評価結果は第1表に示した。Comparative Example 1 In Example 1, except that only Compound A was used as the luminescent compound and a mono-calendar was used, the rest was the same as that of Example 1.
A comparative EL device was obtained in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.
累積度 監lユ■ 圧遺 1災蓋遮1層2暦3
!J 正辷口 (すhl−1115V
、400Hz 3 0.183 2 3
10V、400Hz 11 0.135 2
5 10V、400Hz 20 0.11
10 2 10 10V、400Hz 18
0.H2S 2 15 LOW、400Hz
17 0.07庭蚊勇」
累積度
3 10V、40011z 1以下 0
.218 10V、400Hz 1以下
0.112 10V、400Hz 1以下
0.122 10V、400Hz
1以下 0.0332 10V、400Hz
1以下 0.08実施例2
実施例1における化合物A、BおよびCに代えて、下記
化合物り、EおよびFを使用し、D E
F
他は実施例1と同様にして1本発明のEL素子(但し、
各々の累積数は5.2.5)を得、実施例1と同一条件
で評価したところ、電流密度0913腸A / c m
’で、輝度(Ft−L)は18であった。Cumulative degree Supervision ■ Pressure 1 Disaster prevention 1 layer 2 Calendar 3
! J 正辷口 (Shl-1115V
, 400Hz 3 0.183 2 3
10V, 400Hz 11 0.135 2
5 10V, 400Hz 20 0.11
10 2 10 10V, 400Hz 18
0. H2S 2 15 LOW, 400Hz
17 0.07 Niwa Mosquito Isamu” Cumulative degree 3 10V, 40011z 1 or less 0
.. 218 10V, 400Hz 1 or less
0.112 10V, 400Hz 1 or less 0.122 10V, 400Hz
1 or less 0.0332 10V, 400Hz
1 or less 0.08 Example 2 In place of compounds A, B, and C in Example 1, the following compounds R, E, and F were used, and D E
F The other parts were the same as in Example 1.1 EL element of the present invention (however,
The cumulative number of each was 5.2.5), and when evaluated under the same conditions as Example 1, the current density was 0913 A/cm
', and the brightness (Ft-L) was 18.
第1図は、従来技術のLB法によるEL素子を図解的に
示したものであり、第2図は、本発明のEL素子を図解
的に示したものであり、第3図は未発明のEL素子の断
面を図解的に示したものである。
l;透明itt極 2;発光層3;背面電極
4;発光性化合物5;発光性化合物 6;
発光性化合物7;シールガラス 8:シリコン絶縁
油9;ガラス板
特許出願人 キャノン株式会社
代理人 ブを埋土 告 1)勝 広
第1図
第2図
第3図FIG. 1 diagrammatically shows an EL device based on the prior art LB method, FIG. 2 diagrammatically shows an EL device according to the present invention, and FIG. It is a diagram schematically showing a cross section of an EL element. l; transparent itt electrode 2; light emitting layer 3; back electrode
4; Luminescent compound 5; Luminescent compound 6;
Luminescent compound 7; Seal glass 8: Silicone insulating oil 9; Glass plate Patent applicant Canon Co., Ltd. agent Burying earth 1) Katsuhiro Figure 1 Figure 2 Figure 3
Claims (1)
とも1層が透明である2層の電極層からなるEL素子に
おいて、上記の第1および第3の発光層が、第2の発光
層に対して相対的に電子受容性の少なくとも1種の電気
的発光性有機化合物からなる単分子膜またはその累積膜
からなり、且つ第2の発光層が第1および第3の発光層
に対して相対的に電子供与性の少なくとも1種の電気的
発光性有機化合物からなる単分子膜またはその累積膜か
らなることを特徴とする上記EL素子。In an EL device consisting of a light emitting layer with a three-layer stacked structure and two electrode layers sandwiching the light emitting layer, at least one of which is transparent, the first and third light emitting layers are connected to the second light emitting layer. consisting of a monomolecular film or a cumulative film thereof made of at least one electroluminescent organic compound that is relatively electron-accepting to The above-mentioned EL device is characterized in that it is made of a monomolecular film or a cumulative film thereof made of at least one relatively electron-donating electroluminescent organic compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16423884A JPS6143689A (en) | 1984-08-07 | 1984-08-07 | El element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16423884A JPS6143689A (en) | 1984-08-07 | 1984-08-07 | El element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6143689A true JPS6143689A (en) | 1986-03-03 |
Family
ID=15789292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16423884A Pending JPS6143689A (en) | 1984-08-07 | 1984-08-07 | El element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6143689A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6919140B2 (en) * | 2003-07-10 | 2005-07-19 | Eastman Kodak Company | Organic electroluminescent devices with high luminance |
-
1984
- 1984-08-07 JP JP16423884A patent/JPS6143689A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6919140B2 (en) * | 2003-07-10 | 2005-07-19 | Eastman Kodak Company | Organic electroluminescent devices with high luminance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6137887A (en) | El element | |
JP2593814B2 (en) | EL element driving method | |
JPS6137885A (en) | El element | |
JP2618370B2 (en) | EL element driving method | |
JPS6143689A (en) | El element | |
JPS6144977A (en) | El element | |
JPS6143685A (en) | El element | |
JPS6144975A (en) | El element | |
JPS6162582A (en) | El element | |
JPS6155182A (en) | El element | |
JPS6147783A (en) | El element | |
JPS6144987A (en) | El element | |
JPS6155183A (en) | El element | |
JPS6160777A (en) | El element | |
JPS6147784A (en) | El element | |
JPS6144979A (en) | El element | |
JPS6137889A (en) | El element | |
JPS6144985A (en) | El element | |
JPS6143687A (en) | El element | |
JPS6147785A (en) | El element | |
JPS6147781A (en) | El element | |
JPS6143682A (en) | El element | |
JPS6155184A (en) | El element | |
JPS6160776A (en) | El element | |
JPS6144980A (en) | El element |