JPS6143192Y2 - - Google Patents
Info
- Publication number
- JPS6143192Y2 JPS6143192Y2 JP10731879U JP10731879U JPS6143192Y2 JP S6143192 Y2 JPS6143192 Y2 JP S6143192Y2 JP 10731879 U JP10731879 U JP 10731879U JP 10731879 U JP10731879 U JP 10731879U JP S6143192 Y2 JPS6143192 Y2 JP S6143192Y2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- pipe
- amount
- liquid
- capillary reach
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
本考案はキヤピラリーチユーブを減圧機構とし
て用いながら、その冷媒流量制御性能を向上する
ことができて、圧縮機への液戻り防止と装置のエ
ネルギー有効比維持をはかり得る冷房用室外ユニ
ツトに関し、特に将来の増設を見込んで取り敢ず
1台の室内ユニツトと組合わせて設置したときの
安定した運転を保証でき、かつイニシヤルコスト
の低減をはかるとともに、増設後の2台同時運転
はもとより、増設分の室内ユニツト1台だけの運
転に際しても冷媒の過不足を生じない冷房運転が
行える2室用室外ユニツトを提供するものであ
る。
1台の室外ユニツトに対して2台の室内ユニツ
トを並列接続する形式の冷房装置で安価なものを
提供する目的から減圧器にキヤピラリーチユーブ
を使用したものがあるが、1室運転時と2室運転
時とでは所要冷媒量に差が当然生じるのに対し
て、キヤピラリーチユーブの制御性能が固定的で
あることによつて冷媒の過不足を生じ安定した運
転が果されない欠点があつた。
従つて、将来の増設を見込んで取り敢えず1台
の室内ユニツトと組合わせて使用するような場合
に、残りの1台を増設したいときには室内ユニツ
トを追加するだけでなく、冷媒の充填を必要とし
て、追装コストの増大は避けられないし、工数が
多くかゝり、かつ面倒な取扱いを要して不経済で
あつた。
このような問題が依然として解決されていない
現状に鑑みて、本考案は上記諸欠陥を根本的に排
除することが可能で、しかも低コストの装置を提
供し得る如き新規な構成の室外ユニツトを提供し
ようとして成されたものであり、その特徴とする
ところは、2室運転時に最適な分担減圧量となる
各室内ユニツト用主キヤピラリーチユーブと、そ
れ等の出口側に設けた各開閉弁とを備えてなる各
高圧分岐管に対して、補助キヤピラリーチユーブ
を介して有するバイパス管を並列的に連絡する一
方、液溜め容器を低圧ガス管に対し熱交換的に配
設して、この液溜め容器と追加して設ける方の室
内ユニツトに対応する主キヤピラリーチユーブ出
口側とを配管で連絡してなる構成にある。
以下、本考案の内容を図面に示す1実施例の冷
房機によつて詳細に説明する。
図において1は室外ユニツト、2aは最初に設
置する1台目の室内ユニツト、2bは2台目とし
て追加設置する室内ユニツトであり、室外ユニツ
ト1は圧縮機3、凝縮器4、減圧機構8、アキユ
ムレータ6、液溜め容器7および受液器16によ
り構成される一方、室内ユニツト2a,2bは蒸
発器9c,9bおよび図示しない室内フアンによ
つて構成される。
室外ユニツト1は、高圧液管5を両室内ユニツ
ト2a,2bに対応させて分岐管10a,10b
となし、この各分岐管10a,10bに開閉弁1
2a,12b例えば電磁弁を夫々設けていて、そ
れ等分岐管10a,10bに関連させて減圧機構
8を配設している。
上記減圧機構8は両分岐管10a,10bの分
岐個所17と各開閉弁12a,12bとの間に
夫々介設せしめた主キヤピラリーチユーブ11
a,11bと、それ等主キヤピラリーチユーブ1
1a,11bと、各開閉弁12a,12bの間の
各分岐管10a,10b相互を並列的に連絡する
バイパス管13中に介設した補助キヤピラリーチ
ユーブ14とから構成される。
一方、液溜め容器7は室外ユニツト1における
低圧ガス管18に対して熱交換可能な如く設けて
おり、図示例においてはアキユムレータ6とこの
液溜め容器7とを、仕切り21を介した上・下配
置の一体形に形成してコンパクトな構造となして
いる。
また、この液溜め容器7の内容積は、室内ユニ
ツト1台運転時に冷媒回路中に充填すべき必要冷
媒量と室内ユニツト2台運転時の前記必要冷媒充
填量との差分の冷媒量、及び、室内ユニツト1台
分のみを接続する現地据付工事の際にエアパージ
するための冷媒量を収納し得る大きさとする。
そして、液溜め容器7と主キヤピラリーチユー
ブ11bの出口側、開閉弁12bの入口側、バイ
パス管13に夫々連通する三叉部20とを配管1
5で連絡して室外ユニツト1の冷媒回路が構成さ
れる。
図中、19は逆止弁であつて低圧ガス管18の
気密性を保つために逆流防止用として機能する。
しかして主キヤピラリーチユーブ11a,11
bは各室内ユニツト2a,2bに対応させて冷媒
の制御を行うための主たる減圧器であつて、それ
等は室内ユニツト2a,2bの同時作動による全
室運転時において最適な運転状態を呈し得る如
く、それぞれが分担する減圧量を適正な値に設定
しておくが、室内ユニツト2a,2bが同能力で
ある場合には、室外ユニツト1の能力と見合わせ
た上で当然同じ減圧量となることは言う迄もな
い。
上述の構成になる冷房装置において室外ユニツ
ト1には2台運転時適正な冷媒量と両室内ユニツ
ト2a,2bを接続する際に行うエヤパージのと
きの損失量に見合う冷媒量との合計に見合つた分
予め充填しておく。
そして、まず1台目の室内ユニツト2aのみを
室外ユニツト1に接続する場合には、室内ユニツ
ト2aを接続するときに、エアパージするので、
冷媒回路中には前記当初の冷媒充填量に比し、1
台目のエアパージ分の冷媒量が少なくなつた冷媒
量が充填されていることとなる。この室内ユニツ
ト2aの冷房運転を行うには開閉弁12bを閉
じ、開閉弁12aを開かせる。
かくすることにより、凝縮器4を通つた冷媒液
は分岐管10a,10bに分流して主キヤピラリ
ーチユーブ11aで減圧した冷媒と主キヤピラリ
ーチユーブ11b、補助キヤピラリーチユーブ1
4を経て減圧した冷媒液とか合流した後、開閉弁
12aを通過して室内ユニツト2aの蒸発器9a
に至り、ここで蒸発液化した後アキユムレータ6
を経て圧縮機3に吸入される。
この冷房運転時において三叉部20の圧力は中
間圧域となつていて低圧ガス管18の圧力よりも
大きいためにアキユムレータ6内の冷媒温度は三
叉部20における冷媒温度よりも低くなり、その
結果、液溜め容器7内がアキユムレータ6内の低
圧ガスで冷却されることとなり、液溜め容器7内
全体には冷媒が凝縮液化して充填状態で溜められ
る。
従つて液溜め容器7が前記所定の容量であれば
冷媒調節が成されて、冷媒回路中の循環冷媒量は
一台分に見合つた量となり、凝縮器4に冷媒が溜
る如き問題は無くなる。
次に2台目の室内ユニツト2bを追加接続し
て、2室同時に冷房運転を行つた場合について述
べる。この時、2台目のエアパージをするため、
冷媒回路中には1台接続后の冷媒充填量よりさら
に前記エアパージ量が減少した冷媒が充填されて
いることになる。開閉弁12a,12bを共に開
かせると、圧縮機3から吐出された冷媒ガスは、
凝縮器4で外気と熱交換し高圧液冷媒となり、分
岐管10a,10bに分流し、主キヤピラリーチ
ユーブ11a,11bで夫々減圧した後、開閉弁
12a,12bを経て室内ユニツト2a,2bの
各蒸発器9a,9aに至り、室内空気からの吸熱
により蒸発し、冷媒ガスとなつて低圧ガス管18
を経て、アキユムレータ6を通つた後、圧縮機3
に吸入される。
このようにして2室同時冷房が行われるが、室
温の上昇による高冷房負荷時には、蒸発器9a,
9bでの熱交換量が大きいので吸入ガスの過熱度
が大となり、従つて各主キヤピラリーチユーブ1
1a,11bの出口における冷媒温度に比べて吸
入ガスの温度が高くなる。
その結果、主キヤピラリーチユーブ11a,1
1bの出口部と略々同じ状態に存する液溜め容器
7に低圧冷媒液が溜つていると、この冷媒はアキ
ユムレータ6内の過熱吸入ガスによつて加熱蒸発
されることとなり、従つて液溜め容器7にはガス
冷媒のみが存在して液となつて溜ることがなく、
高冷房負荷に適応した所要量の冷媒が冷媒回路内
を循環する。
一方、室温低下による低冷房負荷時には、蒸発
器9a,9bでの熱交換量が小さくて吸入ガスの
過熱度が小さくなると、主キヤピラリーチユーブ
11a,11bの後流側の配管による圧力損失の
ため、主キヤピラリーチユーブ11a,11bの
出口冷媒温度に比し吸入ガス温度が、むしろ低く
なることから液溜め容器7には余剰冷媒量に相当
する液冷媒が溜つた状態となり、かくして低冷房
負荷に適応した所要量の冷媒が系統内を循環す
る。
さらに1台目の室内ユニツト2aは運転を停
め、2台目の室内ユニツト2bのみ運転する場合
は、開閉弁12aを閉じ、開閉弁12bを開いて
冷房運転を行わせる。
この場合にはアキユムレータ6内の温度と液溜
め容器7内の温度とは室内ユニツト2bを含む低
圧側の抵抗分に見合つた差を有しており、三叉部
20飽和温度が低圧ガス管18での飽和温度と過
熱度との和に対して等値となるように冷媒が液溜
め容器7に溜められる。
そして系統内がガス欠になると液溜め容器7内
の冷媒が系統中に流れ出すし、ガス量が多くなる
と液溜め容器7内に冷媒が溜まる。
かくして2台目のみの運転の場合も液溜め容器
7が冷媒量の調節を行つて系統の安定運転がなさ
れる。
かゝる3つの運転態様が有効に成されることを
実際の運転状態で各要素について実測したところ
下記の結果が得られ、従つて冷媒量の調節が適正
に行われるとともに、安定した冷房運転を維持す
ることが立証される。
尚、下記表において圧力P1,P2,P3,P4,P5お
よび温度t1,t2,t3,t4は図上に示した各部に相当
する圧力および温度である。
The present invention relates to an outdoor cooling unit that uses a capillary reach tube as a pressure reducing mechanism while improving its refrigerant flow rate control performance, preventing liquid from returning to the compressor, and maintaining the effective energy ratio of the device. It guarantees stable operation when installed in combination with one indoor unit in anticipation of future expansion, reduces initial costs, and allows simultaneous operation of two units after expansion. To provide an outdoor unit for two rooms that can perform cooling operation without causing excess or deficiency of refrigerant even when only one indoor unit is operated. There is a type of cooling system in which two indoor units are connected in parallel to one outdoor unit, and a capillary reach tube is used as a pressure reducer for the purpose of providing a low-cost product. While there is naturally a difference in the amount of refrigerant required during indoor operation, the fixed control performance of the capillary reach tube has the disadvantage of causing excess or shortage of refrigerant, making stable operation impossible. Therefore, if you are planning to expand the unit in the future and are using it in combination with one indoor unit, if you want to add the remaining unit, you will not only need to add the indoor unit, but you will also need to fill it with refrigerant. It is unavoidable that additional installation costs will increase, and it is uneconomical as it requires a large number of man-hours and troublesome handling. In view of the current situation where such problems are still unsolved, the present invention provides an outdoor unit with a new configuration that can fundamentally eliminate the above-mentioned defects and provide a low-cost device. Its characteristics are the main capillary reach tube for each indoor unit, which provides the optimal amount of shared pressure reduction during two-room operation, and the on-off valves installed on the outlet sides of the main capillary reach tubes. A bypass pipe is connected in parallel to each of the high-pressure branch pipes provided via an auxiliary capillary reach tube, and a liquid reservoir is arranged in a heat exchange manner to the low-pressure gas pipe, and the liquid reservoir is It has a configuration in which the container is connected via piping to the main capillary reach outlet side corresponding to the additional indoor unit. Hereinafter, the content of the present invention will be explained in detail using one embodiment of the air conditioner shown in the drawings. In the figure, 1 is an outdoor unit, 2a is the first indoor unit to be installed initially, and 2b is an additional indoor unit to be installed as a second unit. The indoor units 2a and 2b are composed of an accumulator 6, a liquid reservoir 7, and a liquid receiver 16, while the indoor units 2a and 2b are composed of evaporators 9c and 9b and an indoor fan (not shown). The outdoor unit 1 has branch pipes 10a, 10b with the high pressure liquid pipe 5 corresponding to both indoor units 2a, 2b.
An on-off valve 1 is installed in each branch pipe 10a, 10b.
For example, electromagnetic valves 2a and 12b are provided, and a pressure reducing mechanism 8 is disposed in association with the branch pipes 10a and 10b. The pressure reducing mechanism 8 has a main capillary reach tube 11 interposed between the branch point 17 of both branch pipes 10a, 10b and each on-off valve 12a, 12b.
a, 11b and their main capillary reach tube 1
1a, 11b, and an auxiliary capillary reach tube 14 interposed in a bypass pipe 13 that connects the branch pipes 10a, 10b between the on-off valves 12a, 12b in parallel. On the other hand, the liquid reservoir 7 is provided so as to be able to exchange heat with the low-pressure gas pipe 18 in the outdoor unit 1. The arrangement is integrated into a compact structure. In addition, the internal volume of the liquid storage container 7 is the difference between the amount of refrigerant required to be filled into the refrigerant circuit when one indoor unit is operated and the amount of refrigerant that is required when two indoor units are operated, and The size shall be large enough to accommodate the amount of refrigerant required for air purging during on-site installation work when only one indoor unit is connected. Then, the three-pronged portion 20 that communicates with the liquid reservoir 7, the outlet side of the main capillary reach tube 11b, the inlet side of the on-off valve 12b, and the bypass pipe 13 is connected to the piping 1.
5 to form a refrigerant circuit of the outdoor unit 1. In the figure, reference numeral 19 is a check valve that functions to prevent backflow in order to maintain the airtightness of the low-pressure gas pipe 18. However, the main capillary reach tubes 11a, 11
b is a main pressure reducer for controlling the refrigerant corresponding to each indoor unit 2a, 2b, and these can exhibit an optimal operating state when all rooms are operated by simultaneous operation of the indoor units 2a, 2b. As shown, the amount of pressure reduction to be shared by each unit is set to an appropriate value, but if the indoor units 2a and 2b have the same capacity, the amount of pressure reduction to be shared will naturally be the same, taking into consideration the capacity of the outdoor unit 1. Needless to say. In the cooling system configured as described above, the outdoor unit 1 has an amount of refrigerant suitable for the total amount of refrigerant when two units are operated and an amount of refrigerant corresponding to the amount of loss during air purge performed when connecting both indoor units 2a and 2b. Fill it in advance. First, when connecting only the first indoor unit 2a to the outdoor unit 1, air purge is performed when connecting the indoor unit 2a.
The amount of refrigerant in the refrigerant circuit is 1 compared to the initial amount charged.
This means that the amount of refrigerant reduced by the amount of refrigerant for the second air purge is being filled. To perform cooling operation of the indoor unit 2a, the on-off valve 12b is closed and the on-off valve 12a is opened. By doing this, the refrigerant liquid that has passed through the condenser 4 is divided into the branch pipes 10a and 10b, and the refrigerant is decompressed in the main capillary reach tube 11a, the main capillary reach tube 11b, and the auxiliary capillary reach tube 1.
After passing through 4 and joining together with the depressurized refrigerant liquid, it passes through the on-off valve 12a and flows into the evaporator 9a of the indoor unit 2a.
After being evaporated and liquefied, the accumulator 6
The air is sucked into the compressor 3 through the During this cooling operation, the pressure in the three-pronged section 20 is in the intermediate pressure region and is higher than the pressure in the low-pressure gas pipe 18, so the refrigerant temperature in the accumulator 6 becomes lower than the refrigerant temperature in the three-pronged section 20, and as a result, The inside of the liquid reservoir 7 is cooled by the low-pressure gas in the accumulator 6, and the refrigerant is condensed and liquefied and stored in a filled state throughout the inside of the liquid reservoir 7. Therefore, if the liquid storage container 7 has the predetermined capacity, the refrigerant will be adjusted and the amount of refrigerant circulated in the refrigerant circuit will be sufficient for one vehicle, eliminating problems such as refrigerant accumulation in the condenser 4. Next, a case will be described in which a second indoor unit 2b is additionally connected to perform cooling operation in two rooms at the same time. At this time, in order to perform air purge on the second unit,
The refrigerant circuit is filled with refrigerant whose amount of air purge is further reduced than the amount of refrigerant charged after one unit is connected. When both the on-off valves 12a and 12b are opened, the refrigerant gas discharged from the compressor 3 is
It exchanges heat with the outside air in the condenser 4 and becomes a high-pressure liquid refrigerant, which is divided into branch pipes 10a and 10b, and after being depressurized in the main capillary reach tubes 11a and 11b, respectively, it passes through the on-off valves 12a and 12b to each of the indoor units 2a and 2b. It reaches the evaporators 9a, 9a, where it evaporates due to heat absorption from the indoor air, becomes refrigerant gas, and flows into the low-pressure gas pipe 18.
After passing through the accumulator 6, the compressor 3
is inhaled. In this way, simultaneous cooling of two rooms is performed, but when there is a high cooling load due to a rise in room temperature, the evaporator 9a,
Since the amount of heat exchanged at 9b is large, the degree of superheating of the suction gas is large, and therefore each main capillary tube 1
The temperature of the suction gas becomes higher than the refrigerant temperature at the exits of 1a and 11b. As a result, the main capillary reach tubes 11a, 1
When low-pressure refrigerant liquid is accumulated in the liquid reservoir 7, which is in approximately the same state as the outlet section 1b, this refrigerant will be heated and evaporated by the superheated suction gas in the accumulator 6, and the liquid reservoir will be heated and evaporated. 7, only gas refrigerant exists and does not become liquid and accumulate.
A required amount of refrigerant adapted to the high cooling load is circulated within the refrigerant circuit. On the other hand, when the cooling load is low due to a drop in room temperature, the amount of heat exchanged in the evaporators 9a and 9b is small and the degree of superheating of the suction gas is small, due to pressure loss due to the piping on the downstream side of the main capillary reach tubes 11a and 11b. Since the suction gas temperature is rather lower than the refrigerant temperature at the outlet of the main capillary reach tubes 11a and 11b, liquid refrigerant equivalent to the surplus refrigerant amount is accumulated in the liquid storage container 7, thus reducing the cooling load. The adapted required amount of refrigerant is circulated within the system. Furthermore, when the operation of the first indoor unit 2a is stopped and only the second indoor unit 2b is operated, the on-off valve 12a is closed and the on-off valve 12b is opened to perform cooling operation. In this case, the temperature inside the accumulator 6 and the temperature inside the liquid reservoir 7 have a difference commensurate with the resistance on the low pressure side including the indoor unit 2b, and the saturation temperature of the three-pronged portion 20 is the same as that of the low pressure gas pipe 18. The refrigerant is stored in the liquid storage container 7 so that the refrigerant has a value equal to the sum of the saturation temperature and the degree of superheat. When the system runs out of gas, the refrigerant in the liquid reservoir 7 flows out into the system, and when the amount of gas increases, the refrigerant accumulates in the liquid reservoir 7. In this way, even when only the second unit is in operation, the liquid reservoir 7 adjusts the amount of refrigerant to ensure stable operation of the system. The following results were obtained by actually measuring each element under actual operating conditions to ensure that these three operating modes are effectively achieved.Accordingly, the amount of refrigerant can be adjusted appropriately and stable cooling operation can be achieved. It is proven that the In the table below, pressures P 1 , P 2 , P 3 , P 4 , P 5 and temperatures t 1 , t 2 , t 3 , t 4 correspond to the respective parts shown in the figure.
【表】
本考案室外ユニツトは以上述べた説明より明ら
かなように、高圧液管5を1台目の室内ユニツト
2aと2台目の室内ユニツト2bとに対応し分岐
させて分岐管10a,10bとなし、この各分岐
管10a,10bに開閉弁12a,12bを夫々
設け、両分岐管10a,10bの分岐個所17と
各開閉弁12a,12bとの間に主キヤピラリー
チユーブ11a,11bを夫々設けるとともに、
各主キヤピラリーチユーブ11a,11bと各開
閉弁12a,12bとの間の分岐管10a,10
b相互を並列的に連絡するバイパス管13を設け
て、該バイパス管13に補助キヤピラリーチユー
ブ14を介設する一方、液溜め容器7を低圧ガス
管18に対し熱交換可能に配設して、この液溜め
容器7を配管15によつて、前記開閉弁12a,
12bの一方12bと主キヤピラリーチユーブ1
1a,11bの一方11bおよび補助キヤピラリ
ーチユーブ14との間の配管に連絡した構成とし
たから、室内ユニツトの一方を運転する部分負荷
運転時には凝縮器に冷媒を停溜させず液溜め容器
7内に液を溜めることが可能となり、従つて凝縮
器の伝熱部分がその有効面積を100%近くまで活
用できて冷房能力の向上がはかれる一方、圧縮機
への液戻りを防止でき、さらに圧縮機動力は低下
しエネルギー有効比が良くなつてランニングコス
トの低減化も果される。
一方、2室同時に運転する全負荷運転時におい
ては、高負荷の場合は液溜め容器に液を溜めず、
低負荷の場合は液として溜めることが自動的に成
される結果、循環冷媒量の調節が行えて負荷の軽
重に関係なく安定した運転が果されるし、さらに
吸入ガスの過熱あるいは湿りを限度以内におさま
るよう調節されるので圧縮機の負担を軽減する上
にもすぐれた効果を発揮する。
また、将来買増しの予定で取敢えず室内ユニツ
トを1台設置して運転する場合、室内ユニツトを
2台設置して1台だけ運転する場合の何れにおい
ても何等支障なく運転できるので、各様のニーズ
に対応可能となり販売促進面にもすぐれた特長を
有する。[Table] As is clear from the above explanation, in the outdoor unit of the present invention, the high pressure liquid pipe 5 is branched into branch pipes 10a and 10b corresponding to the first indoor unit 2a and the second indoor unit 2b. The branch pipes 10a, 10b are provided with on-off valves 12a, 12b, respectively, and the main capillary reach tubes 11a, 11b are provided between the branch points 17 of both branch pipes 10a, 10b and the on-off valves 12a, 12b, respectively. In addition to providing
Branch pipes 10a, 10 between each main capillary reach tube 11a, 11b and each on-off valve 12a, 12b
(b) A bypass pipe 13 is provided to communicate with each other in parallel, and an auxiliary capillary reach tube 14 is interposed in the bypass pipe 13, and a liquid reservoir 7 is arranged to be able to exchange heat with the low pressure gas pipe 18. , this liquid storage container 7 is connected to the on-off valves 12a,
12b and the main capillary reach tube 1
Since the piping is connected between one of the indoor units 11b and the auxiliary capillary reach tube 14, the refrigerant is not stored in the condenser during partial load operation when one of the indoor units is operated. As a result, the effective area of the heat transfer part of the condenser can be utilized to nearly 100%, improving cooling capacity, while preventing liquid from returning to the compressor, and further improving compressor movement. The power is reduced, the effective energy ratio is improved, and running costs are also reduced. On the other hand, during full load operation when two chambers are operated simultaneously, when the load is high, the liquid is not stored in the liquid storage container.
At low loads, the refrigerant is automatically stored as a liquid, which allows the amount of circulating refrigerant to be adjusted, ensuring stable operation regardless of the light or heavy load, and further limiting overheating or dampness of the suction gas. Since it is adjusted so that the load falls within the following range, it is also effective in reducing the load on the compressor. In addition, if you are planning to purchase more units in the future and are installing one indoor unit and operating it, or if you are installing two indoor units and operating only one unit, you can operate it without any problems. It has the advantage of being able to meet customer needs and is also excellent in terms of sales promotion.
図は本考案室外ユニツトの1実施例に係る冷房
機の配管系統図である。
1……室外ユニツト、2a,2b……室内ユニ
ツト、5……高圧液管、7……液溜め容器、10
a,10b……高圧分岐管、11a,11b……
主キヤピラリーチユーブ、12a,12b……開
閉弁、13……バイパス管、14……補助キヤピ
ラリーチユーブ、15……配管、17……分岐個
所、18……低圧ガス管。
The figure is a piping system diagram of an air conditioner according to an embodiment of the outdoor unit of the present invention. 1...Outdoor unit, 2a, 2b...Indoor unit, 5...High pressure liquid pipe, 7...Liquid reservoir, 10
a, 10b...High pressure branch pipe, 11a, 11b...
Main capillary reach tube, 12a, 12b...on/off valve, 13...bypass pipe, 14...auxiliary capillary reach tube, 15...piping, 17...branch point, 18...low pressure gas pipe.
Claims (1)
外ユニツト1であつて、高圧液管5を両室内ユニ
ツト2a,2bに対応し分岐させて分岐管10
a,10bとなし、この各分岐管10a,10b
に開閉弁12a,12bを夫々設け、両分岐管1
0a,10bの分岐個所17と各開閉弁12a,
12bとの間に主キヤピラリーチユーブ11a,
11bを夫々設けるとともに、各主キヤピラリー
チユーブ11a,11bと各開閉弁12a,12
bとの間の分岐管10a,10b相互を並列的に
連絡するバイパス管13を設けて、該バイパス管
13に補助キヤピラリーチユーブ14を介設する
一方、液溜め容器7を低圧ガス管18に対し熱交
換可能に配設して、この液溜め容器7を配管15
によつて、前記開閉弁12a,12bの一方12
bと主キヤピラリーチユーブ11a,11bの一
方11bおよび補助キヤピラリーチユーブ14と
の間の配管に連絡してなることを特徴とする2室
用室外ユニツト。 This is an outdoor unit 1 to which two indoor units 2a, 2b can be connected, and a high pressure liquid pipe 5 is branched corresponding to both indoor units 2a, 2b to form a branch pipe 10.
a, 10b, and each branch pipe 10a, 10b
On-off valves 12a and 12b are provided respectively in both branch pipes 1.
0a, 10b branch point 17 and each on-off valve 12a,
12b, the main capillary reach tube 11a,
11b, and each main capillary reach tube 11a, 11b and each on-off valve 12a, 12
A bypass pipe 13 is provided that connects the branch pipes 10a and 10b in parallel with each other, and an auxiliary capillary reach tube 14 is interposed in the bypass pipe 13, while the liquid reservoir 7 is connected to the low pressure gas pipe 18. The liquid storage container 7 is connected to the piping 15 by disposing it so as to be able to exchange heat.
Accordingly, one of the on-off valves 12a and 12b 12
An outdoor unit for two rooms, characterized in that it is connected to piping between one of the main capillary reach tubes 11a and 11b and the auxiliary capillary reach tube 14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10731879U JPS6143192Y2 (en) | 1979-08-02 | 1979-08-02 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10731879U JPS6143192Y2 (en) | 1979-08-02 | 1979-08-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5626369U JPS5626369U (en) | 1981-03-11 |
JPS6143192Y2 true JPS6143192Y2 (en) | 1986-12-06 |
Family
ID=29339953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10731879U Expired JPS6143192Y2 (en) | 1979-08-02 | 1979-08-02 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6143192Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6223240A (en) * | 1985-07-23 | 1987-01-31 | Nec Corp | Radiotelelphony equipment |
-
1979
- 1979-08-02 JP JP10731879U patent/JPS6143192Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5626369U (en) | 1981-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4562700A (en) | Refrigeration system | |
JPS6343658B2 (en) | ||
CN112629082B (en) | Heating control system, multi-split air conditioning system and heating control method | |
JP2012132586A (en) | Refrigeration cycle device | |
JPS6143192Y2 (en) | ||
TW464749B (en) | Air conditioner and outdoor equipment used for it | |
CN111023362B (en) | Refrigerant circulation system and air conditioner in heating mode | |
JPH10176869A (en) | Refrigeration cycle device | |
EP2137467A1 (en) | Multi-unit air conditioning system and controlling method for the same | |
JPS6018754Y2 (en) | outdoor unit | |
JPS604039Y2 (en) | air conditioner | |
JPS5816622Y2 (en) | air conditioner | |
JPS5850210Y2 (en) | Multi-room air conditioner | |
JPS5850212Y2 (en) | Multi-room cooling system | |
JP3043080B2 (en) | Air conditioning system | |
JPH04257661A (en) | Two stage compression refrigerating cycle device | |
JPS638388B2 (en) | ||
JPS595816B2 (en) | Multi-room cooling system | |
KR20240013558A (en) | Hybrid multi-air conditioning system | |
JPS6230690Y2 (en) | ||
JPH0113972Y2 (en) | ||
JPH0123089Y2 (en) | ||
JPS5912529Y2 (en) | Air conditioning equipment | |
JPS6017642Y2 (en) | air conditioner | |
JPS602536Y2 (en) | Multi-room cooling system |