[go: up one dir, main page]

JPS6140299B2 - - Google Patents

Info

Publication number
JPS6140299B2
JPS6140299B2 JP57107381A JP10738182A JPS6140299B2 JP S6140299 B2 JPS6140299 B2 JP S6140299B2 JP 57107381 A JP57107381 A JP 57107381A JP 10738182 A JP10738182 A JP 10738182A JP S6140299 B2 JPS6140299 B2 JP S6140299B2
Authority
JP
Japan
Prior art keywords
plate
less
temperature
rolling
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57107381A
Other languages
Japanese (ja)
Other versions
JPS58224142A (en
Inventor
Makoto Tsuchida
Kazuhiro Hanaki
Atsunori Fuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP10738182A priority Critical patent/JPS58224142A/en
Publication of JPS58224142A publication Critical patent/JPS58224142A/en
Publication of JPS6140299B2 publication Critical patent/JPS6140299B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、例えばキヤツプ用合金板の如く深絞
り成形性にすぐれ、低い耳率と適度な強度を有す
るアルミニウム合金板およびその製造方法に関す
る。 従来、上記深絞り成形用の如きアルミニウム合
金板における緒特性を得るためには、造塊―十分
な均質化処理―熱間圧延―(冷間圧延)―中間焼
鈍―冷間圧延―中間焼鈍―冷間圧延の各工程を組
み、均質化および2回以上の中間焼鈍によつて、
十分長時間の加熱を加えている。かかる従来法で
は、長時間の中間焼鈍を加えるために合金板の結
晶粒は50〜100μmの大きさになつている。この
ように結晶粒が大きくなると成形性が低下し、特
に0.3mm厚以下の薄板の成形性を向上させるため
には結晶粒をさらに小さくする必要がある。又、
2回以上の中間焼鈍は、できれば1回にした方
が、工程の簡略化並びに省エネルギの見地から望
ましいことである。すなわち、中間焼鈍は1回と
し、しかもその1回の中間焼鈍で結晶粒を細かく
して、成形性並びに耳率が従来材と同程度以上に
なるようにすることが有意義である。 本発明は、以上の観点に基づいて発明されたも
ので、その第1発明は、Si0.1〜0.7%、Mg0.01〜
2.0%(好ましくは0.3〜20%)のいずれか1種又
は2種と、Fe0.3〜1.0%、Mn0.3〜1.5%のいずれ
か1種又は2種と、Cu0.03〜0.3%(好ましくは
0.04〜0.25%)とを含み、残部はAlと不純物であ
るアルミニウム合金よりなり、20%以上60%以下
の最終冷間圧延を行なつて板厚0.3mm以下とした
場合の結晶粒径が25μm以下であることを特徴と
する成形性のすぐれたアルミニウム合金板であ
る。 Si,Mgはいずれも強度と成形性を付与し、
Fe、Mnはいずれも強度を与えかつ深絞り加工に
おいて発生する耳の大きさを制御する効果を有す
る。Cuは強度と成形性および深絞り加工時に発
生する耳の大きさを制御する効果を持つが、同時
に耐食性を低下させる作用を有する。これらの利
点、欠点を考慮して0.03%以上0.3%以下好まし
くは0.04〜0.25%とする。少すぎればその利点な
く、多すぎれば欠点が顕在化する。各成分とも上
限を越えると成形加工性を低下させるので好まし
くない。又、下限を有するものは下限より少ない
効果が小さい。 不純物例えばZn、Ti、Cr等は各々0.05%以下
であれば本発明に影響しないので、含まれていて
も支障ない。 かかる組成のものは所定の工程により20%以上
60%以下の最終冷間圧延を行なつて板厚0.3mm以
下とした場合、結晶粒径が25μm以下となし得
て、成形性にすぐれたものである。 かかる成形性のすぐれたアルミニウム合金板
は、第2発明によつて得られる。すなわち、その
第2発明は、Si、0.1〜0.7%、Mg0.01〜2.0%
(好ましくは0.3〜2.0%)のいずれか1種又は2
種と、Fe0.3〜1.0%、Mn0.3〜1.5%のいずれか1
種又は2種と、Cu0.03〜0.3%(好ましくは0.04
〜0.25%)とを含み、残部はAlと不純物であるア
ルミニウム合金を均質化処理したのち、480〜580
℃で熱間圧延を開始して290℃以上350℃以下で熱
間圧延を終了し、冷間圧延したのち、400〜570℃
で5分以下の焼鈍処理を行ない、20%以上60%以
下の最終冷間圧延を行ない板厚0.3mm以下とした
場合の結晶粒径を25μm以下とすることを特徴と
する成形性のすぐれたアルミニウム合金板の製造
方法である。 まず均質化処理は、合金板の耳率を変化させる
要因の一つであり、一般には融解温度直下のでき
るだけ高温で行なうが、必要十分な時間に止め
る。0.5%以上のMnを含む合金は、560℃以上で
8時間以上均質化処理する必要があるが、Mgと
Siを主に含む合金ではこれより低温短時間でよ
い。又、耳率を制御するため2段加熱を行なう場
合もある。 熱間圧延は均質化処理後冷却し、再加熱して行
なつても良い。その場合は、冷却再加熱中に起る
鋳塊組織の変化が耳率に影響を与えるので、均質
化処理後引きつづいて熱間圧延する場合と加熱温
度が異なる場合がある。 熱間圧延終了時の材料温度は、材料が再結晶す
るのに十分な高温でなければならない。通常の条
件で500℃から熱間圧延して3mm厚板にすると、
温度は260〜280℃になる。そこで、圧延開始温
度、圧下率、パス回数圧延速度、潤滑油温度等に
工夫を加えて、熱間圧延終了温度を290℃以上、
より好ましくは310℃以上になるようにする。ま
た同温度が350℃を越えるような場合は板表面の
酸化が著しく、外観上の欠陥となることがあつて
好ましくない。そこで熱間圧延終了温度は350℃
以下になるようにする。 このことは、耳率を制御すると同時に、圧延進
行する合金成分の析出が最終板の加工性を向上さ
せる効果をもつため、最も重要な条件である。 本発明の合金板の目的とする用途に用いられる
最終板は0.3mmt以下で最終冷間圧延量が20〜60
%であるから、通常は1mmt以下で中間焼鈍する
こととなり、熱間圧延工程に次いで冷間圧延を行
なう必要がある。 つづく焼鈍は、加工性向上のために高温で短時
間行なう。工業的にはコイル状に巻かれた板をほ
どきながら高温の炉内を通過させて加熱焼鈍す
る。焼鈍温度が400℃未満では再結晶が進みにく
く、再結晶に長時間を要することになり効果が薄
れる。焼鈍温度の最高はその材料の融点である。
又、温度が高いときの結晶粒の成長を避けるため
には処理時間を短くしなければならず、5分以下
とする必要がある。 最終冷間圧延は20%以上特に20%〜60%が最適
である。20%未満では強度が十分に発揮されず、
又60%以上では物によつて加工性が低下すること
がある。 さらに、Mgを含む合金板は室温放置により材
料強度が低下することがあるので、予め再結晶温
度以下で安定化の熱処理を加えることがある。 以上の各工程を経ることによつて第2発明では
結晶粒径を25μm以下と微細化することができ加
工性を向上する。しかも中間焼鈍が1回ですむの
で熱処理に要するエネルギコストを低減し、さら
に製造工程の短縮による仕掛コストの低減をはか
ることもできる。 つぎに実施例並びに比較例について説明する。 実施例 1 表1(合金組成)の実施例1に示す合金の鋳塊
を面削し、580℃で10時間均質化して、540℃に冷
却し、直ちに熱間圧延して2.8mmtとした。この
ときの圧延終了時の材料温度は320℃である。こ
れを冷間加工して0.33mmtとし、540℃で5秒間
熱処理を加えて、30%の最終冷間加工して0.23mm
tとした。 得られた0.23mmt板の特性は表2に示す通り
で、製造過程で加える熱エネルギが少ないにもか
かわらず、成形性は向上している。 比較例 1 実施例1における合金鋳塊を580℃で10時間均
質化し、冷却、面削を経て520℃に再加熱し、終
了温度312℃で熱間圧延して5mmtとし、400℃で
1時間中間焼鈍したのち、冷間圧延して0.33mmt
とし、再び400℃で1時間中間焼鈍を加えて、30
%の最終冷間圧延をして0.23mmtの板とした。こ
の板の特性を表2に示す。 実施例 2 表1の実施例2に示す合金の鋳塊を面削し、
590℃で5時間加熱後、温度を下げて540℃で5時
間均質化し、直ちに熱間圧延して2.4mmtとし
た、このとき圧延終了時の材料温度は310℃であ
つた。これを冷間加工して0.29mmtとし、450℃
で20秒間熱処理を加えて、30%の最終冷間加工を
して0.20mmt板とした。 得られた0.20mmt板の特性は表2に示すとおり
で、結晶粒が細かくなることにより成形性が向上
するが、強度、耳率は後記する比較例2のものと
変りがない。 比較例 2 実施例2における合金鋳塊を580℃で10時間均
質化し、冷却、面削して、480℃に再加熱し、終
了温度300℃で熱間圧延して6mmtとし、さらに
冷間加工して2.5mmtとしてから、360℃で1時間
中間焼鈍し、冷間加工して0.29mmtとし、ここで
再び、360℃で1時間中間焼鈍を加え、又、30%
の最終冷間加工をして0.20mmt板とした。この板
の特性を表2に示す。 実施例 3 表1の実施例3に示す合金の鋳塊を595℃で10
時間均質化後、560℃に冷却して熱間圧延して2.2
mmtとした。このときの圧延終了時の材料温度は
332℃であつた。これを冷間加工して0.31mmtと
し、500℃で10秒間の高速短時間焼鈍を加えてか
ら、25%の最終冷間加工をして0.23mmt板とし
た。 得られた0.23mmt板の特性は表2に示すとおり
で、結晶粒が細かくなり、絞り加工性が向上して
いる。 比較例 3 実施例3における合金鋳塊を580℃で10時間均
質化し、冷却、面削して、540℃に再加熱し、終
了温度297℃で熱間圧延して30mmtとし、さらに
冷間加工して1.5mmtとしてから、360〜380℃で
1時間中間焼鈍し、冷間加工して0.31mmtとし、
再び360〜380℃で1時間中間焼鈍を加え、25%の
最終冷間加工をして0.23mmt板とした。この板の
特性を表2に示す。 実施例 4 表1の実施例4に示す合金の鋳塊を550℃で10
時間均質化後、500℃で熱間圧延して2.0mmtとし
た。このときの圧延終了時の材料温度は298℃で
あつた。これを冷間加工して0.6mmtとし、500℃
で60秒間の高速短時間焼鈍を加えてから、58%の
最終冷間加工をして0.25mmt板とした。 得られた0.25mmt板の特性は表2に示すとおり
で、後記の比較例4では最終冷間圧延量に伴なつ
て発達する45゜−4方向耳率を小さくすることが
できなかつたが、方実施例では耳率を小さくする
と同時に成形性が向上している。 比較例 4 実施例4における合金鋳塊を、面削後550℃で
10時間均質化後、500℃に冷却して終了温度290℃
で熱間圧延して3.0mmtとし、さらに冷間加工し
て0.6mmtとしてから、360℃で1時間中間焼鈍を
加えて、58%の最終冷間加工して0.25mmt板とし
た。この板の特性を表2に示す。 実施例 5 表1の実施例5に示す合金の鋳塊を熱間圧延の
終了温度を310℃とした以外は実施例1と同様に
処理をして0.23mmtの板を得た。得られた板の特
性は表2に示す通りであつた。 比較例 5 実施例5における合金鋳塊を、面削後580℃で
10時間均質化後、520℃で熱間圧延して終了温度
315℃で5mmtとし、400℃で1時間中間焼鈍して
から、冷間加工して0.33mmtとし、再び400℃で
1時間焼鈍して、30%の最終冷間加工をして0.23
mmt板とした。この板の特性を表2に示す。 実施例 6 表1の実施例6に示す合金の鋳塊を熱間圧延の
終了温度を302℃とした以外は実施例5同様に処
理をして0.23mmtの板を得た。得られた板の特性
は表2に示す通りであつた。 比較例 6 実施例6における合金鋳塊を熱間圧延の終了温
度を310℃とした以外は比較例5と同一の条件で
処理して板とした。この板の特性を表2に示す。 実施例 7 表1の実施例7に示す合金の鋳塊を熱間圧延の
終了温度を315℃にした以外は実施例5と同様に
処理をして0.23mmtの板を得た、得られた板の特
性は表2に示す通りであつた。 比較例 7 実施例7における合金鋳塊を、熱間圧延の終了
温度を310℃とした以外は比較例5と同一の条件
で処理して板とした。この板の特性を表2に示
す。 実施例 8 表1の実施例8に示す合金の鋳塊を550℃で10
時間均質化後、500℃で熱間圧延して2.0mmtとし
た。このときの圧延終了時の材料温度は300℃で
あつた。これを冷間加工して0.6mmtとし、500℃
で60秒間の高速短時間焼鈍を加えてから58%の最
終冷間加工をして0.25mmt板とした。 得られた板の特性は表2に示すとおりであつ
た。 比較例 8 実施例8における合金鋳塊を、熱間圧延の終了
温度を310℃とした以外は比較例4と同一の条件
で処理して板とした。この板の特性を表2に示
す。 実施例 9 表1の実施例9に示す合金の鋳塊を熱間圧延の
終了温度を307℃とした以外は実施例2と同様に
処理して0.20mmtの板を得た。得られた板の特性
は表2に示すとおりであつた。 比較例 9 実施例9における合金鋳塊を、熱間圧延の終了
温度を305℃とした以外は比較例2と同一の条件
で処理して板とした。この板の特性を表2に示
す。 実施例 10 表1の実施例10に示す合金の鋳塊を熱間圧延の
終了温度を312℃とした以外は実施例2と同様に
処理して0.20mmtの板を得た。得られた板の特性
は表2に示すとおりであつた。 比較例 10 実施例10における合金鋳塊を比較例9と同一の
条件で処理して板とした。この板の特性を表2に
示す。 実施例 11 表1の実施例10に示す合金の鋳塊を熱間圧延
の終了温度を295℃とした以外は実施例2と同様
に処理して0.20mmtの板を得た。得られた板の特
性は表2に示すとおりであつた。 比較例 11 実施例11における合金鋳塊を、熱間圧延の終了
温度を310℃とした以外は比較例2と同一の条件
で処理して板とした。この板の特性を表2に示
す。
The present invention relates to an aluminum alloy plate, such as an alloy plate for caps, which has excellent deep drawability, low selvage ratio, and appropriate strength, and a method for manufacturing the same. Conventionally, in order to obtain the properties of aluminum alloy sheets such as those for deep drawing described above, the following steps have been taken: ingot formation - sufficient homogenization treatment - hot rolling - (cold rolling) - intermediate annealing - cold rolling - intermediate annealing. By combining each step of cold rolling, homogenizing and intermediate annealing two or more times,
It is heated for a sufficiently long time. In this conventional method, the crystal grains of the alloy plate have a size of 50 to 100 μm due to the long intermediate annealing. When the crystal grains become large in this way, formability deteriorates, and in order to particularly improve the formability of thin plates with a thickness of 0.3 mm or less, it is necessary to further reduce the crystal grains. or,
It is preferable to carry out intermediate annealing once, rather than twice or more, from the viewpoint of process simplification and energy saving. That is, it is meaningful to carry out intermediate annealing once, and to refine the crystal grains in this single intermediate annealing so that the formability and selvage ratio are at least the same as those of conventional materials. The present invention was invented based on the above viewpoints, and the first invention includes Si0.1 to 0.7%, Mg0.01 to
2.0% (preferably 0.3-20%), any one or two of Fe0.3-1.0%, Mn0.3-1.5%, and Cu0.03-0.3% ( Preferably
0.04 to 0.25%), and the remainder consists of aluminum and impurities, which are aluminum alloys, and the crystal grain size is 25 μm when final cold rolling is performed from 20% to 60% to a plate thickness of 0.3 mm or less. This is an aluminum alloy plate with excellent formability, which is characterized by the following: Both Si and Mg provide strength and formability,
Both Fe and Mn have the effect of imparting strength and controlling the size of ears that occur during deep drawing. Cu has the effect of controlling strength, formability, and the size of ears that occur during deep drawing, but it also has the effect of reducing corrosion resistance. Considering these advantages and disadvantages, the content is set to 0.03% or more and 0.3% or less, preferably 0.04 to 0.25%. If there is too little, there will be no advantage, and if there is too much, the disadvantages will become apparent. Exceeding the upper limit of each component is undesirable because moldability deteriorates. Moreover, those having a lower limit have a smaller effect than the lower limit. Impurities such as Zn, Ti, Cr, etc. do not affect the present invention as long as they are each 0.05% or less, so there is no problem even if they are included. Products with such compositions have a concentration of 20% or more due to a prescribed process.
When final cold rolling is performed to a thickness of 0.3 mm or less by 60% or less final cold rolling, the crystal grain size can be reduced to 25 μm or less, resulting in excellent formability. Such an aluminum alloy plate with excellent formability is obtained according to the second invention. That is, the second invention has Si, 0.1 to 0.7%, Mg 0.01 to 2.0%.
(preferably 0.3 to 2.0%) or two
Seeds and either Fe0.3~1.0% or Mn0.3~1.5%
species or two species and Cu0.03 to 0.3% (preferably 0.04
~0.25%), and the remainder is Al and impurities, which are aluminum alloys, are homogenized and then 480~580%
Start hot rolling at ℃, finish hot rolling at 290℃ or higher and 350℃ or lower, then cold roll at 400~570℃
Excellent formability characterized by annealing for 5 minutes or less and final cold rolling of 20% or more and 60% or less, resulting in a grain size of 25μm or less when the plate thickness is 0.3mm or less. This is a method for manufacturing an aluminum alloy plate. First, homogenization treatment is one of the factors that changes the selvage ratio of the alloy plate, and is generally performed at as high a temperature as possible, just below the melting temperature, but for a sufficient period of time. Alloys containing 0.5% or more of Mn must be homogenized at 560°C or higher for 8 hours or more, but
For alloys mainly containing Si, lower temperatures and shorter times may be required. Furthermore, two-stage heating may be performed to control the selvage ratio. Hot rolling may be performed by cooling after homogenization treatment and reheating. In that case, changes in the structure of the ingot during cooling and reheating affect the selvage ratio, so the heating temperature may be different from that in the case of subsequent hot rolling after homogenization treatment. The material temperature at the end of hot rolling must be high enough to recrystallize the material. When hot-rolled from 500℃ under normal conditions to a 3mm thick plate,
The temperature will be 260-280℃. Therefore, we made improvements to the rolling start temperature, rolling reduction rate, number of passes rolling speed, lubricating oil temperature, etc., to increase the hot rolling end temperature to 290℃ or higher.
More preferably, the temperature is 310°C or higher. Furthermore, if the temperature exceeds 350°C, the surface of the plate will be severely oxidized, which may cause defects in appearance, which is not preferable. Therefore, the hot rolling finish temperature is 350℃
Make it as follows. This is the most important condition because it controls the selvedge ratio and at the same time, the precipitation of alloy components during rolling has the effect of improving the workability of the final plate. The final plate used for the purpose of the alloy plate of the present invention is 0.3 mmt or less and has a final cold rolling amount of 20 to 60 mm.
%, therefore, intermediate annealing is usually performed at a thickness of 1 mm or less, and cold rolling must be performed following the hot rolling process. Subsequent annealing is performed at high temperature for a short time to improve workability. Industrially, a coiled plate is unwound and passed through a high-temperature furnace for heat annealing. If the annealing temperature is less than 400°C, recrystallization will be difficult to proceed, requiring a long time for recrystallization, and the effect will be diminished. The maximum annealing temperature is the melting point of the material.
Furthermore, in order to avoid crystal grain growth when the temperature is high, the treatment time must be shortened, and must be 5 minutes or less. The optimum final cold rolling is 20% or more, especially 20% to 60%. If it is less than 20%, the strength will not be fully demonstrated,
Moreover, if it exceeds 60%, the workability may deteriorate depending on the material. Furthermore, since the material strength of alloy plates containing Mg may decrease when left at room temperature, stabilization heat treatment may be applied in advance at a temperature below the recrystallization temperature. By going through each of the above steps, in the second invention, the crystal grain size can be reduced to 25 μm or less, and workability is improved. Moreover, since intermediate annealing only needs to be performed once, the energy cost required for heat treatment can be reduced, and it is also possible to reduce in-process costs by shortening the manufacturing process. Next, examples and comparative examples will be explained. Example 1 An ingot of the alloy shown in Example 1 in Table 1 (alloy composition) was faceted, homogenized at 580°C for 10 hours, cooled to 540°C, and immediately hot rolled to a thickness of 2.8 mm. At this time, the material temperature at the end of rolling was 320°C. This was cold worked to a thickness of 0.33mm, heat treated at 540℃ for 5 seconds, and finally cold worked to a thickness of 30% to a thickness of 0.23mm.
It was set as t. The properties of the obtained 0.23 mmt plate are shown in Table 2, and the formability is improved despite the fact that less heat energy is applied during the manufacturing process. Comparative Example 1 The alloy ingot in Example 1 was homogenized at 580°C for 10 hours, cooled, faced, reheated to 520°C, hot-rolled to 5 mmt at a finishing temperature of 312°C, and heated at 400°C for 1 hour. After intermediate annealing, cold rolling to 0.33mmt
Then, intermediate annealing was again performed at 400℃ for 1 hour, and 30℃
% final cold rolling to produce a 0.23 mmt plate. The properties of this plate are shown in Table 2. Example 2 An ingot of the alloy shown in Example 2 in Table 1 was face-milled,
After heating at 590°C for 5 hours, the temperature was lowered and homogenized at 540°C for 5 hours, followed by immediately hot rolling to a thickness of 2.4 mm, at which time the material temperature at the end of rolling was 310°C. This was cold worked to 0.29mmt at 450°C.
A heat treatment was applied for 20 seconds, followed by a final cold working of 30% to produce a 0.20 mmt plate. The properties of the obtained 0.20 mmt plate are shown in Table 2, and the formability is improved by finer grains, but the strength and selvage ratio are the same as those of Comparative Example 2, which will be described later. Comparative Example 2 The alloy ingot in Example 2 was homogenized at 580°C for 10 hours, cooled, faced, reheated to 480°C, hot rolled at a finishing temperature of 300°C to a thickness of 6 mm, and further cold worked. After that, it was intermediately annealed at 360°C for 1 hour, cold worked to 0.29mmt, and then intermediately annealed at 360°C for 1 hour, and then 30%
The final cold working process was carried out to produce a 0.20mmt plate. The properties of this plate are shown in Table 2. Example 3 An ingot of the alloy shown in Example 3 in Table 1 was heated at 595°C for 10
After time homogenization, cool to 560℃ and hot-roll 2.2
mmt. At this time, the material temperature at the end of rolling is
It was 332℃. This was cold worked to a thickness of 0.31 mm, subjected to high-speed short-time annealing at 500° C. for 10 seconds, and then final cold worked to a thickness of 25% to obtain a 0.23 mm thick plate. The properties of the obtained 0.23 mmt plate are shown in Table 2, and the crystal grains are fine and the drawing workability is improved. Comparative Example 3 The alloy ingot in Example 3 was homogenized at 580°C for 10 hours, cooled, faced, reheated to 540°C, hot rolled to 30mmt at a finishing temperature of 297°C, and further cold worked. After that, it was intermediately annealed at 360 to 380℃ for 1 hour and cold worked to 0.31mm.
Intermediate annealing was again performed at 360 to 380°C for 1 hour, and a final cold working of 25% was performed to obtain a 0.23 mmt plate. The properties of this plate are shown in Table 2. Example 4 An ingot of the alloy shown in Example 4 in Table 1 was heated at 550°C for 10
After time homogenization, it was hot rolled at 500°C to a thickness of 2.0 mm. At this time, the material temperature at the end of rolling was 298°C. This was cold worked to 0.6mmt and heated to 500°C.
After high-speed short-time annealing for 60 seconds, final cold working of 58% was performed to obtain a 0.25 mmt plate. The properties of the obtained 0.25 mmt plate are shown in Table 2, and in Comparative Example 4 described below, it was not possible to reduce the 45°-4 direction selvage ratio that develops with the final cold rolling amount. In the second embodiment, the selvage ratio is reduced and the moldability is improved at the same time. Comparative Example 4 The alloy ingot in Example 4 was heated at 550℃ after facing.
After homogenizing for 10 hours, cool to 500℃ and finish at 290℃
The plate was hot rolled to 3.0mmt, further cold worked to 0.6mmt, intermediate annealed at 360°C for 1 hour, and final cold worked to 58% to form a 0.25mmt plate. The properties of this plate are shown in Table 2. Example 5 An ingot of the alloy shown in Example 5 in Table 1 was treated in the same manner as in Example 1, except that the end temperature of hot rolling was 310°C, to obtain a plate of 0.23 mmt. The properties of the obtained plate were as shown in Table 2. Comparative Example 5 The alloy ingot in Example 5 was heated at 580°C after facing.
After homogenizing for 10 hours, hot rolling at 520℃ to finish temperature
5mmt at 315℃, intermediate annealing at 400℃ for 1 hour, cold working to 0.33mmt, annealing again at 400℃ for 1 hour, final cold working by 30% to 0.23mm.
mmt plate. The properties of this plate are shown in Table 2. Example 6 An ingot of the alloy shown in Example 6 in Table 1 was treated in the same manner as in Example 5, except that the end temperature of hot rolling was 302°C, to obtain a plate of 0.23 mmt. The properties of the obtained plate were as shown in Table 2. Comparative Example 6 The alloy ingot in Example 6 was processed into a plate under the same conditions as in Comparative Example 5, except that the end temperature of hot rolling was 310°C. The properties of this plate are shown in Table 2. Example 7 An ingot of the alloy shown in Example 7 in Table 1 was treated in the same manner as in Example 5, except that the finishing temperature of hot rolling was 315°C to obtain a plate of 0.23 mmt. The properties of the board were as shown in Table 2. Comparative Example 7 The alloy ingot in Example 7 was processed into a plate under the same conditions as in Comparative Example 5, except that the end temperature of hot rolling was 310°C. The properties of this plate are shown in Table 2. Example 8 An ingot of the alloy shown in Example 8 in Table 1 was heated at 550°C for 10
After time homogenization, it was hot rolled at 500°C to a thickness of 2.0 mm. At this time, the material temperature at the end of rolling was 300°C. This was cold worked to 0.6mmt and heated to 500°C.
After high-speed short-time annealing for 60 seconds, final cold working of 58% was performed to obtain a 0.25 mmt plate. The properties of the obtained plate were as shown in Table 2. Comparative Example 8 The alloy ingot in Example 8 was processed into a plate under the same conditions as Comparative Example 4, except that the hot rolling end temperature was 310°C. The properties of this plate are shown in Table 2. Example 9 An ingot of the alloy shown in Example 9 in Table 1 was treated in the same manner as in Example 2, except that the end temperature of hot rolling was 307°C to obtain a plate of 0.20 mmt. The properties of the obtained plate were as shown in Table 2. Comparative Example 9 The alloy ingot of Example 9 was processed into a plate under the same conditions as Comparative Example 2, except that the end temperature of hot rolling was 305°C. The properties of this plate are shown in Table 2. Example 10 An ingot of the alloy shown in Example 10 in Table 1 was treated in the same manner as in Example 2, except that the end temperature of hot rolling was 312°C, to obtain a plate of 0.20 mmt. The properties of the obtained plate were as shown in Table 2. Comparative Example 10 The alloy ingot of Example 10 was treated under the same conditions as Comparative Example 9 to form a plate. The properties of this plate are shown in Table 2. Example 11 An ingot of the alloy shown in Example 10 in Table 1 was treated in the same manner as in Example 2, except that the end temperature of hot rolling was 295°C to obtain a plate of 0.20 mmt. The properties of the obtained plate were as shown in Table 2. Comparative Example 11 The alloy ingot of Example 11 was processed into a plate under the same conditions as Comparative Example 2, except that the end temperature of hot rolling was 310°C. The properties of this plate are shown in Table 2.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 Si0.1〜0.7%、Mg0.01〜2.0%のいずれか1
種又は2種と、Fe0.3〜1.0%、Mn0.3〜1.5%のい
ずれかを1種又は2種と、Cu0.03〜1.3%とを含
み、残部はAlと不純物であるアルミニウム合金
よりなり、20%以上60%以下の最終冷間圧延を行
なつて板厚0.3mm以下とした場合の結晶粒径が25
μm以下であることを特徴とする成形性のすぐれ
たアルミニウム合金板。 2 Si0.1〜0.7%、Mg0.01〜2.0%のいずれか1
種又は2種と、Fe0.3〜1.0%、Mn0.3〜1.5%のい
ずれか1種又は2種と、Cu0.03〜0.3%とを含
み、残部はAlと不純物であるアルミニウム合金
を均質化処理したのち、480〜580℃で熱間圧延を
開始して290℃以上350℃以下で熱間圧延を終了
し、冷間圧延したのち、400〜570℃で5分以下の
焼鈍処理を行ない、20%以上60%以下の最終冷間
圧延を行ない、板厚0.3mm以下とした場合の結晶
粒径を25μm以下とすることを特徴とする成形性
のすぐれたアルミニウム合金板の製造方法。
[Claims] 1 Any 1 of 0.1 to 0.7% Si or 0.01 to 2.0% Mg
From an aluminum alloy containing one or two species, one or two of Fe0.3-1.0%, Mn0.3-1.5%, and Cu0.03-1.3%, with the remainder being Al and impurities. The grain size is 25 when the plate thickness is 0.3 mm or less by final cold rolling of 20% or more and 60% or less.
An aluminum alloy plate with excellent formability characterized by a particle size of less than μm. 2 Any 1 of Si0.1~0.7%, Mg0.01~2.0%
Homogeneous aluminum alloy containing one or two types, Fe0.3~1.0%, Mn0.3~1.5%, Cu0.03~0.3%, and the remainder being Al and impurities. After the chemical treatment, start hot rolling at 480-580℃, finish hot rolling at 290-350℃, cold-roll, and then perform annealing at 400-570℃ for 5 minutes or less. A method for producing an aluminum alloy sheet with excellent formability, characterized in that final cold rolling is carried out by 20% or more and 60% or less, and the crystal grain size is 25 μm or less when the sheet thickness is 0.3 mm or less.
JP10738182A 1982-06-22 1982-06-22 Aluminum alloy plate with superior formability and its manufacture Granted JPS58224142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10738182A JPS58224142A (en) 1982-06-22 1982-06-22 Aluminum alloy plate with superior formability and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10738182A JPS58224142A (en) 1982-06-22 1982-06-22 Aluminum alloy plate with superior formability and its manufacture

Publications (2)

Publication Number Publication Date
JPS58224142A JPS58224142A (en) 1983-12-26
JPS6140299B2 true JPS6140299B2 (en) 1986-09-08

Family

ID=14457671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10738182A Granted JPS58224142A (en) 1982-06-22 1982-06-22 Aluminum alloy plate with superior formability and its manufacture

Country Status (1)

Country Link
JP (1) JPS58224142A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684090A (en) * 2018-03-30 2020-09-18 株式会社神户制钢所 Aluminum alloy sheet for automobile structural member, and method for producing aluminum alloy sheet for automobile structural member

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193251A (en) * 1983-03-10 1984-11-01 Kobe Steel Ltd Preparation of aluminum alloy plate having deep drawing property
JPS59193253A (en) * 1983-03-31 1984-11-01 Kobe Steel Ltd Preparation of deep drawing aluminum alloy plate
JPS6144150A (en) * 1984-08-08 1986-03-03 Kobe Steel Ltd Aluminum sheet material for photosensitive drum and its manufacture
JPS61264149A (en) * 1985-05-15 1986-11-22 Kobe Steel Ltd Aluminum alloy sheet for can superior in formability
JPS6280256A (en) * 1985-10-01 1987-04-13 Sky Alum Co Ltd Manufacture of material for redrawn vessel
JPH07820B2 (en) * 1986-04-21 1995-01-11 昭和アルミニウム株式会社 Aluminum alloy foil for packaging with little springback after molding
JPS6326340A (en) * 1986-07-18 1988-02-03 Kobe Steel Ltd Manufacture of aluminum alloy having superior directional property
JPS6369953A (en) * 1986-09-11 1988-03-30 Kobe Steel Ltd Manufacture of aluminum alloy excellent in directionality
JPH01123045A (en) * 1987-11-06 1989-05-16 Sumitomo Light Metal Ind Ltd Aluminum sheet having superior formability and manufacture thereof
JPS63145758A (en) * 1987-11-07 1988-06-17 Kobe Steel Ltd Production of al alloy sheet for packaging
JPH01129688A (en) * 1987-11-16 1989-05-22 Mitsubishi Electric Corp Picture signal receiver
JPH01176048A (en) * 1987-12-29 1989-07-12 Kobe Steel Ltd Aluminum alloy for deep drawing having excellent orientation characteristics and its manufacture
JPH02274833A (en) * 1989-04-14 1990-11-09 Kobe Steel Ltd Aluminum alloy-soft material for supporting substrate and its manufacture
JP4057199B2 (en) * 1998-09-10 2008-03-05 株式会社神戸製鋼所 Al-Mg-Si alloy plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111011A (en) * 1974-07-18 1976-01-28 Mitsubishi Aluminium FUKAJIBORYOARUMINIUMUGOKINPANNO SEIZOHOHO
JPS5273112A (en) * 1975-12-16 1977-06-18 Sumitomo Light Metal Ind Hard aluminium alloy plate for deep drawing and method of making thereof
JPS52105509A (en) * 1976-03-03 1977-09-05 Mitsubishi Aluminium Production of aluminium alloy sheet for deep drawing
JPS5432113A (en) * 1977-08-18 1979-03-09 Nitsukei Atsuen Kk Method of producing allmnnmg alloy hard plate having deep drawability
JPS56102562A (en) * 1980-01-11 1981-08-17 Kobe Steel Ltd Manufacture of al alloy plate for packing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111011A (en) * 1974-07-18 1976-01-28 Mitsubishi Aluminium FUKAJIBORYOARUMINIUMUGOKINPANNO SEIZOHOHO
JPS5273112A (en) * 1975-12-16 1977-06-18 Sumitomo Light Metal Ind Hard aluminium alloy plate for deep drawing and method of making thereof
JPS52105509A (en) * 1976-03-03 1977-09-05 Mitsubishi Aluminium Production of aluminium alloy sheet for deep drawing
JPS5432113A (en) * 1977-08-18 1979-03-09 Nitsukei Atsuen Kk Method of producing allmnnmg alloy hard plate having deep drawability
JPS56102562A (en) * 1980-01-11 1981-08-17 Kobe Steel Ltd Manufacture of al alloy plate for packing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684090A (en) * 2018-03-30 2020-09-18 株式会社神户制钢所 Aluminum alloy sheet for automobile structural member, and method for producing aluminum alloy sheet for automobile structural member

Also Published As

Publication number Publication date
JPS58224142A (en) 1983-12-26

Similar Documents

Publication Publication Date Title
US4645544A (en) Process for producing cold rolled aluminum alloy sheet
JPH0127146B2 (en)
JPH06322443A (en) Production of grain-oriented magentic steel sheet reduced in iron loss
EP0259700A1 (en) Production process for aluminium alloy rolled sheet
JPS6140299B2 (en)
JPS6318041A (en) Manufacture of aluminum foil
EP0247264B1 (en) Method for producing a thin casting of cr-series stainless steel
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
JPH0222446A (en) Manufacture of high formability aluminum alloy hard plate
JPS6114216B2 (en)
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPS61170549A (en) Production of aluminium foil
JP3331535B2 (en) Method for manufacturing thick non-oriented electrical steel sheet with excellent magnetic properties
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JP2628635B2 (en) Manufacturing method of aluminum alloy plate
JPH05255791A (en) Aluminum alloy rolled sheet for forming excellent in stress corrosion cracking resistance and its manufacture
JPH0122346B2 (en)
JPH0369967B2 (en)
JPS6254017A (en) Manufacturing method for thin-walled Cr-based stainless steel slabs
JPH05255792A (en) Aluminum alloy rolled sheet for forming excellent in stress corrosion cracking resistance and its manufacture
JPH0641644A (en) Manufacture of cr-ni series stainless steel thin sheet excellent in material and surface quality
JPS6338525A (en) Method for manufacturing cold rolled steel sheet with excellent press formability
JPH02247363A (en) Production of aluminum alloy stock for forming
JPS6056416B2 (en) Method for manufacturing Al-based alloy plate for trim material with excellent brightness