JPS6135139B2 - - Google Patents
Info
- Publication number
- JPS6135139B2 JPS6135139B2 JP9597878A JP9597878A JPS6135139B2 JP S6135139 B2 JPS6135139 B2 JP S6135139B2 JP 9597878 A JP9597878 A JP 9597878A JP 9597878 A JP9597878 A JP 9597878A JP S6135139 B2 JPS6135139 B2 JP S6135139B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- flame
- oxide powder
- pipe
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002994 raw material Substances 0.000 claims description 59
- 239000000843 powder Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 18
- 239000013307 optical fiber Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 238000006460 hydrolysis reaction Methods 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 7
- 230000007062 hydrolysis Effects 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 4
- 238000002347 injection Methods 0.000 description 20
- 239000007924 injection Substances 0.000 description 20
- 239000007789 gas Substances 0.000 description 17
- 238000007796 conventional method Methods 0.000 description 9
- 239000002019 doping agent Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 229910001882 dioxygen Inorganic materials 0.000 description 8
- 230000008016 vaporization Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 5
- 238000005253 cladding Methods 0.000 description 5
- 238000009834 vaporization Methods 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/06—Concentric circular ports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/08—Recessed or protruding ports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/30—For glass precursor of non-standard type, e.g. solid SiH3F
- C03B2207/34—Liquid, e.g. mist or aerosol
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/46—Comprising performance enhancing means, e.g. electrostatic charge or built-in heater
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
本発明は火炎加水分解により得られる光フアイ
バ用酸化物粉末層の形成法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming an oxide powder layer for optical fibers obtained by flame hydrolysis.
既知の通り、光通信部門で用いられる光フアイ
バは、プリフオームロツド(予成形体)とも称す
る光フアイバ用母材を加熱延伸による紡糸手段で
加工することにより製造されており、この際の母
材はCVD法やVAD法などにより製造されてい
た。 As is known, optical fibers used in the optical communications sector are manufactured by processing an optical fiber base material, also called a preform rod, using a spinning method using heated drawing. The materials were manufactured using CVD and VAD methods.
因みに、従来の外付けCVD法では、両端支持
して回転状態としたガラス棒の周面に、硅素を主
成分とし、これにゲルマニウム、燐、硼素などの
ハロゲン化物、あるいは有機金属塩をドーパント
として配合した原料を、気相状態で酸水素炎と共
に吹きつけ、この際の火炎加水分解により反応生
成された酸化物粉末(煤化物質)を上記ガラス棒
の周面に付着堆積させるようにしており、また、
VAD法では、回転台板の板面に上記と同じく原
料ガス、火炎を吹きつけ、これにより得られる酸
化物粉末を同板面へ棒状に付着堆積させるように
しており、以下このようにして得られた棒状物を
高温で熱処理してガラス化することにより、光フ
アイバ用母材を得ていたが、アルゴン、酸素、水
素などのキヤリアガスを介した気相反応で上記原
料を火炎加水分解反応部へ供給するようにしてい
る上記各従来法では、つぎのような問題点が生じ
ていた。 Incidentally, in the conventional external CVD method, silicon is the main component on the peripheral surface of a glass rod that is supported at both ends and rotated, and halides such as germanium, phosphorus, and boron, or organic metal salts are used as dopants. The blended raw materials are blown in a gas phase together with an oxyhydrogen flame, and the oxide powder (sooting substance) generated by the flame hydrolysis is deposited on the circumferential surface of the glass rod. Also,
In the VAD method, raw material gas and flame are blown onto the plate surface of the rotating bed plate in the same manner as described above, and the resulting oxide powder is deposited on the plate surface in the form of a rod. The base material for optical fibers was obtained by heat-treating the rod-shaped products at high temperatures and vitrifying them. In each of the conventional methods described above, the following problems have arisen.
つまり、上記の各従来法では、ガス導入管とガ
ス導出管とを具えた気化槽内に液化原料を収容し
ておき、マスフローコントローラ(MFC)によ
り安定した流量に制御されたキヤリアガスをガス
導入管から気化槽内に導入してバブリングさせ、
同ガス中に原料をガス化して飽和させた後、この
原料含有のキヤリアガスをガス導入管より火炎加
水分解反応部へと給送していたのであるが、この
際、酸化物粉末による堆積層の成長速度を高める
べく上記反応部へ原料ガスを大量供給しようとし
ても、該原料ガス量がその蒸気圧や通気量によつ
て制約を受けるため、既製の気化装置では所期の
目的が満足に達成できず、このため、気化槽内お
よび同槽から上記反応部へ至る原料給送ラインを
高温に保持するといつた蒸気圧高揚手段や原料ガ
スが噴射される酸水素炎バーナを大型化するとい
つた通気量増大手段が採られていたのであるが、
これでは上記の各手段を要しただけ、設備が高価
になると共にそれらの保守管理も難かしくなり、
特に原料ガスの通気量を増大させた場合には、原
料ガスと火炎との適正な調和が得難く、火炎加水
分解時の温度制御が不能になるといつた問題点も
有していた。 In other words, in each of the above conventional methods, the liquefied raw material is stored in a vaporization tank equipped with a gas inlet pipe and a gas outlet pipe, and a carrier gas controlled at a stable flow rate by a mass flow controller (MFC) is fed into the gas inlet pipe. Introduced into the vaporization tank and bubbled,
After the raw material was gasified and saturated in the same gas, the carrier gas containing the raw material was fed through the gas introduction pipe to the flame hydrolysis reaction section. Even if an attempt is made to supply a large amount of raw material gas to the reaction section in order to increase the growth rate, the amount of raw material gas is limited by its vapor pressure and ventilation rate, so ready-made vaporizers cannot satisfactorily achieve the intended purpose. For this reason, it was decided to increase the size of the vapor pressure increasing means, which maintains the inside of the vaporization tank and the feed line from the tank to the reaction section at a high temperature, and the oxyhydrogen flame burner through which the raw material gas is injected. Measures were taken to increase the amount of ventilation, but
This requires each of the above measures, making the equipment expensive and difficult to maintain and manage.
In particular, when the amount of ventilation of the raw material gas is increased, it is difficult to achieve proper harmony between the raw material gas and the flame, and there are also problems in that temperature control during flame hydrolysis becomes impossible.
本発明は上記の問題点に鑑み、気相状態で原料
を供給するのでなく、該原料を液化状態として火
炎の位置へ給送するようにし、同原料が火炎と接
する手前においてこれを気化することにより、火
炎加水分解反応による酸化物粉末の収量を増大さ
せると共に同粉末による層の成長速度を高め、し
かもこの際の制御性が簡易化できるようにしたも
のである。 In view of the above problems, the present invention does not supply the raw material in a gaseous state, but instead supplies the raw material in a liquefied state to the position of the flame, and vaporizes the raw material before it comes into contact with the flame. This makes it possible to increase the yield of oxide powder by flame hydrolysis reaction, increase the growth rate of the layer formed by the powder, and simplify the controllability at this time.
以下本発明の方法を図示と共に説明する。 The method of the present invention will be explained below with reference to the drawings.
第1図は本発明法に用いる装置の要部を示した
ものであり、同図において、1は多重管構造のバ
ーナである。 FIG. 1 shows the main parts of the apparatus used in the method of the present invention, and in the figure, 1 is a burner having a multi-tube structure.
このバーナ1は最内心に細径の原料噴射管2を
有し、該管2の外周に火炎防護管3、水素ガス管
4、酸素ガス管5が順次同心状に重合されたもの
で、これにより原料噴射路6、火炎防護媒体噴射
路7、水素ガス噴射路8、酸素ガス噴射路9がそ
れぞれ形成されている。 This burner 1 has a small-diameter raw material injection pipe 2 at its innermost center, and a flame protection pipe 3, a hydrogen gas pipe 4, and an oxygen gas pipe 5 are successively superposed concentrically around the outer periphery of the pipe 2. Thus, a raw material injection path 6, a flame protection medium injection path 7, a hydrogen gas injection path 8, and an oxygen gas injection path 9 are formed, respectively.
そして先端形状が集中噴射型、拡散噴射型など
に形成される上記原料噴射管2の基端部2′に
は、分岐管10a,10bとバルブ11とを有し
た供給管12、ならびに分岐管13a,13bと
バルブ14とを有した供給管15がそれぞれ連結
されると共に該基端部2′には原料の気化を目的
とする電気ヒータなどの加熱器16も具設され、
さらに上記各供給管12,15は図示しない原料
供給源にそれぞれ配管接続される。 At the base end 2' of the raw material injection pipe 2, which has a tip shape of a concentrated injection type, a diffused injection type, etc., there is a supply pipe 12 having branch pipes 10a, 10b and a valve 11, and a branch pipe 13a. , 13b and a valve 14 are connected to each other, and a heater 16 such as an electric heater for the purpose of vaporizing the raw material is also provided at the base end 2'.
Further, each of the supply pipes 12 and 15 is connected to a raw material supply source (not shown), respectively.
一方、前述した火炎防護管には、火炎防護媒体
供給路7と連通するように、不活性ガス(例えば
アルゴン、ヘリウムなど)或は酸素の供給源に通
じている供給管17が接続されると共に、水素ガ
ス管4および酸素ガス管5には、それぞれのガス
噴射路8,9と連通するように、水素ガス源、酸
素ガス源に通じている供給管18,19が接続さ
れる。 On the other hand, a supply pipe 17 connected to an inert gas (for example, argon, helium, etc.) or oxygen supply source is connected to the above-mentioned flame protection pipe so as to communicate with the flame protection medium supply path 7. , the hydrogen gas pipe 4 and the oxygen gas pipe 5 are connected to supply pipes 18 and 19 that communicate with a hydrogen gas source and an oxygen gas source so as to communicate with the respective gas injection paths 8 and 9.
本発明では、上記バーナ1を主体にした装置を
介して酸化物粉末層を堆積させることにより所要
の光フアイバ用母材を製造することになるが、こ
の際、ステツプインデツクス型の屈折率分布を有
する光フアイバ用母材をVAD法の手順で形成す
る場合ではつぎのようになる。 In the present invention, a required optical fiber base material is manufactured by depositing an oxide powder layer through a device mainly based on the burner 1. At this time, a step index type refractive index distribution is produced. In the case of forming an optical fiber base material having the following by the VAD method, the process is as follows.
まず、光フアイバのコア用となる液化原料を供
給管12から原料噴射管2の原料噴射路6内へと
給送し、この際同管2の基端部2′にある加熱器
16により上記原料を加熱気化して該管2の先端
から噴射すると同時に他の各供給管17,18,
19から火炎防護管3、水素ガス管4、酸素ガス
管5の各噴射ならびに供給路7,8,9内へと供
給したアルゴンなどの不活性ガス、水素ガス、酸
素ガスを着火燃焼させて上記気化原料をこの際の
火炎により加水分解し、これにより反応生成され
た酸化物粉末を回転状態とした台板の板面(粉末
堆積箇所)に付着させながら該粉末をその軸方向
に堆積させ、ついでコア用の酸化物粉末層が所定
の棒状長さに形成された後は、供給管12からの
原料供給を遮断し、そして他方の供給管15から
クラツド用となる液化原料を上記原料噴射管2内
に供給すると共にこれを先と同じく気化して該管
2の先端より噴射し、かつ、前記と同様にして燃
焼状態とした酸水素炎により該気化原料を加水分
解してその反応生成物たるクラツド用の酸化物粉
末を前記コア用酸化物粉末層の外周に付着堆積さ
せるのである。 First, the liquefied raw material for the core of the optical fiber is fed from the supply pipe 12 into the raw material injection path 6 of the raw material injection pipe 2, and at this time, the heater 16 at the proximal end 2' of the pipe 2 While heating and vaporizing the raw material and injecting it from the tip of the pipe 2, the other supply pipes 17, 18,
Inert gas such as argon, hydrogen gas, and oxygen gas supplied from 19 to each injection of flame protection pipe 3, hydrogen gas pipe 4, and oxygen gas pipe 5 and into supply channels 7, 8, and 9 are ignited and burned to produce the above-mentioned The vaporized raw material is hydrolyzed by the flame at this time, and the oxide powder produced by the reaction is deposited in the axial direction while adhering to the plate surface (powder deposition location) of the rotating base plate, After the oxide powder layer for the core is formed into a predetermined rod-like length, the raw material supply from the supply pipe 12 is cut off, and the liquefied raw material for the cladding is supplied from the other supply pipe 15 to the raw material injection pipe. 2, vaporize it as before, inject it from the tip of the pipe 2, and hydrolyze the vaporized raw material with an oxyhydrogen flame that is combusted in the same manner as above to produce the reaction product. The oxide powder for the barrel cladding is deposited on the outer periphery of the oxide powder layer for the core.
この際、火炎防護管3より噴射される火炎防護
媒体としての不活性ガスは、原料と火炎との間に
介在するから、バーナ1の先端部に原料粉や酸化
物などが付着するのを阻止するようになり、従つ
てバーナ1の目詰りによる燃焼不良や消火などが
防止され、また火力が旺盛な状態となるバーナ1
の充分先方において原料と火炎による加水分解反
応を行なわせるようになる。 At this time, since the inert gas as a flame protection medium injected from the flame protection pipe 3 is interposed between the raw material and the flame, it prevents raw material powder and oxides from adhering to the tip of the burner 1. Therefore, poor combustion and fire extinguishment due to burner 1 clogging are prevented, and the burner 1 has a strong firepower.
A hydrolysis reaction between the raw material and the flame takes place well ahead of the flame.
また、上記のような反応状態にあるとき、この
際の反応炎による熱が原料噴射管2内にも伝播す
るようになるので、加熱器16を介しての液料気
化が短時間で促進されるようになる。 In addition, when the reaction is in the above-mentioned state, the heat generated by the reaction flame is also propagated into the raw material injection pipe 2, so that vaporization of the liquid via the heater 16 is promoted in a short time. Become so.
つぎに、外付けCVD法によりグレーデツドイ
ンデツクス型の屈折率分布を有する光フアイバ用
母材を製造する場合につき説明すると、この場合
では石英等からなるガラス棒の外周にドーパント
配合率の異なる、つまりガラス化した際の屈折率
が異なる酸化物粉末層を一層ずつ積層形成するの
であるから、上記と同様にして液化原料を気化
し、これを酸化水素炎により加水分解しながら
も、酸化物粉末層が一層形成されるごとに原料成
分中のドーパント濃度を変更するようになる。 Next, we will explain the case of manufacturing an optical fiber base material having a graded index type refractive index distribution using the external CVD method. In other words, since oxide powder layers with different refractive indexes are formed layer by layer when vitrified, the liquefied raw material is vaporized in the same manner as above, and while it is hydrolyzed by a hydrogen oxide flame, the oxide powder is Each time a layer of powder is formed, the concentration of dopant in the raw material components is changed.
これに際しては、一方の供給管12から液化し
たガラス原料を、他方の供給管15からは液化し
たドーパント原料をそれぞれ供給するようにし酸
化物粉末層が一層形成されるごとに両供給管1
2,15の何れか一方、または双方を流量調整し
て上記原料の成分配合率を所定通りに変化させる
ようにする。 In this case, the liquefied glass raw material is supplied from one supply pipe 12, and the liquefied dopant raw material is supplied from the other supply pipe 15, so that both supply pipes
By adjusting the flow rate of either or both of No. 2 and No. 15, the mixing ratio of the ingredients of the raw materials is changed as specified.
以上に説明したVAD法、CVD法により得られ
た棒状の酸化物粉末層がガラス棒の周囲に積層さ
れた酸化物粉末層は高温で処理されてガラス化さ
れ、これが光フアイバ用母材(プリフオームロツ
ド)となる。 The rod-shaped oxide powder layer obtained by the VAD method or CVD method described above is laminated around the glass rod. The oxide powder layer is treated at high temperature and vitrified. formrod).
なお、上記外付けCVD法においては、一基の
バーナ1へコア用となる原料クラツド用となる原
料を切換供給するようにして当該一基のバーナ1
によりコア用となる酸化物粉末層、クラツド用と
なる酸化物粉末層を形成するようにしてもよく、
また二基以上のバーナ1をコア用酸化物粉末の形
成用、クラツド用酸化物粉末の形成用にそれぞれ
使い分けて目的とする酸化物粉末層を形成するよ
うにしてもよい。 In the above-mentioned external CVD method, the raw material for the core and the raw material for the cladding are switched and supplied to one burner 1.
An oxide powder layer for the core and an oxide powder layer for the cladding may be formed by
Alternatively, two or more burners 1 may be used for forming the oxide powder for the core and for forming the oxide powder for the cladding, respectively, to form the desired oxide powder layer.
つぎに本発明法と従来法とを具体的例により比
較説明する。 Next, the method of the present invention and the conventional method will be compared and explained using specific examples.
20℃の室温下において四塩化硅素を2.91ml/
min、四塩化ゲルマニウムを0.39ml/min、オキ
シ塩化燐を0.065ml/minの条件で液体給送する
と共にバーナ1では原料噴射管2の基端部2′に
おける気化温度を100〜200℃とし、火炎防護用ア
ルゴン0.5ml/min、水素3/min、酸素6/
minの火炎により上記原料を反応させたところ、
粉末堆積箇所として基板上には、毎分1.26gの酸
化物粉末(煤化物質)が得られた。
At room temperature of 20℃, add 2.91ml of silicon tetrachloride/
The liquids are fed under the conditions of 0.39 ml/min for germanium tetrachloride and 0.065 ml/min for phosphorus oxychloride, and in the burner 1, the vaporization temperature at the base end 2' of the raw material injection pipe 2 is set to 100 to 200°C. Argon 0.5ml/min, hydrogen 3/min, oxygen 6/min for flame protection
When the above raw materials were reacted with a flame of min.
On the substrate as a powder deposition site, 1.26 g of oxide powder (sooted material) was obtained per minute.
原料を気相で供給する状態において、四塩化硅
素を40℃、四塩化ゲルマニウムを30℃、オキシ塩
化燐を15℃に保温しつつ、これらの液槽内にそれ
ぞれキヤリアガスを100ml/min、100ml/min、
40ml/minで通気し、これにより得られた原料混
合ガスをバーナへ供給し、火炎防護用アルゴン1
/min、水素2/min、酸素4/minのの
火炎により反応させたところ、粉末堆積箇所に
は、毎分0.23gの酸化物粉末が得られた。
While supplying raw materials in the gas phase, silicon tetrachloride is kept at 40°C, germanium tetrachloride at 30°C, and phosphorus oxychloride at 15°C, and carrier gas is supplied at 100 ml/min and 100 ml/min into these liquid tanks, respectively. min,
Aeration is performed at a rate of 40 ml/min, and the resulting raw material mixed gas is supplied to the burner, and argon 1 for flame protection is supplied.
When the reaction was carried out using a flame of 2/min, 2/min of hydrogen, and 4/min of oxygen, 0.23 g of oxide powder was obtained per minute at the powder deposited area.
上記両者の結果で明らかなように、本発明によ
るときは従来法に比べてはるかに高い酸化物粉末
収量をあげることができた。 As is clear from both of the above results, the present invention was able to achieve a much higher yield of oxide powder than the conventional method.
この場合、両法に用いたバーナの外径20mmは共
に同じであり、従来法の場合は原料の温度をさら
に高温化することによつて収量の増大が見こまれ
るが、この際の制御性を考慮に入れると0.7g/
min程度が上記バーナによる収量限界になつてい
る。 In this case, the outer diameter of the burner used in both methods is the same, 20 mm, and in the case of the conventional method, an increase in yield is expected by raising the temperature of the raw material, but the controllability in this case is Taking into account 0.7g/
The yield limit of the burner is approximately 100 min.
これに対する本発明では、容易に2g/minの
収量をあげることができた。 On the other hand, in the present invention, it was possible to easily increase the yield of 2 g/min.
本発明は上記の通りであるから、つぎのような
特徴効果が得られる。 Since the present invention is as described above, the following characteristic effects can be obtained.
まず、本発明では原料を液化状態で給送しなが
らこれを火炎の手前で気化し、火炎加水分解する
ようにしているので、当初から気相状態にして原
料供給するようにしている従来例に比し、酸化物
粉末の収量を大幅に高め、該粉末層の成長速度を
格段にアツプすることができる。 First, in the present invention, the raw material is fed in a liquefied state, and is then vaporized before the flame for flame hydrolysis, which is different from the conventional method in which the raw material is supplied in a gaseous state from the beginning. In contrast, the yield of oxide powder can be greatly increased and the growth rate of the powder layer can be significantly increased.
従つて光フアイバ用母材を製造する際の生産性
が向上する。 Therefore, the productivity in manufacturing the optical fiber base material is improved.
さらに、本発明では原料を液状で供給する段階
においてガラス成分、ドーパント成分が液状混合
でき、従つて多種のドーパントを用いる場合、各
ドーパントごとにマスフローコントローラを用い
ていた従来の気相コントロール系に対し、これら
の成分調整や制御がきわめて簡易化される。 Furthermore, in the present invention, the glass component and the dopant component can be mixed in liquid form at the stage of supplying the raw materials in liquid form. Therefore, when using a variety of dopants, it is possible to mix the glass component and the dopant component in liquid form. , the adjustment and control of these components is extremely simplified.
また、多量のキヤリアガスを用いて原料を反応
系へ供給する従来例に比し、当該ガスを省略でき
る利点が得られると共にキヤリアガスの存在によ
つて反応炎の温度コントロール自由度が制約され
るといつたこともなく、従つて火炎加水分解時の
反応温度が制御し易くなる。 In addition, compared to conventional methods that use a large amount of carrier gas to supply raw materials to the reaction system, this method has the advantage of being able to omit the gas, and since the presence of the carrier gas restricts the degree of freedom in controlling the temperature of the reaction flame. Therefore, the reaction temperature during flame hydrolysis can be easily controlled.
さらに、常温近傍で蒸気圧の小さいものをドー
パントとする場合、原料を気相で供給する従来例
では反応炎に至るまでの原料給送ラインを高温に
保持する必要があり、従つて設備、温度管理の煩
しさからもこれらのドーパントが活用されないと
いつた問題点があつたが、本発明によるときは火
炎の真近で原料を加熱するだけとなり、バーナに
至るまで原料を加熱する必要がないので、蒸気圧
の小さいドーパントも上記の制約なしに用いられ
る。 Furthermore, when using a material with a low vapor pressure near room temperature as a dopant, in the conventional method of supplying raw materials in the gas phase, it is necessary to maintain the raw material feed line up to the reaction flame at a high temperature. There was a problem that these dopants were not used due to the trouble of management, but according to the present invention, the raw material is only heated in the vicinity of the flame, and there is no need to heat the raw material all the way to the burner. Therefore, dopants with low vapor pressure can also be used without the above restrictions.
図面は本発明法に用いる装置の要部を示した一
部切欠正面図である。
1……バーナ、2……原料噴射管、3……火炎
防護管、4……水素ガス管、5……酸素ガス管、
6……原料噴射路、7……火炎防護媒体噴射路、
8……水素ガス噴射路、9……酸素ガス噴射路。
The drawing is a partially cutaway front view showing the main parts of the apparatus used in the method of the present invention. 1... Burner, 2... Raw material injection pipe, 3... Flame protection pipe, 4... Hydrogen gas pipe, 5... Oxygen gas pipe,
6... Raw material injection path, 7... Flame protection medium injection path,
8...Hydrogen gas injection path, 9...Oxygen gas injection path.
Claims (1)
ことにより光フアイバ用の酸化物粉末を得る方法
において、液化状態にある原料を火炎の位置へと
給送すると共に該原料を火炎の手前で気化し、こ
の気化状態の原料を火炎と共に粉末堆積箇所へ吹
きつけながら火炎加水分解してこれにより反応生
成される酸化物粉末を上記堆積の箇所へ堆積させ
るようにしたことを特徴とする光フアイバ用酸化
物粉末層の形成法。 2 火炎の中心より原料が吹き出るようにした特
許請求の範囲第1項に記載の光フアイバ用酸化物
粉末層の形成法。 3 火炎と原料との境界に火炎防護媒体を介在さ
せるようにした特許請求の範囲第2項に記載の光
フアイバ用酸化物粉末層の形成法。[Claims] 1. A method for obtaining an oxide powder for optical fiber by flame hydrolysis of a raw material containing a glass component, in which a raw material in a liquefied state is fed to a flame position, and the raw material is The material is vaporized in front of the flame, and while the vaporized raw material is blown along with the flame to the powder deposition location, it is flame-hydrolyzed and the oxide powder produced by the reaction is deposited at the deposition location. A method for forming an oxide powder layer for optical fiber. 2. A method for forming an oxide powder layer for an optical fiber according to claim 1, wherein the raw material is blown out from the center of the flame. 3. The method for forming an oxide powder layer for an optical fiber according to claim 2, wherein a flame protection medium is interposed at the boundary between the flame and the raw material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9597878A JPS5523067A (en) | 1978-08-07 | 1978-08-07 | Forming method for oxide powder layer for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9597878A JPS5523067A (en) | 1978-08-07 | 1978-08-07 | Forming method for oxide powder layer for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5523067A JPS5523067A (en) | 1980-02-19 |
JPS6135139B2 true JPS6135139B2 (en) | 1986-08-11 |
Family
ID=14152244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9597878A Granted JPS5523067A (en) | 1978-08-07 | 1978-08-07 | Forming method for oxide powder layer for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5523067A (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5595638A (en) * | 1979-01-10 | 1980-07-21 | Hitachi Ltd | Production of glass soot block |
JPS5688835A (en) * | 1979-12-18 | 1981-07-18 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of porous preform for optical fiber |
JP4089922B2 (en) * | 1995-12-19 | 2008-05-28 | コーニング インコーポレイテッド | Method and apparatus for making fused silica by combustion of a liquid reactant |
US5979185A (en) * | 1997-07-16 | 1999-11-09 | Corning Incorporated | Method and apparatus for forming silica by combustion of liquid reactants using a heater |
US6672106B1 (en) | 1998-08-07 | 2004-01-06 | Corning Incorporated | Method and apparatus for forming soot for the manufacture of glass |
ZA994171B (en) * | 1998-08-07 | 2000-03-28 | Corning Inc | Method and apparatus for forming soot for the manufacture of glass. |
EP1087177B1 (en) * | 1999-04-06 | 2011-12-28 | Shin-Etsu Chemical Co., Ltd. | Burner and combustion furnace for combustion and flame hydrolysis and combustion method |
JP2017036172A (en) | 2015-08-07 | 2017-02-16 | 株式会社フジクラ | Manufacturing method for optical fiber preform |
-
1978
- 1978-08-07 JP JP9597878A patent/JPS5523067A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5523067A (en) | 1980-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU741598B2 (en) | Method for forming silica by combustion of liquid reactants using oxygen | |
CN103359927A (en) | Doping device and doping method for optical fiber preform | |
US10399888B2 (en) | Method for producing glass particulate deposit and method for producing glass preform | |
US10167543B2 (en) | Method for manufacturing optical fiber preform | |
KR20010021883A (en) | Method and apparatus for forming silica by combustion of liquidreactants using a heater | |
CA2030648A1 (en) | Flash vaporizer system for delivering reactants for flame hydrolysis deposition and method of forming optical waveguide preforms therewith | |
CA2128188C (en) | Gas producing apparatus and method and apparatus for manufacturing optical waveguide and optical fiber preform | |
JPS6135139B2 (en) | ||
CA2288769A1 (en) | Germanium chloride and siloxane feedstock for forming silica glass and method | |
KR20190052234A (en) | Vapor deposition system for optical fiber preform | |
EP0908418B1 (en) | Manufacturing method of synthetic silica glass | |
CN111116038A (en) | Gas phase doping device and method for preparing rare earth doped optical fiber preform | |
JP3078590B2 (en) | Manufacturing method of synthetic quartz glass | |
JPS593942B2 (en) | Manufacturing method of glass fiber base material | |
US20070089464A1 (en) | Apparatus for fabricating soot preform | |
JP5003503B2 (en) | Method for producing quartz glass and method for producing optical device | |
US20050069638A1 (en) | System for forming a gas flow of reactants for a doped glass material | |
JPH0480860B2 (en) | ||
JPH0525818B2 (en) | ||
JPS63134531A (en) | Device for synthesizing glass fine particle | |
US6748768B2 (en) | Apparatus and method of doping silica with fluorine during laydown | |
JP2005060118A (en) | Manufacturing method of glass fine particle deposit and glass manufacturing method | |
JPH0559052B2 (en) | ||
JPH03141124A (en) | Production of quartz glass preform and burner for producing quartz glass preform | |
KR100713409B1 (en) | Apparatus for manufacturing soot base material |