JPS6134486B2 - - Google Patents
Info
- Publication number
- JPS6134486B2 JPS6134486B2 JP17535482A JP17535482A JPS6134486B2 JP S6134486 B2 JPS6134486 B2 JP S6134486B2 JP 17535482 A JP17535482 A JP 17535482A JP 17535482 A JP17535482 A JP 17535482A JP S6134486 B2 JPS6134486 B2 JP S6134486B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- extract
- less
- aqueous solution
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 30
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 28
- 229910045601 alloy Inorganic materials 0.000 claims description 24
- 239000000956 alloy Substances 0.000 claims description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 21
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 20
- 239000000284 extract Substances 0.000 claims description 20
- 239000007864 aqueous solution Substances 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 13
- 229910052742 iron Inorganic materials 0.000 claims description 13
- 229910052759 nickel Inorganic materials 0.000 claims description 13
- 235000006408 oxalic acid Nutrition 0.000 claims description 13
- 229910052726 zirconium Inorganic materials 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- 238000005868 electrolysis reaction Methods 0.000 claims description 9
- 239000002244 precipitate Substances 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 5
- 239000010941 cobalt Substances 0.000 claims description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- 238000001556 precipitation Methods 0.000 claims 1
- 239000002994 raw material Substances 0.000 description 11
- 239000003792 electrolyte Substances 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229910052772 Samarium Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- -1 and includes Co Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052746 lanthanum Inorganic materials 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000002910 rare earth metals Chemical class 0.000 description 4
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000002659 electrodeposit Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- DABIZUXUJGHLMW-UHFFFAOYSA-H oxalate;samarium(3+) Chemical compound [Sm+3].[Sm+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O DABIZUXUJGHLMW-UHFFFAOYSA-H 0.000 description 3
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910001954 samarium oxide Inorganic materials 0.000 description 2
- 229940075630 samarium oxide Drugs 0.000 description 2
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- IDCBOTIENDVCBQ-UHFFFAOYSA-N TEPP Chemical compound CCOP(=O)(OCC)OP(=O)(OCC)OCC IDCBOTIENDVCBQ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
Description
本発明は希土類元素を含み、かつCo、Ni、
Fe、Cu、Zrの少くとも1種を含有する合金から
希土類元素とCo、Ni、FeとCu、Zrとをそれぞれ
分離回収する方法に関する。近年高性能の磁石用
合金あるいは水素貯蔵合金等として希土類元素、
特にサマリウム(Sm)、ランタン(La)、セリウ
ム(Ce)、プラセオジム(Pr)、ネオジム(Nd)
等とCo、Ni、Fe、Cu、Zrなどとの合金が多く用
いられている。たとえば、SmCo5,MMCo5
(MMは上記希土類元素の混合物であるミツシユ
メタルを意味する)、CeCo5、Sm2(Co、Fe、
Cu、Zr)17などが永久磁石用合金として、また
LaNi5などは水素吸蔵用合金の代表的なものであ
り年々その需要が高まつている。
この希土類元素は高性能であることから、小さ
い寸法で使用されることが多く、一般には比較的
大きい形状から切削、研摩等により小さな形状に
仕上げるという工程によるため、加工屑や研摩粉
(スクラツプ)の発生量が多い。これらの合金成
分は高価なものであるから、これらの有価金属を
回収することは重要であつて、これまで種々の方
法が提案されている。たとえば、(1)SmCo5合金
を王水中で加熱溶解し、その後トリエタノールア
ミン、シアン化カリウムを添加してCoを隠蔽
し、アンモニアで中和することによつてSmを水
酸化物として回収する方法(特開昭49−36526号
公報参照)、(2)希土類元素スクラツプに造滓剤を
添加して高周波溶解、アーク溶解、プラズマ溶解
等で高温溶解し希土類の合金として回収する方
法、(3)該スクラツプにカルシウムを添加し、アル
ゴン気流中で加熱してスクラツプ中の炭素、酸素
を除去し希土類合金として再生する方法(特開昭
56−38438号公報参照)等がある。
しかしながら、上記(1)の方法は王水を使用する
ため特別な設備を必要とし、かつ衛生上好ましく
ないシアン化カリウムを使用し、コストも高い等
の問題がある。上記(2)及び(3)の方法の場合には、
希土類とCo等の有価物と分離できないという致
命的な欠点があり、特にスクラツプ中に研摩材や
ガラス等の不純物が混入している場合には、その
処理を困難にする等の問題点があつた。
本発明の目的は、上記の問題点を解消し比較的
簡易な操作によつて、希土類元素とその他の有価
物を酸化物または金属として分離回収する方法を
提供することにある。
この目的を達成するため本発明者等は、まず希
土類元素とその他の有価物の大部分を酸で溶解
し、しかる後各元素を分離する方法について鋭意
研究した結果、Cu、Zrが存在する場合は不溶解
残渣として回収し、Co、Ni、Feは電解法により
その一部を合金として分離したのち、希土類元素
を分離回収し、得られた母液は原料の抽出液とし
て繰り返し使用することによりそれぞれの金属を
ほぼ100%回収する方法を実験的に見出し本発明
法に到達したものである。
すなわち、希土類元素を含み、かつCo、Ni、
Fe、Cu、Zrの1種以上を含有する合金を稀硫酸
水溶液で抽出して、希土類元素濃度15g/以
下、好ましくは10〜15g/、コバルト、ニツケ
ルおよび/または鉄の合計濃度50g/以下、好
ましくは20〜50g/、pH1.5〜4.0の範囲の抽出
液と不溶解残渣とを分離し、上記抽出液を電解液
としてステンレス、鉛等の不溶性陽極を用いて電
解を行い、存在するCo、Niおよび/またはFeの
一部を析出せしめる。得られる電解終液は、これ
を撹拌しながら含有する希土類元素に対し当量以
下の蓚酸水溶液を添加し、生成する蓚酸塩沈殿を
水溶液から分離し、大気中で焙焼し希土類を酸化
物の形で回収する。最終工程で得られた水溶液は
そのまま、或いは適当量の希硫酸を添加してから
最初の工程の抽出液として循環使用する。
本発明法において第一工程で使用する硫酸水溶
液は、たとえば50〜100g/程度の比較的薄いも
のを使用するのが好ましい。希硫酸を使用するの
が好ましい理由は、希土類元素含有合金は非常に
活性な金属でたとえばpH1.0の希硫酸中に該合金
を投入して撹拌すると常温下、1〜2時間で溶解
しpHは4〜5.0まで上昇する。該合金がたとえば
10〜20mm角の塊状のものであつても50℃程度に加
温するとその溶解は促進され同様の結果が得られ
る。この性質を利用して抽出液中の希土類元素の
濃度、Co、Niおよび/またはFeの合計濃度なら
びにpH値を前記の所定の範囲に調整することは
容易である。たとえば、pHの調整にアルカリ剤
等の他の薬剤を必要としない。この抽出工程にお
いて、希土類の濃度を15g/以下、好ましくは
10〜15g/の範囲とするのは、該希土類元素の
溶解度の限度まで溶解させることを意味し、この
抽出液に添加される蓚酸との反応を効率よく行う
ためである。
添加された蓚酸と希土類(以下、Rと略称す
る)との反応処理が充分でないと、脱R工程で
R2(C2O4)3の沈殿が充分に生成せず、液を第
一工程の抽出液として循環した際に、この沈殿が
生成して、不溶解残渣分として系外に出て損失と
なり、あるいはまた、第二工程の電解工程でR2
(C2O4)3の生成を生じて、これがCo等の電着物に
随伴し正常な電解を妨げる原因となる等、何れも
好ましくない結果を生ずる。
次にCo、Niおよび/またはFeの合計濃度を50
g/以下、好ましくは20〜50g/の範囲とする
理由は、これ以下では電解に際して水素ガスの発
生が多くなり効率的な電解が行われない。また逆
に濃度がこれ以上になると、次の第三工程の脱R
工程で、たとえば希土類元素濃度が充分に高くて
も蓚酸との反応性を害するからである。該抽出液
のpHを1.5〜4.0と規制するのは、pHがこれ以下
では電解の際に水素発生が多くなり電流効率が低
下するためであり、pHがこれ以上になると希土
類元素が酸化物として沈殿するためである。
以下、本発明をさらに詳細に説明する。前述の
手順に従つて抽出された抽出液は、不溶解残渣分
から分離されるが、この不溶解物にはほぼ全量の
Cu、Zrが含まれ、ZrはZrO2として、Cuは一旦溶
解したものも希土類等との置換反応によつて単体
金属となるものと思われるが、金属としてそれぞ
れ分離される。このZr、Cuは永久磁石の原料と
して再使用することができる。
第一工程において不溶解残渣を分離した水溶液
は、電解液として第二工程である不溶性電解を行
うが、この際の液温は50〜60℃、DKは2A/dm2
以下、槽電圧は5V以下が好ましい。アノードは
前にも述べたように鉛、チタン、ステンレス等の
不溶性電極を用いるが、カソードはたとえばステ
ンレスを、必要によりテトロンのような布を塩化
ビニル板にはりつけて作つたボツクスの中に収め
て使用することができ、電解液のpH調整が容易
であるだけでなく、もし充分に熟成しないまま電
解工程に送りこまれた蓚酸希土の沈殿があつたと
しても、電着物がこれらに汚染されることがな
い。この不溶性電解は電解液中のCo等の濃度が
20g/を大幅に割らない程度、たとえば15g/
以上で中止するのが電解効率の面から好ましい。
電解の終液は最終工程である希土類の回収を行
うが、ここでは存在する希土類の合計に対し当量
以下の約10%蓚酸水溶液を電解終液を撹拌しなが
ら常温でバツチ式あるいは連続的に添加し、生成
する沈殿は好ましくは約1時間の熟成時間を経て
から真空過器等で液から分離する。得られた
蓚酸希土はマツフル炉等で約900℃の温度で焼成
し、希土の酸化物として回収する。最終の工程で
添加する蓚酸は水溶液の形で使用するのが好まし
く、また当量以下、好ましくはたとえば溶存する
Rを15g/から5〜10g/まで低下させるだけ
の量とする。抽出液のR濃度を極力高くして蓚酸
との反応効率を高める必要があることは前述の通
りであるが、この添加蓚酸量の抑制も全く同様の
理由によるものである。添加蓚酸量が当量以上に
なると第一工程に循環される液中に蓚酸イオンを
導入することになり、希土類の損失となり、更に
第二工程における電解析出物の汚染原因となる。
以上の諸工程によつて得られるCo、Fe等の合
金、希土類の酸化物は下記実施例に見られるよう
に非常に高品位のものであつて、そのまま永久磁
石や水素貯蔵合金等の原料として使用することが
できる。
本発明法によれば、最終工程の水溶液を第一工
程の抽出液として循環使用するので第一工程で生
起するかも知れない希土類の抽出損失を除けばほ
ぼ100%分離回収することができる利点がある。
また、その他の利点としては、第一および第三工
程で何れも希薄な酸を使用し、また公知の電解法
を適用する等、操作が煩雑でないという点があげ
られる。なお、本発明法は原料に有機溶媒等を含
んでいる場合でも周知の活性炭処理工程を付加す
ることで同様に処理することができる。以下、実
施例について説明する。
実施例 1
Sm34重量%、Co65重量%(以下単に%と略す
る)を含有する1mm以下の磁石合金のスクラツプ
4Kgを、62.0g/の硫酸水溶液100中に投入
し、常温で2時間撹拌したのち真空過器を使用
して不溶解残渣を除去したところ、pH3.0,
Sm13.0g/,Co25.5g/の抽出液100.2が得
られた。
この抽出液を、長さ280mm、幅360mm、深さ350
mmの塩化ビニル製電解槽(容量約35)に縦300
mm、横200mm、厚さ2mmの鉛板のアノード3枚、
縦300mm、横200mm、厚さ2mmのステンレス板のカ
ソード2枚を極間距離50mmでアノード、カソード
をそれぞれ交互に配列した電解槽に満たした。次
に電解液の温度を50℃に保持したのち、抽出液の
給液速度を60ml/分に調整しDK=1.5A/dm2、槽
電圧4Vで18時間電解した。この間電解槽をオー
バーフローした水溶液は電解終液としてポリ製の
容器に貯えた。得られた電解物は700.2gであ
り、その組成はCo99.5%、Sm0.1%以下であつ
た。電解終液は95.0で、Sm13.7g/、
Co19.56g/を含有していた。
上記の水溶液95を常温のまま撹拌下に10%の
蓚酸溶液10.5(Smに対し0.9当量)を添加し、
60分間静置したのち、ヌツチエを使用して別す
ると、蓚酸サマリウム〔Sm2(C2O4)3〕沈殿2200
gおよびpH0.5、Sm1.4g/、Co17.6g/を含
有する水溶液105.5が得られた。上記蓚酸サマ
リウムは乾燥したのち900℃に保持したマツフル
炉で2時間焼成したところ、Sm85.0%、Co0.1%
以下の酸化サマリウム(Sm2O3)1360gが得られ
それぞれの原料からの実収率はSm85.0%、
Co26.8%であつた。
Smを回収した終液は再度原料中の有価物抽出
用に使用することができる。
実施例 2
実施例1と同様にして希土類金属を含む合金を
希硫酸で抽出して得たSm10g/、Co35g/を
含有する硫酸酸性抽出液100中に、Sm34%、
Co65%のSmCo5合金と少量のガラス片を含む100
メツシユ以下のスクラツプ1Kgを投入して、前記
抽出液のpHが2.0になるように、必要により希硫
酸を添加して調整しながら2時間撹拌処理したの
ち真空過したところ、Sm13.3g/Co41.3g/
の抽出液100.15と20.0gの不溶解残渣が得ら
れた。
抽出された水溶液はカソード2枚とこれを挾む
アノード3枚を使用して電解槽への給液速度を70
ml/分とし、液温を55℃、DKは1.0A/dm2、電解
時間を24時間とした以外は実施例1と同様にして
電解処理したところ、電流効率はほぼ100%で
99.0%の電気コバルト633gが得られた。原料か
らのCo実収率は96.4%であつた。電解終液は、
Sm13.3g/、Co34.9g/を含有し100.0であ
つた。
この水溶液中のSm濃度を10.0g/まで減少さ
せるのに見合う量として10%の蓚酸溶液3を実
施例1と同様にして添加して反応させ別蓚酸サ
マリウム602gを得た。焼成によつて得られた酸
化サマリウムは371gであり、このものの品位は
Sm85.5%、Co0.1%以下であり、原料からのサマ
リウム実収率は93.3%であつた。
なおサマリウムを回収した水溶液のpHは0.8で
あり、これはそのままで最初の抽出工程に繰り返
し使用することができる。
実施例 3
La31.5%、Ni残部からなるLaNi合金の微粉末
(100メツシユ以下)4Kgを実施例1と同様の操作
を行つて処理したところ、Niの電着物は705.5
g、その品位はNi99.7%、La0.1%以下、原料か
らのNiの実収率は25.7%であつた。
一方ランタンはLa85.2%、Ni0.05%以下の酸化
ランタン(La2O3)1317gが得られ、Laの原料か
らの実収率は89.1%であつた。
実施例 4
Sm25.5%、Co50.0%、Fe15.0%、Cu8.0%、
Zr1.5%からなる磁石合金のスクラツプ〔Sm2
(Co、Fe、Cu、Zr)17〕であつて、10〜20mm角状の
もの1Kgを、実施例2の場合と同様に別に得られ
たSm,Co,Fe等を含有する硫酸酸性水溶液100
に液温50℃で2時間、pHを2.0に調整しながら
溶解処理した。得られた抽出液はSm10g/、
Fe+Co40.0g/、pH2.0の水溶液100.5であ
り、不溶解残渣は120g(乾燥)であつた。
この不溶解残渣を分析すると、第一工程の抽出
率を算出できる。分析による不溶解残渣の各金属
の品位は、下表の通りで原料スクラツプ中の
Cu、Zrは殆んど溶解しなかつたが、その他の有
価金属はそれぞれ98%以上溶解する。この不溶解
残渣は別途のCuおよびZrの回収工程に向けられ
る。
The present invention contains rare earth elements, and includes Co, Ni,
The present invention relates to a method for separating and recovering rare earth elements, Co, Ni, Fe, Cu, and Zr from an alloy containing at least one of Fe, Cu, and Zr. In recent years, rare earth elements have been used as high-performance magnet alloys or hydrogen storage alloys, etc.
Especially samarium (Sm), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd)
alloys with Co, Ni, Fe, Cu, Zr, etc. are often used. For example, SmCo 5 , MMCo 5
(MM means Mitsushi metal, which is a mixture of the above rare earth elements), CeCo 5 , Sm 2 (Co, Fe,
Cu, Zr) 17 , etc. are used as alloys for permanent magnets and
LaNi 5 is a typical hydrogen storage alloy, and its demand is increasing year by year. Due to the high performance of these rare earth elements, they are often used in small sizes, and generally the process involves cutting, polishing, etc. from a relatively large shape into a smaller shape. A large amount of is generated. Since these alloy components are expensive, it is important to recover these valuable metals, and various methods have been proposed so far. For example, (1) a method of heating and dissolving SmCo 5 alloy in aqua regia, then adding triethanolamine and potassium cyanide to hide Co, and recovering Sm as hydroxide by neutralizing with ammonia ( (Refer to Japanese Patent Application Laid-Open No. 49-36526), (2) a method of adding a slag-forming agent to rare earth element scrap and melting it at high temperature by high frequency melting, arc melting, plasma melting, etc., and recovering it as a rare earth alloy; A method of adding calcium to scrap and heating it in an argon stream to remove carbon and oxygen from the scrap and regenerate it as a rare earth alloy.
56-38438). However, method (1) above requires special equipment because it uses aqua regia, uses potassium cyanide which is not sanitary, and has problems such as high cost. In the case of methods (2) and (3) above,
It has the fatal disadvantage of not being able to separate valuable materials such as rare earths and Co, and it also poses problems such as making processing difficult, especially when impurities such as abrasives and glass are mixed into the scrap. Ta. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for separating and recovering rare earth elements and other valuable substances as oxides or metals by a relatively simple operation that solves the above-mentioned problems. In order to achieve this objective, the inventors of the present invention first dissolved most of the rare earth elements and other valuable substances with acid, and as a result of intensive research into a method of separating each element, they found that when Cu and Zr are present, is recovered as an insoluble residue, Co, Ni, and Fe are partially separated as alloys by electrolytic method, and then the rare earth elements are separated and recovered, and the obtained mother liquor is repeatedly used as an extract of raw materials. The method of the present invention was developed by experimentally discovering a method for recovering almost 100% of the metal. That is, it contains rare earth elements and contains Co, Ni,
An alloy containing one or more of Fe, Cu, and Zr is extracted with a dilute aqueous sulfuric acid solution, and the concentration of rare earth elements is 15 g/or less, preferably 10 to 15 g/, and the total concentration of cobalt, nickel, and/or iron is 50 g/or less. Preferably, the extract having a pH of 1.5 to 4.0 is separated from the insoluble residue, and the extracted liquid is electrolyzed using an insoluble anode such as stainless steel or lead as an electrolyte to remove the Co present. , part of Ni and/or Fe is precipitated. The resulting electrolyzed final solution is stirred and added with an aqueous solution of oxalic acid in an amount equal to or less than the amount of rare earth elements contained, the oxalate precipitate formed is separated from the aqueous solution, and roasted in the atmosphere to convert the rare earths into oxides. Collect with. The aqueous solution obtained in the final step is used as it is, or after adding an appropriate amount of dilute sulfuric acid, it is recycled as an extract for the first step. In the method of the present invention, the sulfuric acid aqueous solution used in the first step is preferably relatively dilute, for example, about 50 to 100 g. The reason why it is preferable to use dilute sulfuric acid is that rare earth element-containing alloys are very active metals, so if you put the alloy into dilute sulfuric acid with a pH of 1.0 and stir it, it will dissolve in 1 to 2 hours at room temperature and the pH will increase. increases to 4-5.0. For example, if the alloy is
Even if it is a lump of 10 to 20 mm square, heating it to about 50°C will accelerate its dissolution and produce similar results. Utilizing this property, it is easy to adjust the concentration of rare earth elements, the total concentration of Co, Ni and/or Fe, and the pH value in the extract to the above-mentioned predetermined range. For example, no other agents such as alkaline agents are required to adjust the pH. In this extraction process, the concentration of rare earths should be 15g/ or less, preferably
The range of 10 to 15 g/l means that the rare earth element is dissolved to the limit of solubility, and the reaction with oxalic acid added to this extract is to be carried out efficiently. If the reaction between the added oxalic acid and the rare earth metal (hereinafter abbreviated as R) is not sufficient, the reaction will occur in the R removal process.
When the precipitate of R 2 (C 2 O 4 ) 3 is not sufficiently formed and the liquid is circulated as the extract in the first step, this precipitate is formed and exits the system as an insoluble residue, resulting in loss. Or, alternatively, in the second electrolytic step, R 2
(C 2 O 4 ) 3 is generated, which accompanies electrodeposit such as Co and becomes a cause of interfering with normal electrolysis, all of which lead to unfavorable results. Then the total concentration of Co, Ni and/or Fe is 50
The reason why the amount is set to be less than 20 g/g/, preferably in the range of 20 to 50 g/e, is that if it is less than this, hydrogen gas will be generated in large quantities during electrolysis, and efficient electrolysis will not be carried out. On the other hand, if the concentration exceeds this level, the next third step is de-R.
This is because, even if the rare earth element concentration is sufficiently high in the process, the reactivity with oxalic acid will be impaired. The pH of the extract is regulated at 1.5 to 4.0 because if the pH is lower than this, hydrogen generation will increase during electrolysis and the current efficiency will decrease, and if the pH is higher than this, the rare earth elements will become oxides. This is because it precipitates. The present invention will be explained in more detail below. The extract extracted according to the above procedure is separated from the undissolved residue, but this undissolved material contains almost all of it.
It contains Cu and Zr, and Zr is separated as ZrO 2 , and Cu, once dissolved, is thought to become a single metal through a substitution reaction with rare earth elements, etc., but they are separated as metals. This Zr and Cu can be reused as raw materials for permanent magnets. The aqueous solution from which the insoluble residue was separated in the first step is used as an electrolyte to undergo insoluble electrolysis in the second step, at a temperature of 50 to 60°C and a DK of 2 A/dm 2
Hereinafter, the cell voltage is preferably 5V or less. As mentioned earlier, the anode uses an insoluble electrode such as lead, titanium, or stainless steel, but the cathode is made of stainless steel, for example, and is housed in a box made by gluing a cloth such as Tetron to a vinyl chloride plate if necessary. Not only can the pH of the electrolyte be easily adjusted, but even if there is precipitate of rare earth oxalate sent to the electrolytic process without sufficient ripening, the electrodeposit will not be contaminated by this precipitate. Never. In this insoluble electrolyte, the concentration of Co etc. in the electrolyte is
To the extent that it does not significantly reduce 20g/, for example, 15g/
It is preferable to stop the process at this point from the viewpoint of electrolytic efficiency. The final electrolytic solution undergoes the final step of recovering rare earths, but here an approximately 10% aqueous oxalic acid solution, equivalent to or less than the total amount of rare earths present, is added in batches or continuously at room temperature while stirring the final electrolytic solution. The formed precipitate is preferably separated from the liquid using a vacuum filter or the like after aging for about 1 hour. The obtained rare earth oxalate is fired at a temperature of approximately 900°C in a Matsufuru furnace and recovered as rare earth oxide. The oxalic acid added in the final step is preferably used in the form of an aqueous solution and is in an amount below the equivalent, preferably in an amount sufficient to reduce the dissolved R from, for example, 15 g/ to 5-10 g/. As mentioned above, it is necessary to increase the R concentration of the extract as much as possible to increase the reaction efficiency with oxalic acid, and the suppression of the amount of oxalic acid added is also for the same reason. If the amount of oxalic acid added exceeds the equivalent amount, oxalate ions will be introduced into the liquid circulated to the first step, resulting in loss of rare earths and further causing contamination of electrolyte deposits in the second step. The alloys of Co, Fe, etc. and rare earth oxides obtained through the above processes are of very high quality, as seen in the examples below, and can be used as raw materials for permanent magnets, hydrogen storage alloys, etc. can be used. According to the method of the present invention, since the aqueous solution in the final step is recycled as the extract in the first step, it has the advantage that almost 100% separation and recovery can be achieved, excluding the extraction loss of rare earths that may occur in the first step. be.
Other advantages include that operations are not complicated, such as using dilute acids in both the first and third steps and applying known electrolytic methods. In addition, in the method of the present invention, even when the raw material contains an organic solvent or the like, it can be treated in the same manner by adding a well-known activated carbon treatment step. Examples will be described below. Example 1 4 kg of magnetic alloy scrap of 1 mm or less containing 34% by weight of Sm and 5% by weight of Co (hereinafter simply referred to as %) was put into a 62.0g/100% aqueous sulfuric acid solution, stirred at room temperature for 2 hours, and then When undissolved residue was removed using a vacuum filter, the pH was 3.0,
100.2 of an extract containing Sm13.0g/, Co25.5g/ was obtained. This extract liquid is 280mm long, 360mm wide, 350mm
30 mm vertically in a vinyl chloride electrolytic cell (capacity approx. 35 mm)
mm, width 200mm, thickness 2mm three lead plate anodes,
Two stainless steel cathodes measuring 300 mm long, 200 mm wide, and 2 mm thick were filled in an electrolytic cell in which the anodes and cathodes were arranged alternately with a distance of 50 mm between the electrodes. Next, the temperature of the electrolytic solution was maintained at 50° C., and the feeding rate of the extract solution was adjusted to 60 ml/min, and electrolysis was carried out at DK=1.5 A/dm 2 and cell voltage of 4 V for 18 hours. During this time, the aqueous solution that overflowed the electrolytic cell was stored in a polyethylene container as the final electrolytic solution. The amount of electrolyte obtained was 700.2 g, and its composition was 99.5% Co and 0.1% or less Sm. The final electrolytic solution was 95.0, Sm13.7g/,
It contained 19.56 g/Co. Add 10.5% oxalic acid solution (0.9 equivalent to Sm) to the above aqueous solution 95 while stirring at room temperature,
After allowing it to stand for 60 minutes, it was separated using Nutsuchie to precipitate samarium oxalate [Sm 2 (C 2 O 4 ) 3 ]2200
An aqueous solution containing 105.5 g and pH 0.5, Sm 1.4 g/, and Co 17.6 g/ was obtained. After drying the above samarium oxalate, it was fired for 2 hours in a Matsufuru furnace kept at 900℃, and the result was 85.0% Sm and 0.1% Co.
The following 1360g of samarium oxide (Sm 2 O 3 ) was obtained, and the actual yield from each raw material was Sm85.0%.
Co26.8%. The final liquid from which Sm has been recovered can be used again to extract valuables from raw materials. Example 2 In the same manner as in Example 1, an alloy containing rare earth metals was extracted with dilute sulfuric acid, and 100% of Sm34%,
Co65% SmCo5 alloy and 100 with a small amount of glass pieces
1 kg of scraps smaller than a mesh was added and stirred for 2 hours, adjusting the pH of the extract to 2.0 by adding dilute sulfuric acid if necessary. After vacuum filtration, the result was Sm13.3g/Co41. 3g/
100.15 g of extract and 20.0 g of undissolved residue were obtained. The extracted aqueous solution is supplied to the electrolytic cell at a rate of 70° using two cathodes and three anodes sandwiching them.
ml/min, the liquid temperature was 55°C, the DK was 1.0A/dm 2 , and the electrolytic treatment was carried out in the same manner as in Example 1 except that the electrolysis time was 24 hours, and the current efficiency was almost 100%.
633 g of 99.0% electrolytic cobalt was obtained. The actual Co yield from the raw material was 96.4%. The final electrolytic solution is
It contained Sm13.3g/, Co34.9g/ and was 100.0. In the same manner as in Example 1, 10% oxalic acid solution 3 was added in an amount sufficient to reduce the Sm concentration in this aqueous solution to 10.0 g/L, and reacted to obtain 602 g of separate samarium oxalate. The amount of samarium oxide obtained by firing was 371g, and the quality of this material was
The Sm was 85.5% and the Co was 0.1% or less, and the actual samarium yield from the raw materials was 93.3%. Note that the pH of the aqueous solution from which samarium was recovered is 0.8, and it can be used repeatedly in the first extraction step as is. Example 3 When 4 kg of fine powder (100 mesh or less) of LaNi alloy consisting of 31.5% La and the remainder Ni was treated in the same manner as in Example 1, the Ni electrodeposit was 705.5%.
g, its grade was less than 99.7% Ni and 0.1% La, and the actual yield of Ni from the raw materials was 25.7%. On the other hand, 1317 g of lanthanum oxide (La 2 O 3 ) containing 85.2% La and 0.05% Ni was obtained, and the actual yield of La from the raw material was 89.1%. Example 4 Sm25.5%, Co50.0%, Fe15.0%, Cu8.0%,
Magnet alloy scrap consisting of Zr1.5% [Sm 2
(Co, Fe, Cu, Zr) 17 ], 1 kg of 10 to 20 mm square pieces was added to a sulfuric acid acidic aqueous solution containing Sm, Co, Fe, etc. separately obtained in the same manner as in Example 2.
The mixture was dissolved at a temperature of 50°C for 2 hours while adjusting the pH to 2.0. The obtained extract was Sm10g/,
Fe + Co 40.0 g/, pH 2.0 aqueous solution 100.5, and undissolved residue was 120 g (dry). By analyzing this undissolved residue, the extraction rate of the first step can be calculated. The quality of each metal in the undissolved residue according to the analysis is as shown in the table below.
Cu and Zr were hardly dissolved, but more than 98% of each of the other valuable metals was dissolved. This undissolved residue is directed to a separate Cu and Zr recovery process.
【表】
上記の抽出液は実施例1で使用した装置を使用
し、そのまま電解始液とし、電解槽のオーバーフ
ローは再び電解槽へ循環させた以外は実施例2と
同様にして電解したところCo+Fe電着合金630g
が得られた。この組成はCo76.3%、Fe23.2%、
Sm0.06%であつた。
電解終液には、前記原料スクラツプより抽出さ
れたサマリウム量と当量の蓚酸を添加し以下実施
例1と同様にして処理したところ、Sm85.2%、
Co+Fe0.1%以下の酸化サマリウム285gが得ら
れた。スクラツプからの実収率はFe+Co96.4
%、Sm95.0%であつた。
以上、各実施例はそれぞれの工程をバツチ法で
説明したが、実操業では実施例4で行つた電解操
作のように1つの工程で、或いは第一工程から第
三工程までプールして連続循環方式を採用するこ
ともできる。[Table] The above extract was electrolyzed in the same manner as in Example 2, except that the equipment used in Example 1 was used and the electrolysis starting solution was used as it was, and the overflow of the electrolytic cell was circulated back to the electrolytic cell. Electroplated alloy 630g
was gotten. This composition is Co76.3%, Fe23.2%,
Sm was 0.06%. Oxalic acid in an amount equivalent to the amount of samarium extracted from the raw material scrap was added to the final electrolytic solution and treated in the same manner as in Example 1. As a result, Sm85.2%,
285 g of samarium oxide containing less than 0.1% Co+Fe was obtained. Actual yield from scrap is Fe+Co96.4
%, Sm95.0%. In the above examples, each process was explained using the batch method, but in actual operation, it can be performed in one process like the electrolytic operation performed in Example 4, or in continuous circulation by pooling from the first process to the third process. method can also be adopted.
Claims (1)
ル、鉄、銅、ジルコニウムの少くとも1種を含有
する合金を、硫酸水溶液で抽出して希土類元素濃
度15g/以下、コバルト、ニツケルおよび/ま
たは鉄の合計濃度50g/以下、pH1.5〜4.0の抽
出液と不溶解残渣とを分離する第一工程と、第一
工程の抽出液を不溶性電解法によつコバルト、ニ
ツケルおよび/または鉄の一部を析出せしめる第
二工程と、第二工程終液に含有されている希土類
元素に対し当量以下の蓚酸を添加し、生成する蓚
酸塩沈殿を水溶液から分離して大気中で焙焼する
第三工程とから成り、その際、上記第三工程の水
溶液を第一工程の抽出液として循環使用すること
を特徴とする希土類元素含有合金からの有価金属
の回収法。1. An alloy containing rare earth elements and at least one of cobalt, nickel, iron, copper, and zirconium is extracted with an aqueous sulfuric acid solution to obtain a rare earth element concentration of 15 g/or less and a total concentration of cobalt, nickel, and/or iron. 50g/or less, the first step of separating the extract with a pH of 1.5 to 4.0 from the insoluble residue, and the precipitation of a part of cobalt, nickel and/or iron using the insoluble electrolysis method of the extract of the first step. a second step in which oxalic acid is added in an amount equivalent to or less than the rare earth element contained in the final solution of the second step, and a third step in which the resulting oxalate precipitate is separated from the aqueous solution and roasted in the atmosphere. A method for recovering valuable metals from rare earth element-containing alloys, characterized in that the aqueous solution in the third step is recycled as the extract in the first step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57175354A JPS5967326A (en) | 1982-10-07 | 1982-10-07 | Recovery method of valuable metal from alloy containing rare earth elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57175354A JPS5967326A (en) | 1982-10-07 | 1982-10-07 | Recovery method of valuable metal from alloy containing rare earth elements |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5967326A JPS5967326A (en) | 1984-04-17 |
JPS6134486B2 true JPS6134486B2 (en) | 1986-08-08 |
Family
ID=15994601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57175354A Granted JPS5967326A (en) | 1982-10-07 | 1982-10-07 | Recovery method of valuable metal from alloy containing rare earth elements |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5967326A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0413668B2 (en) * | 1987-05-11 | 1992-03-10 | Furuno Electric Co | |
JPH0432622Y2 (en) * | 1987-04-21 | 1992-08-05 | ||
JPH0760179B2 (en) * | 1988-12-07 | 1995-06-28 | 株式会社カイジョー | Transceiver for scanning sonar |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07150383A (en) * | 1993-12-01 | 1995-06-13 | Yokota Corp:Kk | Production of high-purity metal from waste of metal working and device therefor |
JP2770122B2 (en) * | 1993-12-29 | 1998-06-25 | 株式会社 ヨコタコーポレーション | How to produce high-purity iron from scrap metal processing |
JP2898189B2 (en) * | 1993-12-30 | 1999-05-31 | 株式会社 ヨコタコーポレーション | Method for producing hydrogen and high-purity iron using waste metal processing materials |
JPH07197288A (en) * | 1993-12-31 | 1995-08-01 | Yokota Corp:Kk | Production of hydrogen to be occluded in hydrogen occlusion alloy and hydrogen occlusion alloy using metal machining scrap |
DE4445495A1 (en) * | 1994-12-20 | 1996-06-27 | Varta Batterie | Process for the recovery of metals from used nickel-metal hydride accumulators |
US5728355A (en) * | 1995-09-27 | 1998-03-17 | Santoku Metal Industry Co., Ltd. | Method for recovering reusable rare earth compounds |
-
1982
- 1982-10-07 JP JP57175354A patent/JPS5967326A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0432622Y2 (en) * | 1987-04-21 | 1992-08-05 | ||
JPH0413668B2 (en) * | 1987-05-11 | 1992-03-10 | Furuno Electric Co | |
JPH0760179B2 (en) * | 1988-12-07 | 1995-06-28 | 株式会社カイジョー | Transceiver for scanning sonar |
Also Published As
Publication number | Publication date |
---|---|
JPS5967326A (en) | 1984-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10494694B2 (en) | Method for extraction and separation of rare earth elements | |
CN1090827C (en) | Process for recovery of metals from used nickel-metal hydride accumulators | |
EP2781623B1 (en) | Method for recovering rare earth from rare earth element-containing alloy | |
WO2001090445A1 (en) | Method of producing a higher-purity metal | |
JP2010229534A (en) | Method for separating and recovering nickel and lithium | |
JP4519294B2 (en) | Indium recovery method | |
JP2018145473A (en) | Lithium recovery method | |
KR20190065882A (en) | Method of recovery of valuable metals from scrap containing cathode materials of lithium ion battery | |
KR20170131626A (en) | Method for removing iron from iron-containing solution and method for recovering valuable metal | |
JPS6134486B2 (en) | ||
CA2846930C (en) | Process for producing rare metal | |
JP2019011518A (en) | Lithium recovery method | |
JP3173404B2 (en) | How to recover indium | |
JPS58740B2 (en) | Method for separating valuable metals from alloys containing rare earth elements | |
JP6532734B2 (en) | Recovery method of valuables including tungsten | |
JP6471072B2 (en) | Low alpha ray high purity zinc and method for producing low alpha ray high purity zinc | |
JPH0210232B2 (en) | ||
US20050155870A1 (en) | Method for producing indium-containing aqueous solution | |
JPH06192879A (en) | Refining method for cobalt | |
JPS6350411B2 (en) | ||
AU2014201865B2 (en) | Process for producing rare metal | |
JPS63115047A (en) | Method for extracting oxide inclusion in steel by electrolytic method | |
SU1101462A1 (en) | Method for recovering manganese from highly phosphorous ferromanganese | |
CN115725867A (en) | Method for extracting rare earth from fly ash | |
CN115573003A (en) | A kind of preparation method of 6N ultrapure nickel |