JPS6132572A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS6132572A JPS6132572A JP15321284A JP15321284A JPS6132572A JP S6132572 A JPS6132572 A JP S6132572A JP 15321284 A JP15321284 A JP 15321284A JP 15321284 A JP15321284 A JP 15321284A JP S6132572 A JPS6132572 A JP S6132572A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- layers
- ohmic electrode
- ohmic
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 239000013078 crystal Substances 0.000 claims abstract description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims abstract 3
- 229910017401 Au—Ge Inorganic materials 0.000 claims abstract 2
- 239000010410 layer Substances 0.000 abstract description 58
- 230000006866 deterioration Effects 0.000 abstract description 6
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 239000011229 interlayer Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 3
- 230000001681 protective effect Effects 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 4
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 150000002739 metals Chemical class 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/62—Electrodes ohmically coupled to a semiconductor
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はTI型電電導電層有するG a A s基板へ
りオーミック電極形成方法に係り、特に高耐熱性オーミ
ック電極を必要不可欠とするGaAsIC+GaA、5
LSII用オーミツク電極に関するものである。Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a method for forming an ohmic electrode on a GaAs substrate having a TI type electrically conductive layer, particularly for GaAs IC+GaA, 5, which requires a highly heat-resistant ohmic electrode.
The present invention relates to ohmic electrodes for LSII.
■1型導電層を有するG a A s基板へのオーミッ
ク電極としては、第1層としてへロ、第2層としてN」
またはCr、第3層としてAuより構成された3層電極
構造のものが知られている(例えば、特公昭51−32
533号公報)6一般にGaAs1C。■As an ohmic electrode for a GaAs substrate having a type 1 conductive layer, use Hero as the first layer and N as the second layer.
Alternatively, a three-layer electrode structure composed of Cr and Au as the third layer is known (for example, Japanese Patent Publication No. 51-32
No. 533) 6 Generally GaAs1C.
GaAsLS’Iを作製する場合には、F)!:′r(
電界効果トランジスタ)を構成するオーミック電極並び
にショットキー電極を形成した後に、層間絶縁膜被着工
程と配線全屈形成工程が必要である。通常、この層間絶
縁膜としてはP S G膜(リンガラス)が用いられて
いるが、P S G膜を熱分解のCVD法(Chemi
cal Vapour Deposj、tion)
により形成する際に400℃〜500℃の温度で少くと
も20分以上の高温プロセスをオーミック電極は経る。When producing GaAsLS'I, F)! :'r(
After forming the ohmic electrode and the Schottky electrode constituting the field effect transistor, an interlayer insulating film deposition process and a wiring full bending process are required. Normally, a PSG film (phosphorus glass) is used as this interlayer insulating film, but the PSG film is processed using a thermal decomposition CVD method (Chemical CVD method).
cal vapor deposj, tion)
When forming the ohmic electrode, the ohmic electrode undergoes a high-temperature process at a temperature of 400° C. to 500° C. for at least 20 minutes.
従来のAu/Nj、/AuGeのオーミック電極構造で
は、この電極表面の平坦性が著しく損なわれ、その結果
として、オーミック電極が層間絶縁膜を破って最上層の
配線金属との間で短絡不良を発生する。又、このような
高温プロセスをオーミック電極が経ることにより、オー
ミック電極の接触抵抗が著しく増大する。In the conventional Au/Nj, /AuGe ohmic electrode structure, the flatness of the electrode surface is significantly impaired, and as a result, the ohmic electrode breaks the interlayer insulation film and causes a short circuit failure with the top layer wiring metal. Occur. Furthermore, when the ohmic electrode undergoes such a high-temperature process, the contact resistance of the ohmic electrode increases significantly.
本発明の目的は、G a A s結晶基板に対する新規
なオーミック電極を提供するもので、より詳しくは40
0℃〜500℃の高温プロセスを経た場合においでも、
電極表面の平坦性が良好でかつ、接触抵抗の熱劣化が殆
んど見られない高耐熱性オーミック化(氏を提供するこ
とにある。An object of the present invention is to provide a novel ohmic electrode for a GaAs crystal substrate, and more specifically, to provide a novel ohmic electrode for a GaAs crystal substrate.
Even after going through a high-temperature process between 0℃ and 500℃,
The object of the present invention is to provide a highly heat-resistant ohmic electrode with good flatness on the electrode surface and almost no thermal deterioration of contact resistance.
従来の電極lit ifi A u / N 」/ A
u G eでは、第2層のN」により第1JOAuG
Qのボール・アップ(teal] up)を抑止できる
上限の温度としては、450℃程度゛Cあり、しかも1
時間としても、は1、E5分程度である3又、400℃
の以上の温度で長11.+4 fl旧;5処理を施こす
ど、オーミック電極の平坦性4′;よび1と触抵抗の熱
劣化が顕著に見られるよj1箒L;なる91本発明の電
極構造であるAu / N i / wlン△II に
r+の積層体ではまず、第1層のA u G e層に
;決り、t1j型M’、’j電層GaΔSへのオーミッ
ク接触を得次に第2層W層と第3層Ni層の二重により
、第1JOAuGQのBa11. upを抑止し、 最
」二層のAU層番ニーより、第3mN i層の酸化を防
止する構造としている。Conventional electrode lit ifi A u/N”/A
In u G e, the first JOAuG is
The upper limit temperature that can prevent Q's ball up (teal) is about 450 degrees Celsius, and 1
As for the time, it is about 1.E5 minutes, 3 prongs, 400℃
Long 11. After applying the +4 fl old;5 treatment, significant thermal deterioration of the flatness and contact resistance of the ohmic electrode was observed. / wl n △II In the r+ stack, first, the first layer A u G e layer; Due to the double layer of the third Ni layer, Ba11. The structure prevents oxidation of the third mNi layer from the second AU layer number knee.
以上、本発明を実施例に即して詳細に説明する。 The present invention will now be described in detail based on examples.
第1図はGaAsFETの代表的な構造を示す断面図で
ある。FIG. 1 is a sectional view showing a typical structure of a GaAsFET.
まず、半絶縁性GaAs基板1上にSlをイオンソース
として用い、 n+層2および0層3を形成する。次に
5i02膜4を表面保護膜として用い、+−12ガス雰
囲気中においてn+層2および11層3を活性化する。First, an n+ layer 2 and an 0 layer 3 are formed on a semi-insulating GaAs substrate 1 using Sl as an ion source. Next, using the 5i02 film 4 as a surface protective film, the n+ layer 2 and the 11 layer 3 are activated in a +-12 gas atmosphere.
さらに、周知の写真蝕刻法により、オーミック電極孔を
形成し、 5i02膜4を除去した後に、第1層のA
uGc(Ga4糺%)層5を500人、第2層のW層6
を100人、第3層のNj層7をtooλ、第4層のΔ
lIKグ8を1000人の膜厚で真空を破らずに、真空
蒸着法により、連続的に形成する。次に、リフト・オフ
法により、オーミック電極パターンを形成し、/100
℃、3分間の熱処理をN2ガス雰囲気中で行なうことに
より、nt WJ2に対して、オーム性接触を得る。Furthermore, after forming ohmic electrode holes by a well-known photolithography method and removing the 5i02 film 4, the first layer A
500 uGc (Ga4%) layer 5, 2nd layer W layer 6
100 people, 3rd layer Nj layer 7 tooλ, 4th layer Δ
A film of 1,000 layers thick is continuously formed by vacuum evaporation without breaking the vacuum. Next, an ohmic electrode pattern is formed by lift-off method, and /100
By performing heat treatment at .degree. C. for 3 minutes in a N2 gas atmosphere, ohmic contact is obtained with nt WJ2.
さらに、オーミック電極形成方法と同様に、リフトオフ
法により、ゲート電極9を形成する。以上のようにFE
Tを製作した後に周知の熱分解のCVD法により、43
0℃の温度で30分間の所要時間で層間絶イ僑膜として
I)SG(リンガラス)膜10を7000Δの膜厚で被
着する。PSG膜上に、コンタク1〜穴を開1コし、配
線金allを形成する。上記1′、程の中で、オーミッ
ク接触を得た工程(1)およびコンタクト六を開口した
コニ程(2)で、接8!II抵抗ρ6並びにオーミック
電極表面の凹凸度(11)について調べたところ、
(1) /l、 <+x+o−’Ω・cm2.H<10
0λ(2) ρ、 <lXl0−’ Ω ・c
m2 、II<500スであり、高温プロセスを経たに
もかかJフらず、殆んどオーミック電極としての劣化は
認められなかった。1−記実施例では、オルミック電極
としてA11(+、000λ)/Nj(100λ)/W
(100人)/AuGe((Ge8wl;%、500人
)を例に採り上げたが、各層の膜厚範囲としては、次の
範囲が良好である。Furthermore, the gate electrode 9 is formed by a lift-off method similar to the ohmic electrode forming method. As above, FE
After manufacturing T, 43
I) SG (phosphorus glass) film 10 is deposited as an interlayer insulation film to a thickness of 7000Δ for 30 minutes at a temperature of 0°C. Contacts 1 to 1 holes are made on the PSG film, and wiring metal all is formed. In step 1' above, in step (1) where ohmic contact was obtained and step (2) where contact 6 was opened, contact 8! When we investigated the II resistance ρ6 and the unevenness (11) of the ohmic electrode surface, we found that (1) /l, <+x+o−'Ω·cm2. H<10
0λ(2) ρ, <lXl0-' Ω ・c
m2, II<500s, and despite undergoing a high-temperature process, almost no deterioration as an ohmic electrode was observed. In Example 1-, the ohmic electrode is A11 (+, 000λ)/Nj (100λ)/W
(100 people)/AuGe ((Ge8wl;%, 500 people) was taken as an example, but the following ranges are good for the film thickness range of each layer.
第1 P’fJ ; AuGc(Ge : 4〜1.2
%1t%)>300λ(n+GaAs層l\のオーミッ
ク接触を得るための層)第2u ;5心<W<200λ
(AuGeのBa1lup抑止層)第3層;50λ<N
j<200λ(第2層Wとの二重膜によりAuGeのB
a11. upを抑止するための層)第4 M ; A
u> 200A (第3層N]の酸化を防止するための
層)
上記の膜厚範囲でAu/Ni/W/ΔυGe4層構造の
電極を被着し、N2ガスまたはN2ガス雰囲気中で、4
00〜450℃の温度で、3〜5分間の短時間でオーミ
ック接触を得た後、400〜460℃の温度で0.5〜
2時間N2ガス雰囲気中で、熱処理を施しても、ρ、<
2X]0Ω・cm’ 。1st P'fJ; AuGc(Ge: 4-1.2
%1t%)>300λ (layer for obtaining ohmic contact of n+GaAs layer l\) 2nd u; 5 cores<W<200λ
(AuGe Ba1lup suppression layer) 3rd layer; 50λ<N
j<200λ (Due to the double film with the second layer W, the B of AuGe
a11. layer for suppressing up) 4th M; A
u > 200A (Layer for preventing oxidation of third layer N) An electrode of Au/Ni/W/ΔυGe 4-layer structure was deposited in the above film thickness range, and 4 layers were applied in an N2 gas or N2 gas atmosphere.
After obtaining ohmic contact at a temperature of 00-450℃ for a short time of 3-5 minutes, at a temperature of 400-460℃, 0.5~
Even after heat treatment in an N2 gas atmosphere for 2 hours, ρ, <
2X]0Ω・cm'.
H< toooiの如く、殆んどオーミック電極の劣化
は見られなかった。As H<toooi, almost no deterioration of the ohmic electrode was observed.
本発明によ九ば」オーミック電極の高耐熱化が可能であ
るので、400℃以上の高温でかつこれまでより長時間
の熱処理を経ても、オーミック電極の熱劣化を防止でき
る効果がある。接触抵抗および電極表面の凹凸度に関し
ては実施例において定量的に明示した所である。本発明
は、特に、Wi細加工技術が必要で、かつ、高温プロセ
スが不可避であるGaAs1GおよびGaAsLSIの
ソース・□ドレイン電極に適用して効果がある。According to the present invention, it is possible to make the ohmic electrode highly heat resistant, so that it is effective in preventing thermal deterioration of the ohmic electrode even after heat treatment at a high temperature of 400° C. or higher and for a longer time than before. The contact resistance and the unevenness of the electrode surface have been quantitatively demonstrated in Examples. The present invention is particularly effective when applied to source/drain electrodes of GaAs1G and GaAsLSI, which require Wi fine processing technology and require high-temperature processes.
図面の資il 、Q(な説明
第1し1はGr+Δ5■Cに適用するFET部分の構造
を示す断面図である。Figures 1 and 1 of the drawings are cross-sectional views showing the structure of the FET portion applied to Gr+Δ5■C.
■・・・半絶縁性GaAs基板、2・・・n層層、3・
・・n層、4・・・S i O2膜、5・・・A u
G e層、6・・・W層。■...Semi-insulating GaAs substrate, 2...n layer, 3...
...n layer, 4...S i O2 film, 5...A u
G e layer, 6...W layer.
Claims (1)
オーミック電極として、Au−Ge層、W層、Ni層お
よびAu層を順次積層した積層体を用いたことを特徴と
する半導体装置。A semiconductor device characterized in that a laminate in which an Au-Ge layer, a W layer, a Ni layer, and an Au layer are sequentially laminated is used as an ohmic electrode to an n-type conductive layer provided on a gallium-arsenide crystal substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15321284A JPS6132572A (en) | 1984-07-25 | 1984-07-25 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15321284A JPS6132572A (en) | 1984-07-25 | 1984-07-25 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6132572A true JPS6132572A (en) | 1986-02-15 |
JPH0231507B2 JPH0231507B2 (en) | 1990-07-13 |
Family
ID=15557495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15321284A Granted JPS6132572A (en) | 1984-07-25 | 1984-07-25 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6132572A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01186671A (en) * | 1988-01-14 | 1989-07-26 | Toshiba Corp | Compound semiconductor device |
EP0559182A2 (en) * | 1992-03-03 | 1993-09-08 | Sumitomo Electric Industries, Limited | Semiconductor device |
US5658514A (en) * | 1993-03-04 | 1997-08-19 | Idemitsu Petrochemical Co., Ltd. | Method for producing thermoplastic resin sheet or film |
US5707478A (en) * | 1993-02-25 | 1998-01-13 | Idemitsu Petrochemical Co., Ltd. | Method for producing thermoplastic resin sheet or film |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101662595B1 (en) * | 2009-11-03 | 2016-10-06 | 삼성전자주식회사 | User terminal, route guide system and route guide method thereof |
-
1984
- 1984-07-25 JP JP15321284A patent/JPS6132572A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01186671A (en) * | 1988-01-14 | 1989-07-26 | Toshiba Corp | Compound semiconductor device |
EP0559182A2 (en) * | 1992-03-03 | 1993-09-08 | Sumitomo Electric Industries, Limited | Semiconductor device |
EP0559182A3 (en) * | 1992-03-03 | 1995-05-10 | Sumitomo Electric Industries | |
US5707478A (en) * | 1993-02-25 | 1998-01-13 | Idemitsu Petrochemical Co., Ltd. | Method for producing thermoplastic resin sheet or film |
US5658514A (en) * | 1993-03-04 | 1997-08-19 | Idemitsu Petrochemical Co., Ltd. | Method for producing thermoplastic resin sheet or film |
Also Published As
Publication number | Publication date |
---|---|
JPH0231507B2 (en) | 1990-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0463548B2 (en) | ||
TWI242289B (en) | Fabrication method of thin film transistor | |
JPS6132572A (en) | Semiconductor device | |
JPH04188770A (en) | Thin-film transistor | |
JPH0464226A (en) | Electronic device having metallic fluoride film | |
JPS6257255A (en) | Manufacture of compound semiconductor device | |
JPS60193362A (en) | Semiconductor device | |
JPH02122653A (en) | Layer film for semiconductor element | |
KR0156216B1 (en) | Fabricating method of thin film transistor | |
JPS6160588B2 (en) | ||
JPS6350042A (en) | Multilayer interconnection and electrode film structure | |
JPH10125676A (en) | Manufacturing method of aluminum wiring | |
JPS6352473A (en) | Compound semiconductor device | |
JPH0377661B2 (en) | ||
JPH03159247A (en) | Manufacture of matrix of thin film transistor | |
JPS60126825A (en) | Manufacture of semiconductor device | |
JPS59161072A (en) | Semiconductor device | |
KR100565840B1 (en) | Semiconductor device and manufacturing method thereof | |
JPS583252A (en) | Semiconductor integrated circuit device | |
JPH03154332A (en) | Manufacture of semiconductor device | |
JPH1074706A (en) | Semiconductor device and its manufacture | |
JPH03118521A (en) | Method for manufacturing thin film transistor matrix | |
JPS6163027A (en) | Manufacture of semiconductor device | |
JPS5723242A (en) | Manufacturing of semiconductor device | |
JPS63240074A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |