JPS6131128A - ultrasonic probe - Google Patents
ultrasonic probeInfo
- Publication number
- JPS6131128A JPS6131128A JP15293084A JP15293084A JPS6131128A JP S6131128 A JPS6131128 A JP S6131128A JP 15293084 A JP15293084 A JP 15293084A JP 15293084 A JP15293084 A JP 15293084A JP S6131128 A JPS6131128 A JP S6131128A
- Authority
- JP
- Japan
- Prior art keywords
- columnar
- piezoelectric
- columnar piezoelectric
- composite
- bodies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の利用分野〕
本発明は、超音波診断装置などに用いる超音波探触子に
関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultrasound probe used in an ultrasound diagnostic apparatus or the like.
従来、超音波探触子における圧電振動子用材料としては
ジルコン・チタン酸鉛(P Z T)系セラミクスが多
く使用されている。しかし、これらの圧電セラミクスは
(i)音響インピーダンスが人体に比較して著しく大き
いため診断用としては音響整合層などに工夫を要する、
(ii)誘電率が著しく大きいため圧電電圧定数gが小
さく超音波を受けた場合に高い電圧を得ることができな
い、(川)人体の形状に適合する曲率をもたせることが
困難、などの欠点をもっている。これらの問題点を解決
するために、有機物と圧電体を複合させた、いわゆる複
合圧電材料が提案されている。その例として、米国のN
awnham らは第1図に示したように有機物11の
中に柱状のPZT12を埋め込む複合化が有効であるこ
とを報告している(マテリアル・リサーチ・プリテン誌
第13巻525頁〜536頁(1978))。実際にP
ZTとシリコンゴム、エポキシなどの有機物との複合化
で、音響インピーダンスが小さく、圧電電圧定数gが大
きな材料が得られている。Conventionally, zircon-lead titanate (PZT) ceramics have been widely used as materials for piezoelectric vibrators in ultrasonic probes. However, these piezoelectric ceramics (i) have significantly higher acoustic impedance than the human body, so for diagnostic purposes, it is necessary to devise an acoustic matching layer, etc.;
(ii) Because the dielectric constant is extremely large, the piezoelectric voltage constant g is small, making it impossible to obtain a high voltage when exposed to ultrasonic waves.(Ri) It is difficult to create a curvature that matches the shape of the human body. There is. In order to solve these problems, so-called composite piezoelectric materials, which are composites of organic matter and piezoelectric materials, have been proposed. As an example, the US N.
Awnham et al. reported that a composite structure in which columnar PZT 12 is embedded in an organic material 11 as shown in Figure 1 is effective (Materials Research Press Vol. 13, pp. 525-536 (1978) )). Actually P
By combining ZT with organic substances such as silicone rubber and epoxy, materials with low acoustic impedance and high piezoelectric voltage constant g have been obtained.
しかし、これらの複合圧電材料を超音波探触子に用いた
場合、音響ノイズに問題点があることが発明者らの実験
により明らかになった。第1図に示したような複合圧電
材料を用いて超音波を発生。However, experiments by the inventors have revealed that when these composite piezoelectric materials are used in ultrasonic probes, there is a problem with acoustic noise. Ultrasonic waves are generated using a composite piezoelectric material as shown in Figure 1.
検出するとき有機物と柱状圧電体の部分が均一に変位す
ることが望ましい、しかし、一般に有機物は柱状圧電体
に比較して著しく軟かいため、模式的に第2図に示した
ように有機物の部分21に比較して柱状圧電体部22が
より大きく変位することが実際の結果明らかになった。When detecting, it is desirable that the organic matter and the columnar piezoelectric body are displaced uniformly. However, since organic matter is generally much softer than the columnar piezoelectric body, the organic matter part is displaced as shown schematically in Figure 2. Actual results have revealed that the columnar piezoelectric body portion 22 is displaced more than the columnar piezoelectric body portion 21.
このため、第1図に示したように柱状圧電体が周期的に
配列されていると、超音波を発生させるときにいわゆる
グレーティングローブと呼ばれる音響ノイズが発生する
。これは、主要超音波以外に柱状圧電体の配列のピッチ
によって決まる方向に放射される不用な超音波で超音波
画像の劣化の原因となる。For this reason, when the columnar piezoelectric bodies are arranged periodically as shown in FIG. 1, acoustic noise called a so-called grating lobe is generated when ultrasonic waves are generated. This causes deterioration of the ultrasonic image due to unnecessary ultrasonic waves emitted in a direction determined by the pitch of the array of columnar piezoelectric bodies in addition to the main ultrasonic waves.
そこで本発明の目的は、音響ノイズレベルの充分低い、
複合圧電体を用いた超音波探触子を提供することにある
。Therefore, the object of the present invention is to provide a system with sufficiently low acoustic noise level.
An object of the present invention is to provide an ultrasonic probe using a composite piezoelectric material.
〔発明の概要〕
第1図に示したような複合圧電体を用いた超音波探触子
の感度は、柱状圧電体のサイズおよび柱状圧電体間の距
離に依存し1通常これらは感度が最大になるように設定
される。しカル、発明者ら′ψ複合圧電体の構造と感度
に関する系統的な研究の結果51枚の複合圧電体内で柱
状圧電体のサイズおよび距離を変化させても、その平均
値がそれぞれの最適値にほぼ一致していれば感度はほと
んど低下しないことが明らかになった。本発明は、この
ような実験結果に基づくもので、柱状圧電体のサイズと
柱状圧電体間の距離の少なくとも一方を配列方向で変化
させ柱状圧電体の配列に非周期性をもたせることにより
、感度を低下させることなく音響ノイズレベルの充分低
い超音波探触子が実現できた。以下本発明を実施例を参
照しながら詳しく説明する。[Summary of the Invention] The sensitivity of an ultrasonic probe using a composite piezoelectric material as shown in Fig. 1 depends on the size of the columnar piezoelectric materials and the distance between the columnar piezoelectric materials1. is set to be. As a result of systematic research on the structure and sensitivity of composite piezoelectric materials, the average value of the 51 composite piezoelectric materials is determined to be the optimum value even if the size and distance of the columnar piezoelectric materials are changed. It has become clear that the sensitivity will hardly decrease if the values are approximately equal to each other. The present invention is based on such experimental results, and the sensitivity can be improved by changing at least one of the size of the columnar piezoelectric bodies and the distance between the columnar piezoelectric bodies in the arrangement direction to make the columnar piezoelectric bodies array non-periodic. We were able to create an ultrasonic probe with sufficiently low acoustic noise levels without reducing the noise level. The present invention will be described in detail below with reference to Examples.
厚み方向に一様に分極された10■角、厚さが0.4閣
のPZTセラミック板をフェライト基板上にエレクトロ
ンワックスで接着した。これらのセラミック板を、厚さ
0.2閣の刃を用いてピッチを0.3〜0.501の間
で変化させながら第3図に示したように網の目状に切断
した。切断により生じた溝にシリコンゴムを充填、固化
して得られた板状複合圧電体をエレクトロンワックスを
溶かしてフェライト基板からはく離した。このようにし
て柱状圧電体のサイズおよび柱状圧電体間の距離を変化
させた複合圧電体を作成した。これらの複合圧電体にお
ける柱状圧電体のサイズと柱状圧電体間の距離の平均値
は、0.2nmmの刃で0.4Iピツチで切断して形成
したものとほぼ一致している。A PZT ceramic plate of 10 cm square and 0.4 mm thick, which was polarized uniformly in the thickness direction, was bonded to a ferrite substrate with electron wax. These ceramic plates were cut into a mesh shape as shown in FIG. 3 using a blade having a thickness of 0.2 mm and changing the pitch between 0.3 and 0.501. The grooves created by cutting were filled with silicone rubber, and the resulting plate-shaped composite piezoelectric material was peeled off from the ferrite substrate by melting the electron wax. In this way, a composite piezoelectric body was created in which the size of the columnar piezoelectric bodies and the distance between the columnar piezoelectric bodies were varied. The average values of the size of the columnar piezoelectric bodies and the distance between the columnar piezoelectric bodies in these composite piezoelectric bodies are almost the same as those formed by cutting with a 0.2 nm blade at a pitch of 0.4I.
これらの複合圧電体の両面に電極としてクロムと金を蒸
着し電界を印加することにより、水中に超音波を放射さ
せて超音波ビームパターンの測定を行なった。その結果
、グレーティングローブの影響を含めた音響ノイズレベ
ルは中心の主ビームに対し送受で一50dB以下になっ
ていることが明らかになった(0.4nwa等ピッチで
切断して作成した複合圧電体を用いた探触子では音響ノ
イズレベルが一50dBを上回っており実用上問題があ
った)、また、主ビームの感度も0.4m等ピッチで切
断したものとほとんど一致していた。By depositing chromium and gold as electrodes on both sides of these composite piezoelectric bodies and applying an electric field, ultrasonic waves were emitted into the water and the ultrasonic beam patterns were measured. As a result, it was revealed that the acoustic noise level, including the influence of the grating lobes, was less than -50 dB for transmitting and receiving with respect to the central main beam. The acoustic noise level exceeded 150 dB, which was a practical problem), and the sensitivity of the main beam was almost the same as that of a probe cut at an equal pitch of 0.4 m.
本実施例では、柱状圧電体のサイズと柱間距離を同時に
変化させ非周期性をもたせているが5発明の効果が柱状
圧電体の配列の非周期性に起因していることを考えると
、例えば柱状圧電体のサイズは一定にして柱間距離のみ
を変化させても同様な効果が得られることは自明である
。In this example, the size of the columnar piezoelectric bodies and the distance between the columns are changed simultaneously to give them non-periodic properties. Considering that the effect of the invention is due to the non-periodic nature of the arrangement of the columnar piezoelectric bodies, For example, it is obvious that the same effect can be obtained even if the size of the columnar piezoelectric bodies is kept constant and only the distance between the columns is changed.
以上説明したように、板状有機物の中に多数の柱状圧電
体が板面に垂直に埋め込まれた構造の複合圧電体におい
て、柱状圧電体の大きさと柱状圧電体間の距離の少なく
とも一方を変化させることにより柱状圧電体の配列に非
周期性をもたせた複合圧電体を用いることにより、高感
度で音響ノイズレベルの低い超音波探触子を実現できる
ことは明らかである。As explained above, in a composite piezoelectric material having a structure in which a large number of columnar piezoelectric bodies are embedded perpendicularly to the plate surface in a plate-like organic material, at least one of the size of the columnar piezoelectric bodies and the distance between the columnar piezoelectric bodies is changed. It is clear that an ultrasonic probe with high sensitivity and low acoustic noise level can be realized by using a composite piezoelectric material in which the arrangement of columnar piezoelectric materials is made non-periodic.
第1図は複合圧電体の概念を示す図、第2図は複合圧電
体内の変位分布を示す横断面図、第3図は本発明の実施
例における複合圧電体の製造法を示す図である。
31・・・フェライト基板、32・・柱状p z ’r
セラミツクス。FIG. 1 is a diagram showing the concept of a composite piezoelectric body, FIG. 2 is a cross-sectional view showing the displacement distribution within the composite piezoelectric body, and FIG. 3 is a diagram showing a method for manufacturing the composite piezoelectric body in an embodiment of the present invention. . 31... Ferrite substrate, 32... Columnar p z 'r
Ceramics.
Claims (1)
込まれた構造の複合圧電体において、柱状圧電体の大き
さと柱状圧電体間の距離の少なくとも一方を前記柱状圧
電体の配列方向にて変化させることにより柱状圧電体の
配列に非周期性をもたせた複合圧電体を用いることを特
徴とする超音波探触子。In a composite piezoelectric body having a structure in which a large number of columnar piezoelectric bodies are embedded perpendicularly to the plate surface in a plate-like organic material, at least one of the size of the columnar piezoelectric bodies and the distance between the columnar piezoelectric bodies is defined as the arrangement direction of the columnar piezoelectric bodies. An ultrasonic probe characterized in that it uses a composite piezoelectric material in which the arrangement of columnar piezoelectric materials is made non-periodic by changing the .
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15293084A JPS6131128A (en) | 1984-07-25 | 1984-07-25 | ultrasonic probe |
US06/758,029 US4658176A (en) | 1984-07-25 | 1985-07-23 | Ultrasonic transducer using piezoelectric composite |
DE19853526488 DE3526488A1 (en) | 1984-07-25 | 1985-07-24 | ULTRASONIC CONVERTER WITH PIEZOELECTRIC COMPOSITE MATERIAL |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15293084A JPS6131128A (en) | 1984-07-25 | 1984-07-25 | ultrasonic probe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6131128A true JPS6131128A (en) | 1986-02-13 |
Family
ID=15551249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15293084A Pending JPS6131128A (en) | 1984-07-25 | 1984-07-25 | ultrasonic probe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6131128A (en) |
-
1984
- 1984-07-25 JP JP15293084A patent/JPS6131128A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4658176A (en) | Ultrasonic transducer using piezoelectric composite | |
US5164920A (en) | Composite ultrasound transducer and method for manufacturing a structured component therefor of piezoelectric ceramic | |
EP0379229B1 (en) | Ultrasonic probe | |
JP2651498B2 (en) | Double-sided phased array transducer | |
US6467140B2 (en) | Method of making composite piezoelectric transducer arrays | |
US4326418A (en) | Acoustic impedance matching device | |
US5392259A (en) | Micro-grooves for the design of wideband clinical ultrasonic transducers | |
US5592730A (en) | Method for fabricating a Z-axis conductive backing layer for acoustic transducers using etched leadframes | |
JPH0521400B2 (en) | ||
US5371717A (en) | Microgrooves for apodization and focussing of wideband clinical ultrasonic transducers | |
US5511550A (en) | Ultrasonic transducer array with apodized elevation focus | |
EP0045989B1 (en) | Acoustic impedance matching device | |
US6984922B1 (en) | Composite piezoelectric transducer and method of fabricating the same | |
JPH0126295B2 (en) | ||
US4910838A (en) | Method for providing a desired sound field as well as an ultrasonic transducer for carrying out the method | |
EP1050079B1 (en) | High-sensitivity piezocomposite material and ultrasonic transducer made therefrom | |
JPS6131128A (en) | ultrasonic probe | |
JP2001025094A (en) | 1-3 composite piezoelectric body | |
JPS6153562A (en) | ultrasonic probe | |
JPH04203994A (en) | Ultrasonic probe | |
JPS59178378A (en) | Ultrasonic probe | |
JP3101461B2 (en) | Ultrasonic probe | |
JPS6097800A (en) | ultrasonic probe | |
JP3171715B2 (en) | Array type ultrasonic probe for high frequency | |
JPS60247159A (en) | Ultrasonic probe |