[go: up one dir, main page]

JPS6097800A - ultrasonic probe - Google Patents

ultrasonic probe

Info

Publication number
JPS6097800A
JPS6097800A JP58204837A JP20483783A JPS6097800A JP S6097800 A JPS6097800 A JP S6097800A JP 58204837 A JP58204837 A JP 58204837A JP 20483783 A JP20483783 A JP 20483783A JP S6097800 A JPS6097800 A JP S6097800A
Authority
JP
Japan
Prior art keywords
piezoelectric
composite
columnar
ultrasonic probe
pzt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58204837A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takeuchi
裕之 竹内
Chitose Nakatani
中谷 千歳
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Ltd
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Medical Corp filed Critical Hitachi Ltd
Priority to JP58204837A priority Critical patent/JPS6097800A/en
Priority to DE19843437862 priority patent/DE3437862A1/en
Priority to US06/661,928 priority patent/US4683396A/en
Publication of JPS6097800A publication Critical patent/JPS6097800A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、超音波診断装置などに用いる超音波探触子に
関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultrasonic probe used in an ultrasonic diagnostic apparatus or the like.

〔発明の背景〕[Background of the invention]

従来、超音波探触子における圧゛亀振動子用材料として
はジルコン・チタン酸鉛(PZT)系セラミクスが多く
使用されている。しかし、これらの圧電セラミクスは中
音響インピーダンスが人体に比較して著しく大きいため
診断用としては音響整A一層% 、L’ffTキを専す
入−C11)鍾側1工芸1−(す詣いため圧電電圧定数
gが小さく超音波を受けた場合に高い電圧を得ることが
できない、(ilD人体の形状に適合する曲率をもたせ
ることが困難、などの欠点をもっている。これらの問題
点を解決するために、有機物と圧電体を複合させた、い
わゆる複合圧電材料が提案されている。その例として、
米国のNewnham らは第1図に示したように有機
物11の中に柱状のPZT12を埋め込む複合化が有効
であることを報告している(マテリアル・リサーチ・プ
リテン誌第13巻525頁〜536頁(1978) )
。実際に、PZTとシリコンゴム。
Conventionally, zircon-lead titanate (PZT)-based ceramics have been widely used as a material for pressure transducers in ultrasonic probes. However, these piezoelectric ceramics have extremely large medium acoustic impedance compared to the human body, so they are suitable for diagnostic purposes. The piezoelectric voltage constant g is small, making it impossible to obtain a high voltage when subjected to ultrasonic waves, and it is difficult to create a curvature that conforms to the shape of the human body.In order to solve these problems, In recent years, so-called composite piezoelectric materials have been proposed, which are composites of organic matter and piezoelectric materials.For example,
Newham et al. of the United States have reported that a composite structure in which columnar PZT12 is embedded in an organic material 11 is effective as shown in Figure 1 (Materials Research Press Vol. 13, pp. 525-536). (1978) )
. Actually, PZT and silicone rubber.

エポキシなどの有機物との複合化で、音響インピーダン
スが小石(、圧電電圧定数gが大きな材料が得られてい
る。
By combining it with organic substances such as epoxy, materials with a high acoustic impedance and a large piezoelectric voltage constant g have been obtained.

このような複合圧電体においては、その圧電特性は有機
物中に占める圧α体の体積分率によって大きく変化する
。この点については、上記文献に詳しく記載されている
。しかし、圧電体の体積分率が同じであっても、柱状圧
電体の大きさ、配置の仕方によっても圧電特性が変化す
ることが予想される。
In such a composite piezoelectric material, its piezoelectric properties vary greatly depending on the volume fraction of the pressure α body in the organic matter. This point is described in detail in the above literature. However, even if the volume fraction of the piezoelectric bodies is the same, it is expected that the piezoelectric characteristics will change depending on the size and arrangement of the columnar piezoelectric bodies.

〔発明の目的〕[Purpose of the invention]

本願発明の目的は、送波、受波総合感度がPZTセラミ
ック板を用いた従来のものを上回る複合圧電体を提供す
ることにある。
An object of the present invention is to provide a composite piezoelectric material whose overall sensitivity for transmitting and receiving waves exceeds that of a conventional piezoelectric material using a PZT ceramic plate.

〔発明の概要〕[Summary of the invention]

発明者らの複合圧電体の構造に関し系統的な研究の結果
、複合圧成体を厚み縦振動を利用する超音波探触子に用
いる場合、柱状圧電体の体積分率が0,15〜0,75
0間にろりかつ柱状圧電体の高さが柱状圧電体間の距離
よシ太きいときに、送波。
As a result of systematic research on the structure of composite piezoelectric materials by the inventors, it was found that when a composite piezoelectric material is used in an ultrasonic probe that utilizes thickness longitudinal vibration, the volume fraction of the columnar piezoelectric material is 0.15 to 0. 75
Waves are transmitted when the width is between 0 and the height of the columnar piezoelectric bodies is greater than the distance between the columnar piezoelectric bodies.

受波総合感度がPZTセラミック板を用いた従来のもの
を上回ることが明らかになった。本発明はこのような発
見に基づくものである。以下本発明を実施1flJを参
照しながら詳しく説明する。
It has been revealed that the overall sensitivity of receiving waves exceeds that of the conventional one using a PZT ceramic plate. The present invention is based on such a discovery. The present invention will be described in detail below with reference to the implementation example 1flJ.

〔発明の実施例〕[Embodiments of the invention]

厚み方向に一様に分俟された10m11角、厚さhが0
.3flのPZTセラミック板をフェライト基板上にエ
レクトロンワックスで接着した。これらのセラミック板
を、厚−gaの刃を用いて2aピツチで第2図に示した
ように網の目状に切断した。ここでaを、0.15. 
0.2.0.3.0.4mmと変化させ4棟類の試料を
作成した。切断により生じた溝にシリコンゴムを充填、
乾燥して得られた板状複合圧電体をエレクトロンワック
スをtgかしてフェライト基板からはく離した。このよ
うにして、PZTセラミックの体積分率が25%と一定
で、PZTセラミック柱のサイズおよび柱間距離の異な
る一連のPZT−シリコンゴム複合圧電体を得た。これ
らの試料について、両面にクロム−金′醒極を蒸N後、
水中で超1を波パルスの送受実験ケ行なった(第3図参
照)。いずれの複合圧成体においても厚み縦振動の共振
周波y1.は約4.5MH2であった。第4図に、複合
圧電体におけるPZTセラミック柱間の距離と、送受波
感度の関係を示す。
10m 11 squares uniformly divided in the thickness direction, thickness h is 0
.. A 3 fl PZT ceramic plate was bonded onto the ferrite substrate with electron wax. These ceramic plates were cut into a mesh shape as shown in FIG. 2 with a 2a pitch using a -ga thick blade. Here, a is 0.15.
Four types of samples were created by changing the thickness to 0.2, 0.3, and 0.4 mm. Fill the groove created by cutting with silicone rubber,
The plate-shaped composite piezoelectric material obtained by drying was peeled off from the ferrite substrate by applying electron wax at tg. In this way, a series of PZT-silicon rubber composite piezoelectric bodies were obtained in which the volume fraction of the PZT ceramic was constant at 25%, and the sizes of the PZT ceramic pillars and the distance between the pillars were different. After evaporating chromium-gold' electrodes on both sides of these samples,
We conducted an experiment to transmit and receive ultra-high wave pulses underwater (see Figure 3). In any composite compacted body, the resonance frequency of thickness longitudinal vibration y1. was approximately 4.5MH2. FIG. 4 shows the relationship between the distance between the PZT ceramic columns in the composite piezoelectric body and the wave transmission/reception sensitivity.

第4図には比較のために、同一ロ径、同−周波数のPZ
Tセラミックを用いた従来の超11′波探触子に関する
デーク奮示した(破#F、 )。図から明りかなように
、柱間距離dがセラミックの厚ghより小さい場合には
送受説感度7ゲ従来の、遣廿波徐触子より高いが、hを
越えると急激に低下することが解る。これは、dくhの
場合には充填された有機物が受けた圧力を有効に圧電体
に伝えて両者とも厚み方向にほぼ一体となって振動する
のに対し、d)hの場合には圧力は有効に伝えられず有
機物と圧電体が一体として振動しなくなるためと考えら
れる。
For comparison, Fig. 4 shows a PZ with the same radius and the same frequency.
We have demonstrated our knowledge of the conventional ultra-11' wave probe using T ceramic (Break #F, ). As is clear from the figure, when the inter-column distance d is smaller than the ceramic thickness gh, the sending/receiving sensitivity is higher than the conventional sending/receiving toucher, but it decreases rapidly when it exceeds h. . This is because in the case of d)h, the pressure applied to the filled organic matter is effectively transmitted to the piezoelectric material, and both vibrate almost as one in the thickness direction, whereas in the case of d)h, the pressure It is thought that this is because the organic matter and piezoelectric material do not vibrate as one because they are not transmitted effectively.

次に、切断する刃の厚みおよびピッチを変化させてd(
hの条件を保ちなからPZTセラミックの体積分率を0
.1〜0.8まで変化させた複合圧電体を作成した。両
面にクロム−金電極を蒸着後、第3図に示した構成で超
斤波パルスの送受実験を行なった。第5図に、PZTセ
ラミックの体積分率と送受波感度の関係を示す。第5図
には比較のために、同一口径のPZTセラミック板を用
いた従来の超音波探触子に関するデータを示した(破線
)。図から明らかなように、PZTセラミックの体積分
率が0,15と0.75の間では送受波緒合感匿がPZ
Tセラミック板を用いた従来の超音波探触子よシ大きい
。したがって、d(hの条件を満たしていても、PZT
セラミックの体積分率が0.15よシ小さい場合や0.
75より大きい場合には必ずしも高感度にならない。
Next, change the thickness and pitch of the cutting blade to d(
While maintaining the condition h, the volume fraction of PZT ceramic was set to 0.
.. Composite piezoelectric bodies were created in which the values were varied from 1 to 0.8. After chromium-gold electrodes were deposited on both sides, an experiment of transmitting and receiving ultrasonic wave pulses was conducted using the configuration shown in FIG. FIG. 5 shows the relationship between the volume fraction of PZT ceramic and the wave transmitting/receiving sensitivity. For comparison, FIG. 5 shows data regarding a conventional ultrasonic probe using a PZT ceramic plate of the same diameter (dashed line). As is clear from the figure, when the volume fraction of PZT ceramic is between 0.15 and 0.75, the transmission and reception wave combination is
It is larger than conventional ultrasonic probes using T ceramic plates. Therefore, even if the condition of d(h is satisfied, PZT
When the volume fraction of ceramic is smaller than 0.15 or 0.
When it is larger than 75, high sensitivity is not necessarily achieved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、板状有機物の中に多数の柱状圧電
体が板面に垂直に埋め込筐れた構造の複合圧電体におい
て、柱状圧電体の体積分率が0.15〜0.75の間に
あシ、かつ柱状圧電体の簡さが柱状圧電体間の距離よシ
大きい複合圧成体を用いることによシ、高感展の超音波
探触子が得られることは明らかである。
As explained above, in a composite piezoelectric body having a structure in which a large number of columnar piezoelectric bodies are embedded perpendicularly to the plate surface in a plate-like organic material, the volume fraction of the columnar piezoelectric bodies is 0.15 to 0.75. It is clear that a highly sensitive ultrasonic probe can be obtained by using a composite compacted body with a reed between the two and the simplicity of the columnar piezoelectric bodies is greater than the distance between the columnar piezoelectric bodies. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は複合圧電体の概念を示す図、第2図は本発明の
実施例における複合圧電体の製造法を示す図、第3図は
複合圧電体を用いた超音波探触子の送受波感涙の測定法
を示す図、第4図は超音波探触子の送受波感度と用いた
複合圧電体の構造との関係を示す図、第5図は超音波探
触子の送受波感度と用いた複合圧電体におけるPZTセ
ラミックの体積分率との関係を示す図でらる。 22・・・PZTセラミック柱、d・・・PZTセラミ
ック柱間の距離、h・・・PZTセラミック体の高さ、
第 1 図 第 2 図 第 4−2 ■1 盲1 第 5 図
Fig. 1 is a diagram showing the concept of a composite piezoelectric material, Fig. 2 is a diagram showing a manufacturing method of a composite piezoelectric material in an embodiment of the present invention, and Fig. 3 is a diagram showing the transmission and reception of an ultrasonic probe using a composite piezoelectric material. Figure 4 shows the relationship between the wave sensitivity of the ultrasound probe and the structure of the composite piezoelectric material used. Figure 5 shows the wave sensitivity of the ultrasound probe. This is a diagram showing the relationship between the volume fraction of PZT ceramic and the composite piezoelectric body used. 22...PZT ceramic column, d...distance between PZT ceramic columns, h...height of PZT ceramic body,
Figure 1 Figure 2 Figure 4-2 ■1 Blind 1 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 板状有機物の中に多数の柱状圧電体が板面に垂直に埋め
込まれ′tc4?1造の複合圧電体において、柱状圧電
体の体積分率が0.15〜0.75の間に6Dかつ柱状
圧電体の高さが柱状圧電体間の距離よシ大きい複合圧電
体を用いることを特徴とする超音波探触子。
A large number of columnar piezoelectric bodies are embedded perpendicularly to the plate surface in a plate-like organic material, and in a composite piezoelectric body of 4-1 structure, the volume fraction of the columnar piezoelectric bodies is between 0.15 and 0.75. An ultrasonic probe characterized by using a composite piezoelectric body in which the height of the columnar piezoelectric bodies is greater than the distance between the columnar piezoelectric bodies.
JP58204837A 1983-10-17 1983-11-02 ultrasonic probe Pending JPS6097800A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58204837A JPS6097800A (en) 1983-11-02 1983-11-02 ultrasonic probe
DE19843437862 DE3437862A1 (en) 1983-10-17 1984-10-16 ULTRASONIC TRANSDUCER AND METHOD FOR THE PRODUCTION THEREOF
US06/661,928 US4683396A (en) 1983-10-17 1984-10-17 Composite ultrasonic transducers and methods for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58204837A JPS6097800A (en) 1983-11-02 1983-11-02 ultrasonic probe

Publications (1)

Publication Number Publication Date
JPS6097800A true JPS6097800A (en) 1985-05-31

Family

ID=16497205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58204837A Pending JPS6097800A (en) 1983-10-17 1983-11-02 ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS6097800A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288069B2 (en) 2000-02-07 2007-10-30 Kabushiki Kaisha Toshiba Ultrasonic probe and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353393A (en) * 1976-10-25 1978-05-15 Matsushita Electric Ind Co Ltd Ultrasonic probe
JPS5726986A (en) * 1980-06-06 1982-02-13 Siemens Ag Ultrasonic wave converter and method of producing same
JPS5822046A (en) * 1981-08-03 1983-02-09 株式会社日立メディコ Ultrasonic probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5353393A (en) * 1976-10-25 1978-05-15 Matsushita Electric Ind Co Ltd Ultrasonic probe
JPS5726986A (en) * 1980-06-06 1982-02-13 Siemens Ag Ultrasonic wave converter and method of producing same
JPS5822046A (en) * 1981-08-03 1983-02-09 株式会社日立メディコ Ultrasonic probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7288069B2 (en) 2000-02-07 2007-10-30 Kabushiki Kaisha Toshiba Ultrasonic probe and method of manufacturing the same

Similar Documents

Publication Publication Date Title
Gallego-Juarez Piezoelectric ceramics and ultrasonic transducers
CA1151285A (en) Acoustic transducer with a quarter wavelength adaptation layer as a receiver
JPH0239251B2 (en)
JPH0521400B2 (en)
JPH0553360B2 (en)
JPH0257099A (en) Complex piezoelectric vibrator
US4348904A (en) Acoustic impedance matching device
Smith et al. Properties of composite piezoelectric materials for ultrasonic transducers
JPS605133A (en) Ultrasonic converter improved in vibration mode
Shrout et al. Extruded PZT/polymer composites for electromechanical transducer applications
JPS5822046A (en) Ultrasonic probe
US6124664A (en) Transducer backing material
JP4222467B2 (en) Composite piezoelectric material and manufacturing method thereof
JPS6097800A (en) ultrasonic probe
JPS5821883A (en) Manufacture of composite piezoelectric material
JPS61253873A (en) Piezoelectric ceramic material
JPS5929816B2 (en) ultrasonic probe
Li et al. Application of PMNPT single crystal in a 3.2 MHz phased-array ultrasonic medical imaging transducer
JPS6153562A (en) ultrasonic probe
JPS6031437B2 (en) Annular probe and its manufacturing method
JPS60247159A (en) Ultrasonic probe
RU2686492C1 (en) Sensitive element from connectivity piezocomposite 1-3 and method of its production
JPH0479263B2 (en)
JPS6131128A (en) ultrasonic probe
JPS62261300A (en) Compound piezoelectric material for ultrasonic probe