[go: up one dir, main page]

JPS61296805A - Operational amplifier - Google Patents

Operational amplifier

Info

Publication number
JPS61296805A
JPS61296805A JP13882685A JP13882685A JPS61296805A JP S61296805 A JPS61296805 A JP S61296805A JP 13882685 A JP13882685 A JP 13882685A JP 13882685 A JP13882685 A JP 13882685A JP S61296805 A JPS61296805 A JP S61296805A
Authority
JP
Japan
Prior art keywords
misfet
drain
whose
constant voltage
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13882685A
Other languages
Japanese (ja)
Inventor
Michio Yotsuyanagi
四柳 道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13882685A priority Critical patent/JPS61296805A/en
Publication of JPS61296805A publication Critical patent/JPS61296805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To quicken the settling and to attain high speed operation even when the gain is in either of two different states by providing the 1st switch setting the 1st capacitor to plural different values and the 2nd switch setting the 2nd capacitor to plural different values. CONSTITUTION:When the 1st frequency compensating capacitor Cc1 is C1+C2 when the switch S1 is closed depending on the operating state of an operational amplifier, and the value Cc1 is C2. Similarly, the 2nd frequency compensation capacitor Cc2 is C3+C4 when the switch S2 is closed and is C3 when the switch S2 is opened. The switches S1, S2 are closed with the state of gain unity to increase the value Cc thereby bringing the phase margin to a proper value and quickening the settling. With the gain 8, the switches S1, S2 are opened to decrease the value Cc, it is suppressed that the phase margin is excessive while the value Cc is kept constant, the phase margin is kept to a proper value to quicken the settling.

Description

【発明の詳細な説明】 (産業上の利用分野) 不発明は、MISFETを用いた演算増幅器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an operational amplifier using MISFET.

(従来技術とその問題点) 従来の演算増幅器では、第4図に回路図で示すように、
周波数補償回路に用いられる容量は一定値しかとれない
ものであった。第4図の演算増幅器において第1の周波
数補償回路中の容量Cc 1は演算増幅器の周波数特性
において位相のまわりをおさえ、位相余裕を大きくして
発振を防ぐ役割がある。また、容量Cc 2を含んだ第
2の周波数補償回路は高次の極やゼロ点の位置を調整し
て良好な周波数特性にする働きがある。
(Prior art and its problems) In the conventional operational amplifier, as shown in the circuit diagram in Figure 4,
The capacitance used in the frequency compensation circuit can only take a constant value. In the operational amplifier shown in FIG. 4, the capacitor Cc1 in the first frequency compensation circuit has the role of suppressing the phase in the frequency characteristics of the operational amplifier, increasing the phase margin, and preventing oscillation. Further, the second frequency compensation circuit including the capacitor Cc 2 has the function of adjusting the positions of high-order poles and zero points to obtain good frequency characteristics.

ここで、演算増幅器の過渡応答を考えてみると、位相余
裕が小さい場合には、過渡応答は振動的になり、定常状
態に落ち着くまでの時間、すなわちセットリング時間が
長くなる。逆に位相余裕が大きすぎると過渡応答の追求
性が悪くなり、やはりセットリング時間は長くなる。従
って、位相余裕は最適な値に設定しなくてはならない。
Now, considering the transient response of an operational amplifier, if the phase margin is small, the transient response becomes oscillatory, and the time it takes to settle into a steady state, that is, the settling time becomes long. On the other hand, if the phase margin is too large, the pursuit of transient response becomes poor, and the settling time becomes longer. Therefore, the phase margin must be set to an optimal value.

演算増幅器を第5図のように電圧フォロア接続してのみ
用いる場合には、セットリング時間を最小にするような
位相余裕の値、従って周波数補償容量Cc 1の値を決
めることはできる。しかしながら、演算増幅器を第3図
のようなシステムで動作させる場合には、従来の演算増
幅器では、セットリング時間を短くすることはできない
。その理由を以下に説明する。
When the operational amplifier is used only in a voltage follower connection as shown in FIG. 5, it is possible to determine the value of the phase margin and therefore the value of the frequency compensation capacitor Cc1 that minimizes the settling time. However, when operating an operational amplifier in a system as shown in FIG. 3, it is not possible to shorten the settling time with the conventional operational amplifier. The reason for this will be explained below.

まずリセット時にはスイッチSrが閉じてキャパシタC
Fの電荷を放電し、同時にスイッチS。
First, during reset, switch Sr closes and capacitor C
Discharge the charge on F and switch S at the same time.

がVZII側へ接続され、キャパシタC01c qt 
=C。
is connected to the VZII side, and the capacitor C01c qt
=C.

(Vref −Vn+ )  の電荷を蓄える。次にス
イッチSrが開いた後にスイッチSOがvXM側からV
ref側へ切換わる。それによってCo上の電荷がCF
上へ移り、演算増幅器の出力電圧をvoとするとCLt
=CF (Vref −Vo ) = qtであるので
(Vref −Vo )=  ” (Vref −’h
扁)となる。従ってこの状態F になる。リセット時は電圧フォロア接続となっているの
で利得が1の状態、演算時は利得が寸のの状態という二
つの異った利得の状態をとることになる。リセット時と
演算時において利得が異なるので、従来の周波数補償容
量が一定のままの演算増幅器では、リセット時と演算時
で位相余裕が異なることになる。具体的にCo=2 C
,Cv=Cというよく用眞られる値で考えると利得が二
F =8であるときの位相余裕は、利得が1のときの位相余
裕にくらべて約40°大きい。(ただし利得80位相余
裕は90を越えない)。従って利得が1の時の位相余裕
が50 以上であれば利得8では90  、利得が1の
時に20 であれば利得8では60°の位相余裕がある
ことになる。
Stores a charge of (Vref −Vn+). Next, after switch Sr opens, switch SO changes from vXM side to V
Switch to ref side. As a result, the charge on Co becomes CF
Moving up, if the output voltage of the operational amplifier is vo, CLt
= CF (Vref - Vo ) = qt, so (Vref - Vo ) = ” (Vref -'h
(bian). Therefore, this state F is reached. Since it is connected as a voltage follower at the time of reset, it takes two different gain states: a state where the gain is 1 and a state where the gain is small during calculation. Since the gain is different during reset and during calculation, in a conventional operational amplifier in which the frequency compensation capacitance remains constant, the phase margin will be different between reset and calculation. Specifically, Co=2C
, Cv=C, which are often used values, the phase margin when the gain is 2F=8 is about 40° larger than the phase margin when the gain is 1. (However, the gain 80 phase margin does not exceed 90). Therefore, if the phase margin is 50 degrees or more when the gain is 1, there is a phase margin of 90 degrees at a gain of 8, and if it is 20 degrees when the gain is 1, there is a phase margin of 60 degrees at a gain of 8.

従って利得が1の時にセットリングが速いように周波数
補償容量を決めてやると利得が8の時には位相余裕が大
きすぎて追求が悪くなりセットリングが遅くなる。その
例を第6図に曲線Aで示す。
Therefore, if the frequency compensation capacitor is determined so that settling is fast when the gain is 1, when the gain is 8, the phase margin is too large, making pursuit difficult and slowing down the settling. An example of this is shown by curve A in FIG.

横軸は時間でt、はスイッチSrが開いた時で、t!は
スイッチSoがVxx側からV ref側へ切換わりた
時、t、は再びスイッチSQがVref側からVXW側
へ切換わ、す、スイッチSrが閉じてリセットになった
時間である。縦軸は演算増幅器の出力電圧である。第6
図の曲線Aを見てわかるように利得1でセラ) IJソ
ング ts以降)は速いが利得8(t。
The horizontal axis is time, t is the time when switch Sr is opened, and t! is the time when the switch So is switched from the Vxx side to the Vref side, t is the time when the switch SQ is switched from the Vref side to the VXW side again, and the switch Sr is closed and reset. The vertical axis is the output voltage of the operational amplifier. 6th
As you can see from curve A in the figure, with a gain of 1 (Sera) IJ song (ts and later) is fast, but with a gain of 8 (t.

からt、までの期間)ではセットリングが遅い。During the period from t to t), settling is slow.

逆に周波数補償容量の値を、利得8でのセットリングが
速いように決めてやると、利得1での位相余裕がなくな
り、振動的になって利得1でのセットリングが遅くなる
。その例を第6図に曲線Bで示す。第6図を見てわかる
ように曲線Bは、利得80時のセットリングは曲線AK
比べてずつと速いが、利得10時は曲#Aに比ベセット
リングは圧倒的に遅い。従って、従来技術では、演算増
幅器を利得の異った二つの状態で用いる場合、いずれの
状態でもセラ)IJソング速く高速動作が可能な演算増
幅器を得ることはできない。
Conversely, if the value of the frequency compensation capacitor is determined so that the settling at a gain of 8 is fast, there will be no phase margin at a gain of 1, and the setting will become oscillating and slow at a gain of 1. An example of this is shown by curve B in FIG. As you can see from Figure 6, curve B is curve AK when the gain is 80.
It's relatively fast, but when the gain is 10, the beset ring is overwhelmingly slow compared to song #A. Therefore, in the prior art, when an operational amplifier is used in two states with different gains, it is impossible to obtain an operational amplifier that can operate at high speed in either state.

以上の点に鑑み、本発明の目的は、利得が異った二つの
状態のいずれの状態でも、セットリングを速くして高速
動作をさせることができる演算増幅器を提供することに
ある。
In view of the above points, an object of the present invention is to provide an operational amplifier that can quickly settle and operate at high speed in either of two states with different gains.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、ソースが第1の定電流源を介して第1の定電圧源に共
通に接続されドレインが第2及び第3の定電流源をそれ
ぞれ介して第2の定電圧源に接続された第1及び第2の
MISPETから成る入力差動対と、ソースが前記第1
及び第2のMISFETのドレインにそれぞれ接続され
たゲート接地型の第3及び第4のMISFETと、前記
第3のMISFB’I’のドレインにドレインとゲート
が共通く接続されソースが前記第1の定電圧源に接続さ
れた第5のMISFETと、ゲートが前記第3のMIS
FETのドレインに接続されドレインが前記第4のM工
SFB’I’のドレインに接続されたソースが前記第1
の定電圧源に接続された第6のMISFETと、ドレイ
ンが出力端子に接続されゲートが前記第6のM工SF’
ETのドレインに接続されソースが前記第1の定電圧源
に接続された第7のMISFITと、ドレインが前記出
力端子に接続されゲートが前記第2のMISFETと前
記第4のMISFETとの接続点に接続されソースが前
記第2の定電圧源に接続された第8のMI 5FETと
、前記出力端子と前記第7のMI 5FETのゲートと
の間に第1の容量と第10のMI 3FETとを直列に
接続してなる第1の周波数補償回路と、前記第6のMI
 5PIATのドレインとゲートとの間に第2の容量と
第11のMISFETとを直列に接続してなる第2の周
波数補償回路とを備える演算増幅回路であって、前記第
1の容量を互いに異なる複数の値に設定する第1のスイ
ッチと、前記第2の容量を互いに異なる複数の値に設定
する第2のスイッチとが設けであることを特徴とする。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides means in which the sources are commonly connected to the first constant voltage source via the first constant current source and the drains are connected in common to the first constant voltage source via the first constant current source. an input differential pair consisting of first and second MISPETs connected to a second constant voltage source via second and third constant current sources, respectively;
and a gate-grounded third and fourth MISFET connected to the drain of the second MISFET, respectively, and a drain and a gate commonly connected to the drain of the third MISFET, and a source connected to the first MISFET. a fifth MISFET connected to a constant voltage source; and a gate connected to the third MISFET.
The source connected to the drain of the FET and whose drain is connected to the drain of the fourth MFC SFB'I' is connected to the first
a sixth MISFET whose drain is connected to the output terminal and whose gate is connected to the constant voltage source of the sixth MISFET;
A connection point between a seventh MISFET connected to the drain of the ET and whose source is connected to the first constant voltage source, and the second MISFET and the fourth MISFET whose drain is connected to the output terminal and whose gate is connected to the second MISFET. a first capacitor and a tenth MI 3FET between the output terminal and the gate of the seventh MI 5FET; a first frequency compensation circuit formed by connecting in series the sixth MI
An operational amplifier circuit comprising a second frequency compensation circuit formed by connecting a second capacitor and an eleventh MISFET in series between the drain and gate of the 5PIAT, the first capacitance being different from each other. A first switch that sets the second capacitance to a plurality of values and a second switch that sets the second capacitance to a plurality of mutually different values are provided.

(実施例) 本発明の代表的な実施例を第1図に回路図で示す。スイ
ッチS1は、演算増幅器の使用状態によって、第1の周
波数補償容量Cc  l値を切換えるためのスイッチで
あり、スイッチS1が閉じているとCc 1の値はC1
+C’2、開いていると、CCl の値はC2になる。
(Embodiment) A typical embodiment of the present invention is shown in a circuit diagram in FIG. The switch S1 is a switch for changing the value of the first frequency compensation capacitance Cc1 depending on the usage state of the operational amplifier, and when the switch S1 is closed, the value of Cc1 is C1.
+C'2, if open, the value of CCl becomes C2.

同様にスイッチS2は第2の周波数補償容量Cc2の値
を切換えるためのスイッチで、スイッチS2が閉じてい
るとCc2の値はC3+C4になり、開いていると、C
3になる。このような構造にすることによって、(従来
技術とその問題点)の項で述べた利得1の状態と利得8
の状態というような利得の異った二つの状態を切換えて
用いる場合、利得1の状態ではスイッチ81.82を閉
じてCcの値を大きくし位相余裕を適当な値にすること
によってセットリングを速くすることができ、また、利
得8の状態ではスイッチ81.82を開いてCcの値を
小さくすることによって、COO値が一定のtまでは位
相余裕が大きくなりすぎるのをおさえて位相余裕を適当
な値に保ちセットリングを速くすることができる。
Similarly, the switch S2 is a switch for changing the value of the second frequency compensation capacitor Cc2. When the switch S2 is closed, the value of Cc2 becomes C3+C4, and when it is open, the value of Cc2 becomes C3+C4.
It becomes 3. By adopting such a structure, the state of gain 1 and the state of gain 8 described in the section (Prior art and its problems) can be achieved.
When switching between two states with different gains, such as the state of In addition, in the state of gain 8, by opening switches 81 and 82 and reducing the value of Cc, the phase margin can be suppressed from becoming too large until t when the COO value is constant, and the phase margin can be increased. By keeping it at an appropriate value, you can speed up the settling process.

本実施例の演算増幅器の過渡応答を第2図に示す。第2
図は第6図と同じく演算増幅器を第3図のような用い方
をしたときの過渡応答を示している。横軸、縦軸t、 
、 t、 I t、  はそれぞれ第6図のものと同一
である。第2図と第6図とを比較するとわかるように、
本実施例の過渡応答は、利得の値にかかわらずどちらの
状態でもセットリングが1桁以上速い。従って従来の演
算増幅器にくらべて利得の異った状態で動作するような
システムにおいて1桁以上高速に動作をさせることがで
きる。
FIG. 2 shows the transient response of the operational amplifier of this example. Second
Like FIG. 6, this figure shows the transient response when the operational amplifier is used as shown in FIG. 3. horizontal axis, vertical axis t,
, t, I t, are respectively the same as those in FIG. As can be seen by comparing Figures 2 and 6,
In the transient response of this embodiment, settling is more than an order of magnitude faster in either state, regardless of the gain value. Therefore, compared to conventional operational amplifiers, it is possible to operate an order of magnitude faster in a system that operates with different gains.

(発明の効果) 本発明によれば、以上に説明したように、利得の異った
状態で用いても最適の位相余裕を持ち、セットリング時
間が速く高速動作をさせ得る演算増幅器が提供できる。
(Effects of the Invention) According to the present invention, as explained above, it is possible to provide an operational amplifier that has an optimal phase margin even when used with different gains, has a fast settling time, and can operate at high speed. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の代表的な実施例を示す回路図、第2図
は第1図の演算増幅器を第3図のシステムで動作させた
ときの出力電圧の過渡応答を示す図、第3図は演算増幅
器を用いて演算をするシステムを示す回路図、第4図は
従来の演算増幅器を示す回路図、第5図は演算増幅器の
電圧フォロア接続を示す図、第6図は第4図の演算増幅
器を第3図のシステムで動作させたときの出力電圧の過
渡応答を示す図である。 第1図 9−(−)入力4手 3A只−週 第3図 r vreず 第5図 11−・−ぷ力端手 第4図 1O−−−(+)入力(晒チ 11−−−一  鉢カ4手
FIG. 1 is a circuit diagram showing a typical embodiment of the present invention, FIG. 2 is a diagram showing the transient response of the output voltage when the operational amplifier of FIG. 1 is operated in the system of FIG. 3, and FIG. Figure 4 is a circuit diagram showing a system that performs calculations using operational amplifiers, Figure 4 is a circuit diagram showing a conventional operational amplifier, Figure 5 is a diagram showing voltage follower connections for operational amplifiers, and Figure 6 is Figure 4. 4 is a diagram showing the transient response of the output voltage when the operational amplifier of FIG. 3 is operated in the system of FIG. 3. FIG. Fig. 1 9 - (-) input 4 moves 3 A only - week Fig. 3 r vre no Fig. 5 11 - - pull power end hand Fig. 4 1 O - (+) input (bleaching 11 - 1 Hachika 4 moves

Claims (1)

【特許請求の範囲】[Claims] ソースが第1の定電流源を介して第1の定電圧源に共通
に接続されドレインが第2及び第3の定電流源をそれぞ
れ介して第2の定電圧源に接続された第1及び第2のM
ISFETから成る入力差動対と、ソースが前記第1及
び第2のMISFETのドレインにそれぞれ接続された
ゲート接地型の第3及び第4のMISFETと、前記第
3のMISFETのドレインにドレインとゲートが共通
に接続されソースが前記第1の定電圧源に接続された第
5のMISFETと、ゲートが前記第3のMISFET
のドレインに接続されドレインが前記第4のMISFE
Tのドレインに接続されソースが前記第1の定電圧源に
接続された第6のMISFETと、ドレインが出力端子
に接続されゲートが前記第6のMISFETのドレイン
に接続されソースが前記第1の定電圧源に接続された第
7のMISFETと、ドレインが前記出力端子に接続さ
れゲートが前記第2のMISFETと前記第4のMIS
FETとの接続点に接続されソースが前記第2の定電圧
源に接続された第8のMISFETと、前記出力端子と
前記第7のMISFETのゲートとの間に第1の容量と
第10のMISFETとを直列に接続してなる第1の周
波数補償回路と、前記第6のMISFETのドレインと
ゲートとの間に第2の容量と第11のMISFETとを
直列に接続してなる第2の周波数補償回路とを備える演
算増幅器において、前記第1の容量を互いに異なる複数
の値に設定する第1のスイッチと、前記第2の容量を互
いに異なる複数の値に設定する第2のスイッチとが設け
てあることを特徴とする演算増幅器。
first and third constant voltage sources whose sources are commonly connected to the first constant voltage source via the first constant current source and whose drains are connected to the second constant voltage source via the second and third constant current sources, respectively; second M
an input differential pair consisting of an ISFET, third and fourth common-gate MISFETs whose sources are connected to the drains of the first and second MISFETs, and a drain and a gate connected to the drain of the third MISFET; a fifth MISFET whose source is connected to the first constant voltage source and whose gate is connected to the third MISFET.
The drain is connected to the drain of the fourth MISFE.
a sixth MISFET whose drain is connected to the drain of the sixth MISFET and whose source is connected to the first constant voltage source; a sixth MISFET whose drain is connected to the output terminal and whose gate is connected to the drain of the sixth MISFET and whose source is connected to the first constant voltage source; a seventh MISFET connected to a constant voltage source; a drain connected to the output terminal and a gate connected to the second MISFET; and the fourth MISFET.
an eighth MISFET connected to a connection point with the FET and whose source is connected to the second constant voltage source; a first capacitor and a tenth MISFET between the output terminal and the gate of the seventh MISFET; a first frequency compensation circuit formed by connecting MISFETs in series, and a second frequency compensation circuit formed by connecting a second capacitor and an eleventh MISFET in series between the drain and gate of the sixth MISFET. In the operational amplifier including a frequency compensation circuit, a first switch sets the first capacitance to a plurality of mutually different values, and a second switch sets the second capacitance to a plurality of mutually different values. An operational amplifier comprising:
JP13882685A 1985-06-25 1985-06-25 Operational amplifier Pending JPS61296805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13882685A JPS61296805A (en) 1985-06-25 1985-06-25 Operational amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13882685A JPS61296805A (en) 1985-06-25 1985-06-25 Operational amplifier

Publications (1)

Publication Number Publication Date
JPS61296805A true JPS61296805A (en) 1986-12-27

Family

ID=15231127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13882685A Pending JPS61296805A (en) 1985-06-25 1985-06-25 Operational amplifier

Country Status (1)

Country Link
JP (1) JPS61296805A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101178883A (en) * 2006-11-10 2008-05-14 恩益禧电子股份有限公司 Data driver and display device
US8188955B2 (en) 2008-10-27 2012-05-29 Himax Technologies Limited Source driving circuit with output buffer
CN108768327A (en) * 2018-05-30 2018-11-06 湖南国科微电子股份有限公司 Operational amplifier

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528525A (en) * 1991-07-17 1993-02-05 Nec Corp Track positional deviation signal generator for optical disk device and tracking controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528525A (en) * 1991-07-17 1993-02-05 Nec Corp Track positional deviation signal generator for optical disk device and tracking controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101178883A (en) * 2006-11-10 2008-05-14 恩益禧电子股份有限公司 Data driver and display device
US7903078B2 (en) 2006-11-10 2011-03-08 Renesas Electronics Corporation Data driver and display device
US8188955B2 (en) 2008-10-27 2012-05-29 Himax Technologies Limited Source driving circuit with output buffer
CN108768327A (en) * 2018-05-30 2018-11-06 湖南国科微电子股份有限公司 Operational amplifier

Similar Documents

Publication Publication Date Title
US5187448A (en) Differential amplifier with common-mode stability enhancement
KR20000052438A (en) Amplifier with dynamic compensation and method
US20040169555A1 (en) Differential amplifier circuit with common mode output voltage regulation
WO2020042436A1 (en) Buffer circuit and buffer
CN108259007B (en) Enhancement circuit applied to operational amplifier conversion rate
SE519691C2 (en) High speed and high gain operational amplifier
EP0325299A2 (en) An operational amplifier
CN117310253A (en) Wide-range high-precision current detection circuit and detection method thereof
JPH04264806A (en) Operational amplifier and method for stabilizing it
JPS61296805A (en) Operational amplifier
JPS55159630A (en) Analog switch
KR20060035617A (en) Load and Line Conditioning Using Tandem Transconductance Amplifiers and Op Amps
US4701718A (en) CMOS high gain amplifier utilizing positive feedback
JPH11340753A (en) Arithmetic amplifier
JPS63288512A (en) Analog voltage comparator
JPH0993052A (en) Multi-input differential amplifier circuit
JPH10112654A (en) Current segment system d/a converter
JPH051646B2 (en)
JP2004180268A (en) Amplifier circuit and liquid crystal display device using this
JPS61131606A (en) differential amplifier circuit
JPH025324B2 (en)
JPH0618305B2 (en) Operational amplifier circuit
JPH0574962B2 (en)
JPS6243913A (en) Operational amplifier
JP3004475U (en) Electrical limit circuit