JPS61131606A - differential amplifier circuit - Google Patents
differential amplifier circuitInfo
- Publication number
- JPS61131606A JPS61131606A JP59251849A JP25184984A JPS61131606A JP S61131606 A JPS61131606 A JP S61131606A JP 59251849 A JP59251849 A JP 59251849A JP 25184984 A JP25184984 A JP 25184984A JP S61131606 A JPS61131606 A JP S61131606A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- transistors
- amplifier circuit
- differential
- differential amplifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005669 field effect Effects 0.000 claims description 4
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/45—Differential amplifiers
- H03F3/45071—Differential amplifiers with semiconductor devices only
- H03F3/45076—Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野J
この発明は差動増幅回路に係シ、 lrFに絶縁ゲート
型電界効果トランジスタによシ構成された集積回路釦適
した差動増幅回路に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a differential amplifier circuit, and more particularly, to a differential amplifier circuit suitable for an integrated circuit button configured with an lrF insulated gate field effect transistor.
絶縁ゲート型電界効果トランジスタを用いた従来の差動
増幅回路の一例を第1図に示す。同図において差動入力
トランジスタ1,2は負荷トランジスタ3,4に接続さ
れている。トランジスタ5゜6はトランジスタ1,2と
カスコード接続され。An example of a conventional differential amplifier circuit using insulated gate field effect transistors is shown in FIG. In the figure, differential input transistors 1 and 2 are connected to load transistors 3 and 4. Transistor 5.6 is connected in cascode with transistors 1 and 2.
ゲート接地増幅回路として動作する。カスコード段出力
端子23はトランジスタ9.10から成るバッファ段に
接続される。このような従来回路では。Operates as a gate-grounded amplifier circuit. The cascode stage output terminal 23 is connected to a buffer stage consisting of transistors 9.10. In conventional circuits like this.
カスコード段トランジスタ5,6を安定に動作させるた
め、ゲートバイアスは以下の様くして決定された。即ち
高抵抗を持つ様バイアスされたトランジスタ11.12
をカスコード段出力端子22゜25に接続して得られる
同相信号成分をトランジスタ13で検出し、基準電圧1
8と比較する。カスコード段出力電圧の同相信号電圧が
高い場合は。In order to operate the cascode stage transistors 5 and 6 stably, the gate bias was determined as follows. i.e. transistors 11.12 biased to have high resistance.
is connected to the cascode stage output terminal 22°25, the in-phase signal component obtained is detected by the transistor 13, and the reference voltage 1
Compare with 8. If the common mode signal voltage of the cascode stage output voltage is high.
トランジスタ15を流れる電流が減シ、トランジスタ1
4.15のカレントミラー回路の出力電圧が上がプ、こ
の電圧でバイアスされるカスコード段出力電圧が下がる
。この様に、カスコード段の同相信号電圧が所望の電圧
となる様に負帰還を用いたバイアス回路が設けられ1回
路自体〈よって定まる安定点ができる様になっている。The current flowing through transistor 15 decreases, transistor 1
As the output voltage of the current mirror circuit 4.15 increases, the output voltage of the cascode stage biased with this voltage decreases. In this way, a bias circuit using negative feedback is provided so that the common mode signal voltage of the cascode stage becomes a desired voltage, and a stable point determined by the circuit itself is created.
ところが、上記バイアス回路には極、零点が使用周波数
帯域内に発生する場合が6勺、この場合には差動増幅回
路の周波数特性、応答波形が劣化する。またバイアス回
路の素子数がこの例ではトランジスタ11〜16の6個
、バイアス電圧17゜18の2種を必要とし、上記の他
、零点を発生させない様に設計するためには多くの労力
が必要である。However, there are cases in which poles and zeros occur in the frequency band used in the bias circuit, and in this case, the frequency characteristics and response waveform of the differential amplifier circuit deteriorate. In addition, the number of elements in the bias circuit in this example is 6 transistors 11 to 16, and two types of bias voltage 17°18 are required, and in addition to the above, a lot of effort is required to design it so that zero points do not occur. It is.
〔発明の目的J
本発明の目的は、よシ簡単な回路構成によってカスコー
ド段トランジスタのバイアス電圧を発生させることので
きる。良好な特性の差動増幅回路オ、 を
提供するにある。[Object of the Invention J] An object of the present invention is to be able to generate a bias voltage for a cascode stage transistor with a very simple circuit configuration. The goal is to provide a differential amplifier circuit with good characteristics.
本発明は、カスコード段出力の一方をカスコードトラン
ジスタのゲート電極に接続することによって自己バイア
スをかける方法を採用したことを特徴とするものである
。The present invention is characterized in that it adopts a method of applying a self-bias by connecting one of the cascode stage outputs to the gate electrode of the cascode transistor.
〔発明の実施例j
以下9本発明の一実施例を第2図により説明する。差動
入力トランジスタ1.2は負荷トランジスタ3,4に接
続されている。トランジスタ5゜6はトランジスタ1.
2とカスコード接続され。[Embodiment of the Invention j Hereinafter, nine embodiments of the present invention will be described with reference to FIG. Differential input transistor 1.2 is connected to load transistors 3, 4. Transistor 5.6 is transistor 1.
2 is connected in cascode.
ゲート接地増幅回路として動作する。カスコード段出力
端子25はトランジスタ9,10から成るバッファ段に
接続される。本発明はカスコード段出力端子24.25
のうち、端子24をトランジスタ5.6のゲートバイア
スとして用いることVcID。Operates as a gate-grounded amplifier circuit. The cascode stage output terminal 25 is connected to a buffer stage consisting of transistors 9,10. The present invention provides cascode stage output terminals 24 and 25.
Among them, the terminal 24 is used as a gate bias of the transistor 5.6 VcID.
トランジスタ5はドレインとゲートを接続した自己バイ
アス回路となる。よってドレイン、ソース間を流れる電
流が決定すれにトランジスタ5のゲート、ソース間電圧
が決定される。従ってカスコード段入力信号の差動信号
電圧が十分小さい場合はトランジスタ5.6のソース電
位はt’tぼ等しく。Transistor 5 becomes a self-bias circuit with its drain and gate connected. Therefore, when the current flowing between the drain and the source is determined, the voltage between the gate and the source of the transistor 5 is determined. Therefore, when the differential signal voltage of the cascode stage input signal is sufficiently small, the source potentials of transistors 5 and 6 are approximately equal to t't.
同じバイアス条件が得られる。ところがカスコード段出
力段の電圧増幅率は合わせて40dB程度であるため、
出力電圧を数ボルト変化させる場合、トランジスタ5.
6′のゲート、ソース間バイアス電圧は数10ミリボル
ト程度の差しかなく十分忙小さい、このため上記の条件
は満たされトランジスタ5,6のバイアスは等しい。The same bias conditions are obtained. However, since the voltage amplification factor of the cascode stage output stage is about 40 dB in total,
When changing the output voltage by several volts, transistor 5.
The bias voltage between the gate and source of transistor 6' is sufficiently small, with a difference of only several tens of millivolts, so the above condition is satisfied and the bias voltages of transistors 5 and 6 are equal.
カスコード段出力電圧の同相成分電圧が上昇するとトラ
ンジスタ5,6のゲートバイアス電圧が上昇し、カスコ
ード段出力電圧を下げるdK負4Rがかかつて騒るため
、al能的には従来の例と同じく回路自体で決定される
安定点が存在する。しかもこの負#途はトランジスタ5
の自己バイアス回路の速度で動作するため非常に高速で
あ九従来例に見られる不要な極、零点の問題は起こらな
い。またバイアス点はトランジスタ5,6,7.Bのサ
イズ及び電流@12.13の電流値で設定できる走め、
従来例に比べて設計が極めて容易である。When the common-mode component voltage of the cascode stage output voltage rises, the gate bias voltage of transistors 5 and 6 rises, and the dK negative 4R that lowers the cascode stage output voltage becomes noisy, so that the circuit is functionally the same as the conventional example. There is a point of stability that is determined by itself. Moreover, this negative path is transistor 5
Because it operates at the speed of a self-biasing circuit, it is extremely fast and does not suffer from the problems of unnecessary poles and zeros seen in conventional examples. Also, the bias points are transistors 5, 6, 7. The running speed can be set by the size of B and the current value of @12.13,
The design is extremely easy compared to the conventional example.
〔発明の効果)
本発明によれば、カスコード段を安定に動作させる為の
複雑な負帰還型バイアス回路が不要にな飢回路構成が簡
単になるばかシでなく、不要な極、零点の問題が屏決さ
れ、差動増幅回路の設計が容易になるという効果がある
。[Effects of the Invention] According to the present invention, a complicated negative feedback bias circuit for stably operating the cascode stage is not required, the circuit configuration is simplified, and the problem of unnecessary poles and zeros is solved. This has the effect of making it easier to design a differential amplifier circuit.
第1図は従来の差動増幅回路の構成図、第2図は本発明
に係る差動増幅回路の一実施例を示す回路構成図である
。
1〜10・・・絶縁ゲート型電界効果トランジスタ。
11〜13・・・バイアス電流源、24.25・・・カ
スコード段出力。FIG. 1 is a block diagram of a conventional differential amplifier circuit, and FIG. 2 is a circuit diagram showing an embodiment of the differential amplifier circuit according to the present invention. 1 to 10...Insulated gate field effect transistor. 11-13...Bias current source, 24.25...Cascode stage output.
Claims (1)
入力差動トランジスタから成る差動入力段と、該差動入
力段の差動出力をそのソース入力信号としかつその出力
の一つがそのゲートバイアス電圧として与えられた一対
のトランジスタより成るカスコード段とを備えたことを
特徴とする差動増幅回路。 2、前記負荷をカレントミラーを構成するアクティブ負
荷トランジスタで構成したことを特徴とする特許請求範
囲第1項記載の差動増幅回路。 3、前記各トランジスタを絶縁ゲート型電界効果トラン
ジスタで構成したことを特徴とする特許請求の範囲第2
項記載の差動増幅回路。[Claims] 1. A differential input stage consisting of a pair of input differential transistors each having a load connected to its drain, and a differential output of the differential input stage as its source input signal and its output. a cascode stage consisting of a pair of transistors, one of which is given as a gate bias voltage. 2. The differential amplifier circuit according to claim 1, wherein the load is constituted by an active load transistor forming a current mirror. 3. Claim 2, characterized in that each of the transistors is constituted by an insulated gate field effect transistor.
Differential amplifier circuit described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59251849A JPS61131606A (en) | 1984-11-30 | 1984-11-30 | differential amplifier circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59251849A JPS61131606A (en) | 1984-11-30 | 1984-11-30 | differential amplifier circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61131606A true JPS61131606A (en) | 1986-06-19 |
JPH051649B2 JPH051649B2 (en) | 1993-01-08 |
Family
ID=17228832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59251849A Granted JPS61131606A (en) | 1984-11-30 | 1984-11-30 | differential amplifier circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61131606A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS632193A (en) * | 1986-06-20 | 1988-01-07 | Mitsubishi Electric Corp | Sense amplifier circuit |
JPH01157608A (en) * | 1987-09-14 | 1989-06-20 | Linear Technol Inc | Input stage and output stage for operational amplifier |
JPH02280406A (en) * | 1989-03-17 | 1990-11-16 | Telefunken Electronic Gmbh | Circuit for forming current different |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5862625B2 (en) | 2013-08-20 | 2016-02-16 | コニカミノルタ株式会社 | Image forming apparatus and image noise prediction method |
-
1984
- 1984-11-30 JP JP59251849A patent/JPS61131606A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS632193A (en) * | 1986-06-20 | 1988-01-07 | Mitsubishi Electric Corp | Sense amplifier circuit |
JPH01157608A (en) * | 1987-09-14 | 1989-06-20 | Linear Technol Inc | Input stage and output stage for operational amplifier |
JPH02280406A (en) * | 1989-03-17 | 1990-11-16 | Telefunken Electronic Gmbh | Circuit for forming current different |
Also Published As
Publication number | Publication date |
---|---|
JPH051649B2 (en) | 1993-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4333058A (en) | Operational amplifier employing complementary field-effect transistors | |
JP3158759B2 (en) | Differential amplifier with enhanced common-mode stability | |
US6118340A (en) | Low noise differential input, differential output amplifier and method | |
KR20000052438A (en) | Amplifier with dynamic compensation and method | |
US4484148A (en) | Current source frequency compensation for a CMOS amplifier | |
US5774019A (en) | Low distortion differential amplifier circuit | |
US4573020A (en) | Fully differential operational amplifier with D.C. common-mode feedback | |
US6005439A (en) | Unity gain signal amplifier | |
US5525930A (en) | Frequency compensation circuit for stabilizing a differential amplifier with cross-coupled transistors | |
JPH02206210A (en) | Source driving type differential amplifier by common base method | |
US7098736B2 (en) | Amplifier circuit | |
US6545502B1 (en) | High frequency MOS fixed and variable gain amplifiers | |
US6788143B1 (en) | Cascode stage for an operational amplifier | |
US6249153B1 (en) | High slew rate input differential pair with common mode input to ground | |
EP1376860A1 (en) | Asymmetrical differential amplifier | |
JPS6119134B2 (en) | ||
JP3081210B2 (en) | Linear gain amplifier | |
JPS61131606A (en) | differential amplifier circuit | |
JPS6021605A (en) | Dmos high gain amplifier utilizing positive feedback | |
JPS6096005A (en) | Cascode circuit wihtout noise efficiently using die area | |
JP3053809B1 (en) | Linear amplifier circuit | |
US20210250006A1 (en) | Output pole-compensated operational amplifier | |
TW571511B (en) | Amplifier with compensated driving | |
US20020005757A1 (en) | Fully differential operational amplifier of the folded cascode type | |
JP2696986B2 (en) | Low frequency amplifier |