[go: up one dir, main page]

JPS61295526A - Photoscanner - Google Patents

Photoscanner

Info

Publication number
JPS61295526A
JPS61295526A JP13701385A JP13701385A JPS61295526A JP S61295526 A JPS61295526 A JP S61295526A JP 13701385 A JP13701385 A JP 13701385A JP 13701385 A JP13701385 A JP 13701385A JP S61295526 A JPS61295526 A JP S61295526A
Authority
JP
Japan
Prior art keywords
lens
imaging
lens system
sub
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13701385A
Other languages
Japanese (ja)
Other versions
JPH067229B2 (en
Inventor
Hiroto Kondo
近藤 浩人
Makoto Kamioka
誠 上岡
Masaru Fujii
優 藤井
Shoichi Takei
武井 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOMIOKA KOGAKU KK
Kyocera Corp
Original Assignee
TOMIOKA KOGAKU KK
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOMIOKA KOGAKU KK, Kyocera Corp filed Critical TOMIOKA KOGAKU KK
Priority to JP13701385A priority Critical patent/JPH067229B2/en
Publication of JPS61295526A publication Critical patent/JPS61295526A/en
Publication of JPH067229B2 publication Critical patent/JPH067229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は光源及びレンズ系の各種製造誤差から起因する
被記録媒体上での結像位置ずれを簡単に補正し得る光走
査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical scanning device that can easily correct image formation positional deviations on a recording medium caused by various manufacturing errors in a light source and a lens system.

「従来の技術」 従来より例えば第2図に示す如く、入力情報に応じて変
調されたレーザビームを発振する光源1と、該光源1か
ら発振されたレーザビームを線状集束光として結像する
コリメートレンズ22と平凸シリンドリカルレンズ21
からなる結像レンズ系2と、該結像レンズ系2による結
像位置の近傍に配置された回転多面鏡その他の偏向器3
と、該偏向器3により反射偏向されたビーム光束を等速
運動に変換するfθレンズ系4と、前記偏向器3よりの
偏向ビームを母線上で走査させる感光体ドラム等の被記
録媒体5と、該fθレンズ系4との合成系に対し、前記
偏向器3の偏向面と被記録媒体5の結像位置が共役関係
を維持し得るように前記fθレンズ系4と被記録媒体5
との間に配置された面倒れ補正レンズ系6とからなり、
前記光源lより発振されたレーザービームな前記結像レ
ンズ系2を通して主走査方向に平行な線状集束光として
偏向器3に入射させ、該偏向器3の回転により所定角度
偏向反射されながらfθレンズ系4で等速運動に変換さ
せた後、面倒れ補正レンズ系6により前記偏向面の副走
査方向の面倒れを補正して被記録媒体5の母線上に入力
情報に対応した光ドツトパターンを結像走査させる光走
査装置は既に公知である。
"Prior Art" Conventionally, as shown in FIG. 2, for example, a light source 1 that oscillates a laser beam modulated according to input information, and an image of the laser beam oscillated from the light source 1 as linear focused light. Collimating lens 22 and plano-convex cylindrical lens 21
an imaging lens system 2 consisting of a rotating polygon mirror or other deflector 3 disposed near the imaging position by the imaging lens system 2;
, an fθ lens system 4 that converts the beam reflected and deflected by the deflector 3 into uniform motion, and a recording medium 5 such as a photoreceptor drum that scans the deflected beam from the deflector 3 on a generatrix. , for a composite system with the fθ lens system 4, the fθ lens system 4 and the recording medium 5 are arranged so that the deflection surface of the deflector 3 and the imaging position of the recording medium 5 can maintain a conjugate relationship.
and a surface tilt correction lens system 6 disposed between the
A laser beam oscillated from the light source 1 passes through the imaging lens system 2 and enters the deflector 3 as a linear focused light parallel to the main scanning direction, and is deflected and reflected at a predetermined angle by the rotation of the deflector 3, and is then directed to the fθ lens. After the deflection is converted into a uniform motion by the system 4, the surface tilt of the deflection surface in the sub-scanning direction is corrected by the surface tilt correction lens system 6, and an optical dot pattern corresponding to the input information is formed on the generatrix of the recording medium 5. Optical scanning devices for imaging and scanning are already known.

この種の装置においては前記各種レンズ系の面精度や肉
厚精度等の加工誤差1等が生じると前記レーザビームが
感光体母線上に結像せず、光軸C方向に結像位置ずれが
生じ、この結果、鮮明な結像スポットが得られないとい
う問題が生じていた。
In this type of device, if processing errors such as surface accuracy or wall thickness accuracy of the various lens systems occur, the laser beam will not be imaged on the photoreceptor generating line, and the image formation position will be shifted in the optical axis C direction. As a result, a problem has arisen in that a clear imaging spot cannot be obtained.

かかる欠点を解消する為に、特開昭57−144517
号において、前記結像レンズ系2を光軸C方向に移動可
能に構成し、その移動手段として例えば第3A図に示す
如く、結像し〉・ズ系2を光軸C方向に移動可能な移動
ステージ+01上に戴置し、該移動ステージ101 と
連結された調整′螺子1.02の回動により、固定台1
03の摺動面に沿って移動ステージ101を進退させ、
結像レンズ系2を移動させる手段や、又第3B図に示す
如く、結像レンズ系2を。
In order to eliminate this drawback, Japanese Patent Application Laid-Open No. 57-144517
In No. 3, the imaging lens system 2 is configured to be movable in the direction of the optical axis C, and as its moving means, for example, as shown in FIG. 3A, the imaging lens system 2 is movable in the direction of the optical axis C. The fixed base 1 is placed on the moving stage +01 and is rotated by the adjustment screw 1.02 connected to the moving stage 101.
Moving the moving stage 101 forward and backward along the sliding surface of 03,
Means for moving the imaging lens system 2, and as shown in FIG. 3B, the imaging lens system 2.

保持台110の垂直基準面111と板ばね112により
挟持固定すると共に、前記基準面111と結像レンズ系
2間にワッシャ113を介在させ、該ワッシャ113を
抜取ったり追加挿入する事により、結像レンズ系2を光
軸C方向に移動可能にした手段が提案されており、かか
る技術手段によれば、前記母線上の結像位置と実際の結
像位置とのずれ(ΔS)に対応する長さくΔS/β 、
β:結像倍率)だけ、結像レンズ系2を光軸C方向に移
動する事により結像位置ずれが補正され、最適画像を得
る事が出来る。
The holding table 110 is clamped and fixed by the vertical reference surface 111 and the leaf spring 112, and a washer 113 is interposed between the reference surface 111 and the imaging lens system 2, and the washer 113 can be removed or additionally inserted. A means has been proposed in which the image lens system 2 is movable in the direction of the optical axis C, and according to this technical means, the deviation (ΔS) between the image forming position on the generatrix line and the actual image forming position can be accommodated. Length ΔS/β,
By moving the imaging lens system 2 in the direction of the optical axis C by β: imaging magnification), the imaging position shift is corrected, and an optimal image can be obtained.

「発明が解決しようとする問題点」 しかしながら前者においては、螺子102を用い。"The problem that the invention attempts to solve" However, in the former case, screws 102 are used.

て結像レンズ系2を移動可能に構成する為に、螺子10
2自体のバックラッシュにより微調整が困難であり、又
後者においてはワッシャ113により移動調整を行う為
に、連続的な移動量の補正が不可能であるという欠点を
有し、いずれにし七も1/+0Il+!1台の微調整が
必要な補正手段としては適当でない。
In order to configure the imaging lens system 2 to be movable, a screw 10 is used.
It is difficult to make fine adjustments due to the backlash of 2 itself, and the latter has the disadvantage that it is impossible to continuously correct the amount of movement because the washer 113 is used to adjust the movement. /+0Il+! It is not suitable as a correction means that requires fine adjustment of one unit.

又、後者の技術手段では、ワッシャ113の挿入及び抜
取りの際に板ばね112のりp性力の変化やへたりが生
じ、その押圧力のバラ°ツキにより結像レンズ系2に偏
荷重やガタが生じ易く、該レンズ系2の人出射面と光軸
Cとの直角度を維持しつつ光軸C方向に移動するのが困
難になる場合がある。
In addition, in the latter technical means, when the washer 113 is inserted and removed, the force of the plate spring 112 changes or loosens, and the variation in the pressing force causes uneven load and play in the imaging lens system 2. This tends to occur, and it may be difficult to move in the direction of the optical axis C while maintaining the perpendicularity between the exit surface of the lens system 2 and the optical axis C.

又、前者の技術手段においても、固定台103、移動ス
テージ101、該移動ステージ101上に結像集積によ
り、前記結像レンズ系2の平行移動が困難になる場合が
ある。
Furthermore, even in the former technical means, parallel movement of the imaging lens system 2 may become difficult due to the fixed table 103, the movable stage 101, and the accumulation of images on the movable stage 101.

又前者の技術手段においては、結像レンズ系2出射方向
又は入射方向側に該結像レンズ系2を移動させる調整螺
子102を配する必要がある為に、必然的にその部分が
デッドスペース化し、装置の大型化につながる。
In addition, in the former technical means, since it is necessary to arrange an adjustment screw 102 for moving the imaging lens system 2 in the exit direction or the entrance direction of the imaging lens system 2, that part inevitably becomes a dead space. , leading to an increase in the size of the device.

尚、レーザビームはその特性上その焦点位置においてビ
ームウェストが生じるのを避は得ないが、該ビームウェ
ストの幅(2ω)は下記式に示すように焦点圧gi (
f)の変動によって変化するものである。
Note that due to the characteristics of a laser beam, a beam waist inevitably occurs at its focal position, and the width (2ω) of the beam waist is determined by the focal pressure gi (
f).

ω=(入/πW)f 2W:ビーム平行入射幅、入:波長 従って本従来技術のように前記結像レンズ系2を光軸C
方向に移動させる構成では、結像レンズ系2の移動に対
応して、被記録媒体5上での結像スポット面積も変化し
、肉太又はやせた線画像形成されてしまう事になる。
ω=(input/πW) f 2W: Beam parallel incidence width, entrance: wavelength Therefore, as in this prior art, the imaging lens system 2 is aligned with the optical axis C.
In the configuration in which the imaging lens system 2 moves in the direction, the imaging spot area on the recording medium 5 also changes in response to the movement of the imaging lens system 2, resulting in a thick or thin line image being formed.

本発明はかかる従来技術の欠点に鑑み、前記光源や各種
レンズ系の加工誤差や組立誤差から生ずる、被記録媒体
5上への結像位置のずれ量の補正が、微調整且つ連続的
に補正可能に構成した光走査装置を提供する事を目的と
する。
In view of the drawbacks of the prior art, the present invention corrects the amount of deviation of the image formation position on the recording medium 5 caused by processing errors and assembly errors of the light source and various lens systems by fine adjustment and continuous correction. The object of the present invention is to provide an optical scanning device that is configured to be able to perform the following steps.

又本発明の他の目的とする所は、前記結像倍率βに合わ
せ、単位当たりの補正量を適宜選択し得る光走査装置を
提供する事を目的とする。
Another object of the present invention is to provide an optical scanning device that can appropriately select the amount of correction per unit in accordance with the imaging magnification β.

更に本発明の目的は繰り返し補正を行っても、その補正
量がパラツク事がなく、再現性の極めて高い光走査装置
を提供する事を目的とする。
A further object of the present invention is to provide an optical scanning device with extremely high reproducibility, in which the amount of correction does not vary even when correction is repeated.

更に又本発明は、部品点数を少なく且つ組立誤差の生じ
る余地の少ない補正機構を設ける事が容易な光走査装置
を提供する事を目的とする。
A further object of the present invention is to provide an optical scanning device that has a small number of parts and can easily be provided with a correction mechanism that has little room for assembly errors.

又、本発明は前記補正を行・〕ても感光体上での結像ス
ポット面積がほとんど変化することがなく、この結果均
一な線画像を得る事の出来る光走査装置を提供する事を
目的とする。
Another object of the present invention is to provide an optical scanning device that can obtain a uniform line image as a result of almost no change in the imaging spot area on the photoreceptor even when the above correction is performed. shall be.

「問題点を解決する為の手段」 本発明はかかる技術的課題を達成する為に、第1a乃至
第1C図に示すように、前記結像レンズ系2を構成する
平凸シリンドリカルレンズ21又は他の集束レンズを副
走査方向に回動させる回動手段を有し、該レンズ21回
動の際に生ずるレンズ入射面頂点り位置と光軸Cどの間
の副走査方向のずれを微小偏位量に抑えるべく、その回
動中心Aを該レンズ21の入射面頂点り位置より出射面
2IA側の所定位置に形成した技術手段を提案する。
"Means for Solving the Problems" In order to achieve the above technical problems, the present invention provides a plano-convex cylindrical lens 21 or other components constituting the imaging lens system 2, as shown in FIGS. It has a rotating means for rotating the focusing lens 21 in the sub-scanning direction, and the deviation in the sub-scanning direction between the apex position of the lens entrance surface and the optical axis C that occurs when the lens 21 is rotated is calculated as a minute deviation amount. In order to suppress this, we propose a technical means in which the rotation center A is formed at a predetermined position on the exit surface 2IA side of the lens 21 from a position near the apex of the entrance surface.

この場合において前記回動中心Aは必ずしも光軸C上に
位置させる必要はなく、結像レンズ系2の出射面21A
上端又は下端に設定してもよい。
In this case, the rotation center A does not necessarily have to be located on the optical axis C;
It may be set at the top or bottom.

「作用」 かかる技術手段によれば、平凸シリンドリカルレンズ2
1その他の集束l/ンズを副走査方向に回動させる事に
より、その結像位置S°が光軸Cに沿って被記録媒体5
側に近接する方向に移動し、この結果、前記被記録媒体
5の結像ずれが補正され。
"Action" According to this technical means, the plano-convex cylindrical lens 2
1 By rotating the other focusing l/lens in the sub-scanning direction, the imaging position S° is aligned with the recording medium 5 along the optical axis C.
As a result, the image formation deviation of the recording medium 5 is corrected.

最適画像を得る事が出来る。Optimal images can be obtained.

尚、この場合においてシリンドリカルレンズ21を光軸
Cと直角位置に配置した場合は、該シリンドリカルレン
ズ21の前後いずれの方向の回動においても、その結像
位置S“はいずれも前記被記録媒体5側に接近する方向
に移動する訳であるが、例えばシリンドリカルレンズの
製造公差によって、焦点距離の短いレンズに合わせてレ
ンズを光軸C上に直立させた後、回動させてもよいし、
又該シリンドリカルレンズ21を前もって所定角度傾け
て配置しておけば、該傾き角度位置゛より直角位置に達
するまで前記結像位置S°が前記被記録媒体5より遠去
かる方向に移動し、該直角位置を越えると近接移動する
よう構成する裏が出来る。
In this case, if the cylindrical lens 21 is disposed at a position perpendicular to the optical axis C, the image forming position S'' will be aligned with the recording medium 5 when the cylindrical lens 21 is rotated in either direction. For example, depending on manufacturing tolerances of cylindrical lenses, the lens may be placed upright on the optical axis C and then rotated to match the short focal length of the lens.
Furthermore, if the cylindrical lens 21 is tilted at a predetermined angle and arranged in advance, the imaging position S° will move in a direction away from the recording medium 5 until it reaches a position perpendicular to the tilt angle position. Beyond the right angle position, there is a back that is configured to move close to each other.

又本技術手段においては、平凸シリンドリカルレンズ2
1全体を光軸方向に進退させるのではなく、単に副走査
方向に回動させれば足りるからして、該レンズの大斜面
側又は回転中心を支持面(支持点)として繰り返し回動
させる事が出来、この結果、前記回動を繰り返しても支
持位置が安定しているからして、その補正量がパラツク
事が又同様に回動により補正する構成の為に、進退構造
に比して連続調整が容易であり且つ部品点数を少なく、
更に組立誤差の生じる余地が少ない。
In addition, in the present technical means, the plano-convex cylindrical lens 2
Rather than moving the entire lens forward and backward in the optical axis direction, it is sufficient to simply rotate it in the sub-scanning direction, so it is necessary to repeatedly rotate the lens using the large slope side or the center of rotation as a support surface (support point). As a result, even though the support position is stable even if the rotation is repeated, the amount of correction is small. Continuous adjustment is easy and the number of parts is small.
Furthermore, there is less room for assembly errors.

更に、回動により補正する構成では、レーザビームの焦
点圧a (f)がほとんど変化しない為に、ビームウェ
ストの幅(2ω)即ち被記録媒体5上での結像スポット
面積も実質的に無視し得る程度に微小であり、均一な線
画像の形成が可能となる。
Furthermore, in the configuration in which correction is performed by rotation, since the focal pressure a (f) of the laser beam hardly changes, the width of the beam waist (2ω), that is, the area of the imaged spot on the recording medium 5 is also virtually ignored. It is as small as possible, and a uniform line image can be formed.

尚、本技術手段は、その回動中心A位置を出射面21A
側に位置させると共に、該レンズ21回動の際に生ずる
レンズ入射面頂点り位置と光軸Cとの間の副走査方向の
ずれが零又は微小偏位量に抑えるべく構成している。
In addition, this technical means sets the rotation center A position to the output surface 21A.
In addition, the configuration is such that the deviation in the sub-scanning direction between the apex position of the lens entrance surface and the optical axis C that occurs when the lens 21 rotates is suppressed to zero or to a minute deviation amount.

けだしその理由は、平凸シリンドリカルレンズ21の主
面は前側曲率面の頂点と一致する為に、レンズ21回動
の際に生ずるレンズ入射面頂点り位置と光軸Cとの間の
副走査方向のずれが零又は微小偏位量に抑える事が出来
れば、偏向面への線状人ない。
The reason for this is that since the main surface of the plano-convex cylindrical lens 21 coincides with the apex of the front surface of curvature, the sub-scanning direction between the apex position of the lens entrance surface and the optical axis C that occurs when the lens 21 rotates. If the deviation can be suppressed to zero or to a minute deviation, there will be no linear contact with the deflection surface.

又、前記補正量は平凸シリンドリカルレンズ21の出射
面2IA側の傾き角度により決定され、従って第1a図
乃至第1C図に示すように、その回転中心位置Aを出射
面2LAと光軸Cとの交点(第1a図)、出射面2LA
側の光軸C上(第1b図)、レンズの出射面21A側下
端位置(第1c図)に夫々設定した場合を想定すると、
第1a図、第1b図、第1C図の順で、僅かな回動によ
り夫々の補正量が大きくなると共に、いずれもレンズ2
1回動の際に生ずるレンズ入射面頂点口位置と光軸Cと
の間の副走査方向のずれが零又は微小偏位量に抑える事
が出来る。
Further, the amount of correction is determined by the inclination angle of the exit surface 2IA side of the plano-convex cylindrical lens 21, and therefore, as shown in FIGS. (Fig. 1a), exit surface 2LA
Assuming that they are set on the optical axis C of the side (Fig. 1b) and at the lower end position of the exit surface 21A side of the lens (Fig. 1c),
In the order of Fig. 1a, Fig. 1b, and Fig. 1C, each correction amount becomes larger due to a slight rotation, and in all cases the lens 2
The deviation in the sub-scanning direction between the apex position of the lens entrance surface and the optical axis C that occurs during one rotation can be suppressed to zero or to a minute deviation amount.

従って、結像倍率βに合わせ前記回動中心A位置を決定
する事により、単位当たりの補正量を適宜選択する事が
出来る。
Therefore, by determining the rotation center A position in accordance with the imaging magnification β, the correction amount per unit can be appropriately selected.

尚、前記シリンドリカルレンズ21の回動により非点収
差が生ずるが、該光走査装置では平凹シリンドリカルレ
ンズ21に入射する光束が非常に小さい為に、前記レン
ズで生じた非点収差は母線上のスポット像のゆがみとな
って現れず、実用上問題がない。
Incidentally, astigmatism occurs due to the rotation of the cylindrical lens 21, but since the light beam incident on the plano-concave cylindrical lens 21 is very small in the optical scanning device, the astigmatism generated in the lens is generated on the generatrix. It does not appear as a distortion of the spot image, and there is no problem in practical use.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
"Embodiments" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, and relative arrangements of the components described in this example are not intended to limit the scope of this invention, but are merely illustrative examples. It's nothing more than that.

第5図乃至第6図は、本発明の実施例に係る光走査装置
を示し、51は上部カバー52が開閉可使なハウジング
で、該ハウジング51の底面部51aの回転多面鏡53
取付位置側方を内側に変向させ、隔壁51bと側壁51
cにより挟まれる半導体レーザ54等の取付通路51d
を形成する。
5 and 6 show an optical scanning device according to an embodiment of the present invention. Reference numeral 51 denotes a housing with an upper cover 52 that can be opened and closed, and a rotating polygon mirror 53 on a bottom surface 51a of the housing 51.
The side of the mounting position is turned inward, and the partition wall 51b and the side wall 51
A mounting path 51d for the semiconductor laser 54 etc. sandwiched between c.
form.

取付通路51dには開口端側より順次半導体レーザとコ
リメートレンズを収納した筐体54とシリンドリカルレ
ンズユニット20を配し、半導体レーザdの出口側に配
設した反射ミラー56を介して所定角度で回転多面鏡5
3の偏向面53aに入射させる。
A housing 54 housing a semiconductor laser and a collimating lens and a cylindrical lens unit 20 are disposed in the mounting passage 51d in order from the open end side, and are rotated at a predetermined angle via a reflection mirror 56 disposed on the exit side of the semiconductor laser d. polygon mirror 5
The beam is made incident on the deflection surface 53a of No. 3.

回転多面鏡53には同期モータ57が連結され、感光体
ドラム58と同期して回転しながら、偏向面53aに入
射した走査ビームlOを主走査方向に掃引しながらfθ
レンズ59に入射させる。
A synchronous motor 57 is connected to the rotating polygon mirror 53, and while rotating in synchronization with the photoreceptor drum 58, it sweeps the scanning beam lO incident on the deflection surface 53a in the main scanning direction and converts fθ
The light is made incident on the lens 59.

そして該掃引された走査ビーム10はfθレンズ5θで
等角速度運動から等速度運動に変換された後、前記ハウ
ジング51の側板61と上部カバー52に取り付けられ
た第1及び第2の変向ミラー82.E13を介してトロ
イダルレンズ64、シリンドリカルレンズ等のトーリッ
クレンズに入射させ、回転多面鏡53の副走査方向の倒
れ補正を行った後、該トロイダルレンズ64の光軸C下
方に位置する感光体ドラム58の母゛線上に結像走査さ
れる。
The swept scanning beam 10 is converted from constant angular velocity motion to uniform velocity motion by the fθ lens 5θ, and then the first and second deflection mirrors 82 attached to the side plate 61 of the housing 51 and the upper cover 52 .. The photosensitive drum 58 located below the optical axis C of the toroidal lens 64 is made incident on a toric lens such as a toroidal lens 64 or a cylindrical lens through E13, and after correcting the inclination of the rotating polygon mirror 53 in the sub-scanning direction. The image is scanned on the generatrix of .

一方、前記fθレンズ58の出射側のビーム走査領域の
開始端側には検出ミラー65が配置され、前65により
変向させてフォトダイオード66に導き、該フォトダイ
オード66より出方された水平同期信号に基づいて前記
半導体レーザの走査ビーム1o出射時期の制御が行われ
る。
On the other hand, a detection mirror 65 is disposed on the starting end side of the beam scanning area on the output side of the fθ lens 58, and is deflected by the front 65 and guided to a photodiode 66. The emission timing of the scanning beam 1o from the semiconductor laser is controlled based on the signal.

そして前記水平同期信号に基づいて出射された半導体レ
ーザの走査ビーム10は、前述した方法で感光体ドラム
58母線上で繰り返し走査されながら感光体ドラム58
を回転多面鏡53の回転と同期して副走査方向に回転さ
せることにより、ジッタ等が生じる事なく感光体ドラム
58上の入力情報に対応した鮮明画像が形成される。
The scanning beam 10 of the semiconductor laser emitted based on the horizontal synchronization signal is repeatedly scanned on the photosensitive drum 58 generatrix in the manner described above.
By rotating the polygon mirror 53 in the sub-scanning direction in synchronization with the rotation of the rotating polygon mirror 53, a clear image corresponding to the input information on the photoreceptor drum 58 is formed without causing jitter or the like.

第4A、4B図は前記光走査装置に使用されるシリンド
リカルレンズユニット20の構成を示し、前記ハウジン
グ51に固定される外枠23と、該外枠23の円筒空洞
部231内に嵌入され、副走査方向に回動可能なレンズ
固定枠24と、該固定枠24のL字状基準面241に装
着された平凸シリンドリカルレンズ21と、該レンズ2
1を固定枠24と共に回動させ233を開口すると共に
、その斜め上方出射側に副走査方向に沿って延設する長
孔234を穿設し、更にレンズ固定枠24外周面と同一
の曲率半径を有する円筒空洞部231を形成する。
4A and 4B show the configuration of the cylindrical lens unit 20 used in the optical scanning device, which includes an outer frame 23 fixed to the housing 51, and a sub-frame fitted into the cylindrical cavity 231 of the outer frame 23. A lens fixing frame 24 rotatable in the scanning direction, a plano-convex cylindrical lens 21 mounted on an L-shaped reference surface 241 of the fixing frame 24, and the lens 2
1 is rotated together with the fixed frame 24 to open the opening 233, and at the same time, a long hole 234 extending along the sub-scanning direction is bored on the diagonally upward exit side of the hole 233, and the radius of curvature is the same as that of the outer peripheral surface of the lens fixed frame 24. A cylindrical cavity 231 is formed.

レンズ固定枠24は略半円筒状をなし、シリンドリカル
レンズ21が所定位置に位置決め可能なL字状基準面2
41 と、前記調整螺子25が螺設される螺子孔242
とを有する。
The lens fixing frame 24 has a substantially semi-cylindrical shape, and has an L-shaped reference surface 2 on which the cylindrical lens 21 can be positioned at a predetermined position.
41 and a screw hole 242 into which the adjustment screw 25 is screwed.
and has.

シリンドリカルレンズ21は出射面21A側を垂直平面
となし、前記レンズ固定枠24のL字状基準面241に
当接固定されている。
The cylindrical lens 21 has a vertical plane on the exit surface 21A side, and is fixed in contact with the L-shaped reference surface 241 of the lens fixing frame 24.

調整螺子25は、その頭部251が外枠23の長孔23
4上に突出され、前記長孔234の延設角度α範囲内の
任意個所で止め螺子26により所定位置に固定可能に構
成され、調整螺子25の回動によりレンズ固定枠24と
シリンドリカルレンズ21が一体的に副走査方向に回動
させる事が出来る。
The head 251 of the adjustment screw 25 is inserted into the elongated hole 23 of the outer frame 23.
4, and can be fixed in a predetermined position by a set screw 26 at any point within the extending angle α range of the elongated hole 234, and by rotation of the adjustment screw 25, the lens fixing frame 24 and the cylindrical lens 21 are fixed. It can be rotated integrally in the sub-scanning direction.

かかる実施例によれば、前記調整螺子25を長孔234
に沿って回動させる事により簡単に且つ繰り返し操作に
よっても回動誤差が生じる事なく、前記シリンドリカル
レンズ21を副走査方向に回動させる事が出来、本発明
の作用効果を円滑に達成し得る。
According to this embodiment, the adjustment screw 25 is inserted into the elongated hole 234.
By rotating the cylindrical lens 21 along the sub-scanning direction, the cylindrical lens 21 can be easily rotated in the sub-scanning direction without causing a rotational error even with repeated operations, and the effects of the present invention can be smoothly achieved. .

又前記長孔234の延設角度αによって調整螺子25に
よる補正量を自由に決定出来る。
Further, the amount of correction by the adjusting screw 25 can be freely determined by the extension angle α of the elongated hole 234.

「発明の効果」 以上記載の如く1本発明は、光源や各種レンズ系の加工
誤差や組立誤差から生ずる被記録媒体上への結像位置の
ずれ量の補正が、WL調整且つ連続的に補正する事が出
来る為に、被記録媒体の母線丑に形成される結像スポッ
トの鮮明度をより一層向上させる事が出来る。
"Effects of the Invention" As described above, the present invention is capable of correcting the amount of deviation of the image formation position on the recording medium caused by processing errors and assembly errors of the light source and various lens systems by WL adjustment and continuous correction. Therefore, the clarity of the imaged spot formed on the generatrix of the recording medium can be further improved.

又本発明によれば、該光走査装置の結像倍率βに合わせ
シリンドリカルレンズその他の集束レンズの回動中心位
置を適宜決定する事により、単位当たりの補正量を自由
に決定出来、この結果メインテナンスの容易化が可能と
なる。
Further, according to the present invention, by appropriately determining the rotation center position of the cylindrical lens or other focusing lens in accordance with the imaging magnification β of the optical scanning device, the amount of correction per unit can be freely determined, and as a result, maintenance can be reduced. This makes it possible to make it easier.

更に本発明によればシリンドリカルレンズの回めて高い
光走査装置を提供する事が出来る。
Further, according to the present invention, it is possible to provide an optical scanning device with a high rotation speed of a cylindrical lens.

更に又本発明は、部品点数を少なく且つ組立誤差の生じ
る余地の少ない為に、製造コストやメインテナンス費用
の低減を図る事が出来る。
Furthermore, since the present invention has fewer parts and less room for assembly errors, it is possible to reduce manufacturing costs and maintenance costs.

更に又、本発明は前記補正を行ってもシリンドリカルレ
ンズの焦点距離が変化する事がない為に、感光体上での
結像スポット面積の変化が微小であり、この結果均一な
線画像を得る事の出来る。等の著効を有す。
Furthermore, in the present invention, since the focal length of the cylindrical lens does not change even if the correction is performed, the change in the imaging spot area on the photoreceptor is minute, and as a result, a uniform line image is obtained. I can do things. It has the same effect as the above.

【図面の簡単な説明】[Brief explanation of drawings]

第1a乃至第1C図は集束レンズの回動中心位置を夫々
変化させた本発明の詳細な説明する作用図。
1A to 1C are operational diagrams illustrating in detail the present invention in which the rotational center position of the focusing lens is changed respectively.

Claims (1)

【特許請求の範囲】[Claims] 光源より発振されたレーザービームを線状集束光として
偏向器に入射させる結像レンズ系を有する光走査装置に
おいて、該結像レンズ系を構成する集束レンズを副走査
方向に回動可能に構成すると共に、該レンズ回動の際に
生ずるレンズ入射面頂点位置と光軸との間の副走査方向
のずれを微小偏位量に抑えるべく、その回動中心を該レ
ンズの入射面頂点位置より出射面側の所定位置に形成し
た事を特徴とする光走査装置
In an optical scanning device having an imaging lens system that makes a laser beam oscillated from a light source enter a deflector as linear focused light, the focusing lens constituting the imaging lens system is configured to be rotatable in a sub-scanning direction. At the same time, in order to suppress the deviation in the sub-scanning direction between the apex position of the lens entrance surface and the optical axis that occurs when the lens rotates, to a minute deviation, the center of rotation is set to exit from the apex position of the entrance surface of the lens. An optical scanning device characterized by being formed at a predetermined position on the surface side.
JP13701385A 1985-06-25 1985-06-25 Optical scanning device Expired - Lifetime JPH067229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13701385A JPH067229B2 (en) 1985-06-25 1985-06-25 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13701385A JPH067229B2 (en) 1985-06-25 1985-06-25 Optical scanning device

Publications (2)

Publication Number Publication Date
JPS61295526A true JPS61295526A (en) 1986-12-26
JPH067229B2 JPH067229B2 (en) 1994-01-26

Family

ID=15188776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13701385A Expired - Lifetime JPH067229B2 (en) 1985-06-25 1985-06-25 Optical scanning device

Country Status (1)

Country Link
JP (1) JPH067229B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316819A (en) * 1987-06-19 1988-12-26 Fuji Photo Film Co Ltd Light beam scanning device
JPH01108519A (en) * 1987-10-22 1989-04-25 Asahi Optical Co Ltd How to adjust the luminous flux of a scanning optical device
US5287125A (en) * 1991-08-05 1994-02-15 Xerox Corporation Raster output scanner with process direction spot position control
JPH0682620U (en) * 1993-04-30 1994-11-25 株式会社三協精機製作所 Optical scanning device
US5642223A (en) * 1991-01-17 1997-06-24 Asahi Kogaku Kogyo Kabushiki Kaisha Tilting lens system
DE102005027929B4 (en) 2004-06-24 2019-03-07 Denso Corporation Optical scanner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63316819A (en) * 1987-06-19 1988-12-26 Fuji Photo Film Co Ltd Light beam scanning device
JPH01108519A (en) * 1987-10-22 1989-04-25 Asahi Optical Co Ltd How to adjust the luminous flux of a scanning optical device
US5642223A (en) * 1991-01-17 1997-06-24 Asahi Kogaku Kogyo Kabushiki Kaisha Tilting lens system
US5287125A (en) * 1991-08-05 1994-02-15 Xerox Corporation Raster output scanner with process direction spot position control
JPH0682620U (en) * 1993-04-30 1994-11-25 株式会社三協精機製作所 Optical scanning device
DE102005027929B4 (en) 2004-06-24 2019-03-07 Denso Corporation Optical scanner

Also Published As

Publication number Publication date
JPH067229B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
JP3220061B2 (en) Laser scanning unit
JP3334447B2 (en) Optical axis adjusting method of optical scanning device, optical axis adjusting device, and optical scanning device
US6844892B2 (en) Multi-beam scanning device
JPS61295526A (en) Photoscanner
US5438450A (en) Optical scanning apparatus
JPH03179420A (en) Optical apparatus
JPH09304720A (en) Optical scanning device and optical lens
JPH10133135A (en) Light beam deflecting device
JP2647091B2 (en) Laser beam scanning device
JPH06160748A (en) Optical scanner
JPH1010448A (en) Optical scanner
JPH04245214A (en) Light beam scanning optical system
JP3420643B2 (en) Optical scanning device
JPS62278521A (en) Light beam scanning device
JPH0980331A (en) Multibeam scanning device
JPH07318838A (en) Optical scanner
JP2996679B2 (en) Optical device
JP2004070312A (en) Multi-beam scanner
JPH08234129A (en) Optical scanner
JP2822255B2 (en) Scanning optical device
JP2716504B2 (en) Optical scanning device
JP3110816B2 (en) Optical scanning device
JP2557938B2 (en) Light beam scanning device with tilt correction function
JPH07181412A (en) Multibeam scanner
JPH10325929A (en) Optical scanner

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term