[go: up one dir, main page]

JPS61285393A - Heat pipe air preheater - Google Patents

Heat pipe air preheater

Info

Publication number
JPS61285393A
JPS61285393A JP12646985A JP12646985A JPS61285393A JP S61285393 A JPS61285393 A JP S61285393A JP 12646985 A JP12646985 A JP 12646985A JP 12646985 A JP12646985 A JP 12646985A JP S61285393 A JPS61285393 A JP S61285393A
Authority
JP
Japan
Prior art keywords
heat pipe
temperature
exhaust gas
air
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12646985A
Other languages
Japanese (ja)
Inventor
Tetsuo Ooshima
大嶋 哲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
Ishikawajima Harima Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Harima Heavy Industries Co Ltd filed Critical Ishikawajima Harima Heavy Industries Co Ltd
Priority to JP12646985A priority Critical patent/JPS61285393A/en
Publication of JPS61285393A publication Critical patent/JPS61285393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To permit to use water as an operating liquid by a method wherein first stage heat pipe is provided between exhaust gas and the upstream side path of air while second stage heat pipe is provided between the exhaust gas and the downstream side path of the air, in order to reduce the maximum operating temperature of the heat pipe. CONSTITUTION:In the first stage heat pipe 38, high-temperature exhaust gas contacts with high-temperature side evaporating section 39 and low-temperature air, not yet heated, contacts with low-temperature side condensing section. In the second stage heat pipe 42, the exhaust gas, whose temperature is reduced by the high-temperature side evaporating section 39 of the first stage heat pipe 38, contacts with the high-temperature side evaporating section 43 and the air, heated by the low-temperature side condensing section 40 of the first stage heat pipe 38, contacts with the low-temperature side condensing section 44. According to this constitution, the maximum operating temperature of the heat pipe becomes low and water can be used as the operating liquid of the heat pipe. Accordingly, expensive corrosion resistant material is not necessitated to be used for the heat pipe while the thickness of the heat pipe may be thinned and whereby the weight of the heat pipe may be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火力発電用ボイラ、工業炉、加熱炉、流動床
ボイラ等から出る高温の排ガスで空気を予熱し、排ガス
の熱を有効に利用するようにしたヒートパイプ空気予熱
器に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention preheats air with high-temperature exhaust gas emitted from thermal power generation boilers, industrial furnaces, heating furnaces, fluidized bed boilers, etc., and effectively utilizes the heat of the exhaust gas. The present invention relates to a heat pipe air preheater.

〔従来の技術〕[Conventional technology]

従来使用されているヒートパイプ空気予熱器の一例を第
3図について説明すると、ボイラ(1)で発生した高温
の排ガスは、高温集塵機(2)で塵埃が除去された後、
脱硝チャンバー(3)内の脱硝装置(4)Kよって脱硝
される。そして脱硝チャンバー(3)から熱交換チャン
バー(5)の上部に入って熱交換チャンバー(5)内を
下降し、熱交換チャンバー(5)の下部から誘引通風機
(6)によって吸引され、図示しない煙突から排出され
るようになっている。
An example of a conventionally used heat pipe air preheater will be explained with reference to FIG. 3. After the high temperature exhaust gas generated in the boiler (1) has dust removed by the high temperature dust collector (2),
Denitrification is carried out by a denitrification device (4)K in a denitrification chamber (3). Then, it enters the upper part of the heat exchange chamber (5) from the denitrification chamber (3), descends inside the heat exchange chamber (5), and is sucked from the lower part of the heat exchange chamber (5) by an induced draft fan (6), not shown. It is designed to be exhausted from the chimney.

一方、熱交換チャンバー(力が設けてあって、熱交換チ
ャンバー(7)内は、縦方向の仕切板(8)によって左
右に区画されている。そして押込通風機(9)で送られ
て来た空気は熱交換チャ/パー(7)の下部から左側の
区画に入って熱交換チャンバー(力内を上昇し、熱交換
チャンバー(7)の上部から空気通路αQを通って、バ
ーナ風箱へ二次空気として送られるようになっている。
On the other hand, the inside of the heat exchange chamber (7) is divided into left and right sides by a vertical partition plate (8). The air enters the left compartment from the bottom of the heat exchange chamber (7), rises inside the heat exchange chamber (force), passes through the air passage αQ from the top of the heat exchange chamber (7), and enters the burner wind box. It is designed to be sent as secondary air.

また押込通風機(9)を通った空気の一部は、−次通風
機aυを経て熱交換チャンバー(力の下部から右側の区
画に入シ、熱交換チャンバー(力内を上昇して熱交換チ
ャンバー(力の上部から空気通路(12+を通シ、石炭
粉砕機へ一次空気として送られるようになっている。
In addition, a part of the air that has passed through the forced draft fan (9) passes through the second draft fan aυ, enters the heat exchange chamber (from the lower part of the shaft to the right compartment), and ascends through the heat exchange chamber (the inside of the shaft for heat exchange). The air passage (12+) passes from the top of the chamber (force) and is sent as primary air to the coal crusher.

2つの熱交換チャ/バー<5)、(力量には多数のヒー
トパイプα3が設けてあって、ヒートパイプ0りの高温
側蒸発部α4は、排ガスの通る熱交換チャ/バー(5)
内に収められており、ヒートパイプ(131の低温側凝
縮部住1は、空気の通る熱交換チャ/バー(7)内に収
められている。
Two heat exchange chambers/bars < 5), (the power is provided with a large number of heat pipes α3, and the high temperature side evaporation section α4 of the heat pipes 0 is a heat exchange chamber/bar (5) through which the exhaust gas passes.
The low temperature side condensing part 1 of the heat pipe (131) is housed in a heat exchange chamber/bar (7) through which air passes.

排ガスの通る熱交換チャンバー(5)の上部にはショッ
トクリーニング装置(leが取付けてあって、鋼球等の
ショツト粒子を落下して高温側蒸発部α荀の伝熱面に付
着したダストを除去するようになっている。ショツト粒
子と除去されたダストとは、熱交換チャンバー(5)の
下方にあるショツト粒子・ダスト回収装置αηに入るこ
とになる。
A shot cleaning device (LE) is attached to the top of the heat exchange chamber (5) through which the exhaust gas passes, and drops shot particles such as steel balls to remove dust attached to the heat transfer surface of the high temperature side evaporation section α. The shot particles and the removed dust enter the shot particle/dust recovery device αη located below the heat exchange chamber (5).

ヒートパイプα階内に封入されている作動液によって、
熱交換チャンバー(5)内を通る高温の排ガスの熱が、
熱交換チャンバー(7)内を通る空気に与えられること
になる0 熱交換チャンバー(5)の上部の排ガス温度を排ガス入
口温度(tgl)、熱交換チャ/バー(5)の下部の排
ガス温度を排ガス出口温度<tg2)、熱交換チャンバ
ー(力の左側区画下部の空気温度を二次空気入口温度(
1a+)、熱交換チャンバー(力の左側区画上部の空気
温度を二次空気出口温度(1,□)、とするとき、−例
として第4図に示すように、排ガス入口温度(g、、 
) = 370℃、排ガス出口温度(c、2)=140
℃、二次空気入口温度(−1)=44℃の場合には、二
次空気出口温度(1,□)=533℃となる。この場合
、ヒートパイプ作動温度(tHP)は第4図に破線で示
すように、最高温度が352℃となシ、最低温度は92
℃となる。
Due to the working fluid sealed inside the heat pipe α floor,
The heat of the high temperature exhaust gas passing through the heat exchange chamber (5) is
The exhaust gas temperature at the top of the heat exchange chamber (5) which will be given to the air passing through the heat exchange chamber (7) is the exhaust gas inlet temperature (TGL), and the exhaust gas temperature at the bottom of the heat exchange chamber/bar (5) is The exhaust gas outlet temperature < tg2), the air temperature at the bottom of the left section of the heat exchange chamber (force), and the secondary air inlet temperature (
1a+), the air temperature at the top of the left section of the heat exchange chamber (force) is the secondary air outlet temperature (1, □), - As an example, as shown in Fig. 4, the exhaust gas inlet temperature (g,
) = 370℃, exhaust gas outlet temperature (c, 2) = 140
When the secondary air inlet temperature (-1) is 44°C, the secondary air outlet temperature (1, □) is 533°C. In this case, the heat pipe operating temperature (tHP) has a maximum temperature of 352°C and a minimum temperature of 92°C, as shown by the broken line in Figure 4.
℃.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ヒートパイプaJ内に封入する作動液として水を使用す
る場合、水の物性からヒートパイプ作動温度(1H,)
は、340℃程度以下としなければならない。ところが
熱交換チャンバー(5)上部のヒートパイプ作動温度(
tHP)は理論上最大352℃程度になってしまい水の
許容温度を超えるため、熱交換チャンバー(5)の上部
に位置している数段のヒートパイブa3内に封入する作
動液は、水以外の有機系熱媒体を使うことになる。しか
し有機系熱媒体は一般には毒性があシ、また危険物であ
るため、保安対策や保守等が複雑で好ましくなく、また
有機系熱媒体は価格が高く、熱輸送性能が小さいので、
ヒートパイプ(131の伝熱面積を大きくしなければな
らず、経済的でない。
When using water as the working fluid sealed in the heat pipe aJ, the heat pipe operating temperature (1H,) is determined from the physical properties of the water.
The temperature must be approximately 340°C or less. However, the heat pipe operating temperature (
tHP) reaches a theoretical maximum of 352°C, which exceeds the permissible temperature of water. An organic heat medium will be used. However, organic heat carriers are generally toxic and dangerous, so safety measures and maintenance are complicated and undesirable.Also, organic heat carriers are expensive and have low heat transport performance.
The heat transfer area of the heat pipe (131) must be increased, which is not economical.

さらに下段のヒートパイプa3は、高に![蒸発部(1
4Jが140℃程度の排ガス出口温度1gg)の排ガス
と接し、低温側凝縮部(151が44℃程度の二次空気
入口温度(’p+)の空気と接することになってヒート
パイプ作動温度<1H,)は、92℃程度の低い温度に
なる。したがって、ヒートパイプ(13の伝熱面表面温
度が、排ガスの酸露点(石炭焚でSO5濃度0.5〜0
.6ppmの場合、105〜110℃)より低くなるた
め、酸腐食防止上、下段のヒートパイプαりには耐食材
料を使う必要があって、経済的でない。
Furthermore, the lower heat pipe A3 is set high! [Evaporation section (1
4J comes into contact with the exhaust gas at an exhaust gas outlet temperature of about 140°C (1 gg), and the low temperature side condensing section (151 comes into contact with air at a secondary air inlet temperature ('p+) of about 44°C, so that the heat pipe operating temperature is <1H). , ) has a low temperature of about 92°C. Therefore, the surface temperature of the heat transfer surface of the heat pipe (13) is the acid dew point of the exhaust gas (SO5 concentration 0.5 to 0 in coal-fired
.. In the case of 6 ppm, the temperature is lower than 105 to 110° C.), so in order to prevent acid corrosion, it is necessary to use a corrosion-resistant material for the lower heat pipe α, which is not economical.

本発明は、このような従来、の欠点を改善し、ヒートパ
イプの最高作動温度を低下してヒートパイプの全部に作
動液として水が使えるようにし、またヒートパイプの最
低作動温度を排ガスの酸露点より高くして、低温部のヒ
ートパイプに耐食材料を使用しなくてすむようにしたも
のである。
The present invention improves these conventional drawbacks, lowers the maximum operating temperature of the heat pipe so that water can be used as the working fluid in the entire heat pipe, and also lowers the minimum operating temperature of the heat pipe by lowering the maximum operating temperature of the heat pipe. The temperature is set higher than the dew point, so there is no need to use corrosion-resistant materials in the heat pipes in the low-temperature section.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、高温の排ガスが流れる排ガス通路と、加熱す
べき空気が流れる空気通路と、排ガス通路の上流側と空
気通路の上流側との間に設けた第1段のヒートパイプと
、排ガス通路の下流側と空気通路の下流側との間に設け
た第2段のヒートパイプと、を備えたヒートパイプ空気
予熱器としたものである。
The present invention provides an exhaust gas passage through which high-temperature exhaust gas flows, an air passage through which air to be heated flows, a first stage heat pipe provided between an upstream side of the exhaust gas passage and an upstream side of the air passage, and an exhaust gas passage. and a second stage heat pipe provided between the downstream side of the air passage and the downstream side of the air passage.

〔作  用〕[For production]

高い温度の排ガスが接するヒートパイプには、まだ加熱
されていない低温の空気が接してヒートパイプの最高作
動温度を下げると共に、最低作動温度を上げることにな
る。
A heat pipe that is in contact with high-temperature exhaust gas is brought into contact with low-temperature air that has not yet been heated, lowering the maximum operating temperature of the heat pipe and raising the minimum operating temperature.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において、翰はボイラ、Qυは高温集塵機、器、
(ハ)、(財)は熱交換チャンノζ−であって、ボイラ
(至)で発生した高温の排ガスは、ダクト(ハ)によっ
て高温集塵機(2υに導かれるようになっておシ、高温
集塵機(21)はダクト(ハ)によって熱交換チャンバ
ー@の上部につながっている。熱交換チャンバー器の内
部には脱硝装置■が設けられていて、熱交換チャンバー
器の下部は、ダクト例によって熱交換チャンバー(財)
の上部につながっている。熱交換チャンバー@の下部は
、ダクト翰によって誘引通風機(至)の吸入側につなが
っており、誘引通風機(至)の吐出側は、図示しない脱
硫装置および煙突につながっている。
In Figure 1, Kan is the boiler, Qυ is the high-temperature dust collector,
(C) and (Foundation) are heat exchange channels, in which high-temperature exhaust gas generated in the boiler (C) is guided to a high-temperature dust collector (2υ) by a duct (C). (21) is connected to the upper part of the heat exchange chamber @ by a duct (c). A denitrification device is installed inside the heat exchange chamber, and the lower part of the heat exchange chamber is connected to the heat exchange chamber by the duct. Chamber (Foundation)
is connected to the top of the The lower part of the heat exchange chamber @ is connected to the suction side of the induced draft fan (to) by a duct overhead, and the discharge side of the induced draft fan (to) is connected to a desulfurization device and a chimney (not shown).

ボイラ翰で発生した高温の排ガスは、ダクト(2!li
1を通って高温集塵機Qυに入シ、塵埃が除去された後
、ダクト(イ)を通って熱交換チャン/ニー器の上部に
入る。そして熱交換チャンバー器内を下降する間に、脱
硝装置(5)によって脱硝され、熱交換チャンバー(2
2の下部からダク)128)を通って熱交換チャンバー
04の上部に入り、熱交換チャンバー124)を下降し
た後、熱交換チャンバー(24)の下部からダクト翰を
通って誘引通風機(至)に吸引され、図示しない脱硫装
置および煙突を通って排出されることになる。このよう
に、熱交換チャンバー器、(財)は排ガス通路の一部に
なっていて、熱交換チャンバー(2りは熱交換チャンバ
ー04よりも上流側に位置している。
The high-temperature exhaust gas generated in the boiler head is transferred to the duct (2!li
After passing through the duct (A) and entering the high temperature dust collector Qυ to remove dust, it enters the upper part of the heat exchanger/knee chamber through the duct (A). While descending inside the heat exchange chamber, the denitrification device (5) denitrifies the heat exchange chamber (2).
It enters the upper part of the heat exchange chamber 04 from the lower part of the heat exchange chamber (24) through the duct) 128), and after descending through the heat exchange chamber 124), it passes through the duct canopy from the lower part of the heat exchange chamber (24) and enters the induced draft fan (to). and is discharged through a desulfurization device and a chimney (not shown). In this way, the heat exchange chamber 04 is a part of the exhaust gas passage, and the heat exchange chamber 2 is located upstream of the heat exchange chamber 04.

熱交換チャンバー(社)と(2をとの間に位置している
熱交換チャンバー(ハ)の内部は、縦方向の仕切板01
)によって−次空気通路(3湯と二次空気通路(至)と
に区画されている。押込通風機(ロ)によって送られて
来た空気は、直接二次空気通路(至)の下部に入るもの
と、−次通風機(ハ)を介して一次空気通路03の下部
に入るものとに別れるようになっている。
The interior of the heat exchange chamber (c) located between the heat exchange chamber (c) and (2) is divided by a vertical partition plate 01.
) is divided into the secondary air passage (3) and the secondary air passage (to).The air sent by the forced draft fan (b) goes directly to the lower part of the secondary air passage (to). There are two types: one that enters the primary air passage 03, and one that enters the lower part of the primary air passage 03 via the secondary ventilation fan (c).

一次空気通路03の下部に入った空気は一次空気通路0
り内を上昇し、−次空気通路02の上部からダクト(至
)を通って石炭粉砕機へ一次空気として送られる。また
二次空気通路(至)の下部に入った空気は二次空気通路
器内を上昇し、二次空気通路(至)の上部からダクトc
37)を通ってバーナ風箱へ二次空気として送られる。
The air that entered the lower part of the primary air passage 03 is
The primary air rises within the primary air passage 02 and is sent to the coal crusher as primary air through a duct. In addition, the air that has entered the lower part of the secondary air passage (to) rises inside the secondary air passage device and flows from the upper part of the secondary air passage (to) to duct c.
37) and is sent as secondary air to the burner wind box.

このように−次空気通路国、二次空気通路(至)は、い
ずれも下部から上部へ向って空気が流れるため、下部が
上流側、上部が下流側になっている。
In this way, air flows from the bottom to the top in both the secondary air passage and the secondary air passage, so the bottom is on the upstream side and the top is on the downstream side.

熱交換チャンバー(イ)の下部と熱交換チャンバー(ハ
)の下部との間には、複数本のヒートパイプより成る第
1段のヒートパイプ弼が設けてあって、第1段のヒート
パイプ(至)の高温側蒸発部C31は熱交換チャンバー
(社)内に収められており、第1段のヒートパイプ国の
低温側凝縮部(4Gは熱交換チャンバー0階内に収めら
れている。高温側蒸発部(IIの上方にはクー1ブロー
09が設けてあって、圧縮空気または蒸気を高温側蒸発
部C1lに噴射し、高温側、蒸発部0優の伝熱面に付着
したダスト等を除去するようになっている。第1段のヒ
ートパイプ(至)内に封入されている作動液によって、
熱交換チャンバー(2渇内を下降して来た高温の排ガス
の熱は、−次空気通路c32.二次空気通路(ハ)の下
部に入って来た温度の低い空気に与えられる。
A first stage heat pipe consisting of a plurality of heat pipes is provided between the lower part of the heat exchange chamber (A) and the lower part of the heat exchange chamber (C). The high temperature side evaporation section C31 of the first stage heat pipe (4G) is housed in the heat exchange chamber 0th floor. A Cool 1 Blow 09 is provided above the side evaporator section (II), which injects compressed air or steam into the high temperature side evaporator section C1l to remove dust etc. attached to the heat transfer surface of the evaporator section C1l on the high temperature side. It is designed to be removed by the working fluid sealed in the first stage heat pipe (to).
The heat of the high-temperature exhaust gas that has descended through the heat exchange chamber (2) is given to the low-temperature air that has entered the lower part of the secondary air passage (c).

熱交換チャンバー(ハ)の上部と熱交換チャンバーQ4
)との間には、前述した第1段のヒートパイプ(至)よ
シも多い本数のヒートパイプより成る第2段のヒートパ
イプ(43が設けてあって、第2段のヒートパイプ(4
3の高温側蒸発部(43は熱交換チャンバー(財)内に
収められておシ、第2段のヒートパイプC2の低温NJ
凝縮部(44)は熱交換チャンバー(ハ)内に収められ
ている。熱交換チャンバーe24)の上部にはショット
クリーニング装置(49が取付けてあって、鋼球等のシ
ョツト粒子を落下して高温側蒸発部(43の伝熱面に付
着したダストを除去するようになっている。ショツト粒
子と除去されたダストとは、熱交換チャンバー(財)の
下方にあるショツト粒子・ダスト回収装置(4Gに入る
ことになる。第2段のヒートパイプ(41D内に封入さ
れている作動液だよって、熱交換チャンバーI24)内
を下降して来た排ガスの熱は、−次空気通路(3の、二
次空気通路(至)の上部を上昇する空気に与えられる。
Upper part of heat exchange chamber (c) and heat exchange chamber Q4
) A second stage heat pipe (43) is provided between the second stage heat pipe (43), which is composed of a larger number of heat pipes than the first stage heat pipe (43) mentioned above.
The high temperature side evaporator section of 3 (43 is housed in a heat exchange chamber) is the low temperature NJ of the second stage heat pipe C2.
The condensing section (44) is housed in a heat exchange chamber (c). A shot cleaning device (49) is attached to the upper part of the heat exchange chamber (e24), which drops shot particles such as steel balls and removes dust attached to the heat transfer surface of the high temperature side evaporator (43). The shot particles and the removed dust enter the shot particle/dust recovery device (4G) located below the heat exchange chamber. Due to the working fluid present, the heat of the exhaust gas that has descended within the heat exchange chamber I24 is given to the air rising above the secondary air passage (3).

上述した第1図の装置を使用した場合の温度状態の一例
を第2図に示すと、排ガス入口温度(t、、)= 37
0℃、排ガス出口温度(’gz) ==: 140℃、
二次空気入口温度(c、、)=44℃、二次空気出口温
度(ta、) : 555℃であって、第4図に示した
従来の場合と変りないが、第1段のヒートパイプ(至)
においては、高温側蒸発部C35K高温の排ガスが接す
ることになるが、低温側凝縮部には、まだ加熱されてい
ない低温の空気が接することになる。また第2段のヒー
トパイプ(43においては、高温側蒸発部03には第1
段のヒートパイプ(至)の高温側蒸発部431で温度低
下した排ガスが接し、低温側凝縮部(44には第1段の
ヒートパイプ(至)の低温側凝縮部(41で加熱された
空気が接することKなる。
FIG. 2 shows an example of the temperature state when using the device shown in FIG.
0℃, exhaust gas outlet temperature ('gz) ==: 140℃,
Secondary air inlet temperature (c,,) = 44°C, secondary air outlet temperature (ta,): 555°C, which is the same as the conventional case shown in Fig. 4, but the first stage heat pipe (To)
In the high temperature side evaporator section C35K, the high temperature exhaust gas comes into contact with the high temperature side condensing section, but the low temperature air that has not yet been heated comes into contact with the low temperature side condensation section. In addition, in the second stage heat pipe (43), the high temperature side evaporator 03 has a first
The exhaust gas whose temperature has decreased in the high-temperature side evaporator section 431 of the heat pipe (to) of the first stage comes into contact with the exhaust gas, which has been heated in the low-temperature side condensing section (44) of the first stage heat pipe (to). It is K that they touch.

このため、ヒートパイプ作動温度(tHP)の最高温度
は337℃となって、水を作動液とする場合の最高許容
温度340℃より低くなるので、有機系熱媒体を使用せ
ずに、水を作動液として使用することができるようにな
る。またヒートパイプ作動温度(1H,)の最低温度は
112℃となって、排カスノ酸露点105〜110℃(
SO1濃度0.5〜0.6 ppmの場合)より高くな
るので、ヒートパイプ外面腐食防止のために耐食材料を
使う必要がなく、通常の炭素鋼を使用することができる
Therefore, the maximum heat pipe operating temperature (tHP) is 337°C, which is lower than the maximum allowable temperature of 340°C when water is used as the working fluid. It can now be used as a hydraulic fluid. In addition, the lowest temperature of the heat pipe operating temperature (1H,) is 112℃, and the exhaust gas acid dew point is 105-110℃ (
When the SO1 concentration is 0.5 to 0.6 ppm), it is not necessary to use a corrosion-resistant material to prevent corrosion on the outer surface of the heat pipe, and ordinary carbon steel can be used.

〔発明の効果〕〔Effect of the invention〕

本発明は、ヒートパイプの作動液として毒性、危険物で
ある有機系媒体を使用せずに水を使用することができ、
ヒートパイプに高価な耐食材料を使う必要がなく、腐食
が生じないためヒートパイプの肉厚を薄くして重量を軽
減することもできる。
The present invention makes it possible to use water as the working fluid for heat pipes without using organic media, which are toxic and dangerous substances.
There is no need to use expensive corrosion-resistant materials in the heat pipe, and since corrosion does not occur, the heat pipe can be thinner and weigh less.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図は第1図の
装置の温度状態を示すグラフ、第3図は従来装置の一例
を示す系統図、第4図は第3図の装置の温度状態を示す
グラフである。 翰、(ハ)、(財)は熱交換チャンバー、国は一次空気
通路、(至)は二次空気通路、(至)は第1段のヒート
パイプ、(4っけ第2段のヒートパイプである。
FIG. 1 is a system diagram of an embodiment of the present invention, FIG. 2 is a graph showing the temperature state of the device in FIG. 1, FIG. 3 is a graph showing the temperature state of the device. Kan, (c), (foundation) are heat exchange chambers, countries are primary air passages, (to) are secondary air passages, (to) are first stage heat pipes, (four pieces are second stage heat pipes) It is.

Claims (1)

【特許請求の範囲】[Claims] 1)高温の排ガスが流れる排ガス通路と、加熱すべき空
気が流れる空気通路と、前記排ガス通路の上流側と空気
通路の上流側との間に設けた第1段のヒートパイプと、
前記排ガス通路の下流側と空気通路の下流側との間に設
けた第2段のヒートパイプと、を備えたことを特徴とす
るヒートパイプ空気予熱器。
1) an exhaust gas passage through which high-temperature exhaust gas flows, an air passage through which air to be heated flows, and a first stage heat pipe provided between the upstream side of the exhaust gas passage and the upstream side of the air passage;
A heat pipe air preheater comprising: a second stage heat pipe provided between the downstream side of the exhaust gas passage and the downstream side of the air passage.
JP12646985A 1985-06-11 1985-06-11 Heat pipe air preheater Pending JPS61285393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12646985A JPS61285393A (en) 1985-06-11 1985-06-11 Heat pipe air preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12646985A JPS61285393A (en) 1985-06-11 1985-06-11 Heat pipe air preheater

Publications (1)

Publication Number Publication Date
JPS61285393A true JPS61285393A (en) 1986-12-16

Family

ID=14935989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12646985A Pending JPS61285393A (en) 1985-06-11 1985-06-11 Heat pipe air preheater

Country Status (1)

Country Link
JP (1) JPS61285393A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155187A (en) * 1979-05-18 1980-12-03 Babcock Hitachi Kk Connection for heat exchange panel
JPS602891A (en) * 1983-06-21 1985-01-09 Babcock Hitachi Kk Corrosion prevention type heat exchanging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155187A (en) * 1979-05-18 1980-12-03 Babcock Hitachi Kk Connection for heat exchange panel
JPS602891A (en) * 1983-06-21 1985-01-09 Babcock Hitachi Kk Corrosion prevention type heat exchanging device

Similar Documents

Publication Publication Date Title
RU1838635C (en) Method of generation of electric and thermal energy
CZ287910B6 (en) Purification process of combustion products containing nitrogen oxides from a fuel reaction zone of a steam producer and a steam producer for making the same
WO1994011673B1 (en) Method and apparatus for operating a circulating fluidized bed system
JPH01310126A (en) Overall gas turbine power generating device and method
US20130300038A1 (en) Integrated gas cooling system for electric arc furnace
DK162112B (en) PRESSED, CARBON HEATED STEAM GENERATOR
US3194214A (en) Air heater having by-pass to prevent cold-end corrosion
JPH03213902A (en) Burner for circulating fluidized-bed combustion
KR930011918B1 (en) Coke dry cooling plant
CN206112970U (en) Circulating fluidized bed boiler unit based on put out sediment technique futilely
US4430094A (en) Vapor generating system having a plurality of integrally formed gasifiers extending to one side of an upright wall of the generator
CN110331251A (en) A kind of post-processing of converter gas and waste-heat recovery device
JPS61285393A (en) Heat pipe air preheater
JPS62501230A (en) Method and apparatus for generating steam without producing nitrogen oxides using fossil fuels
CN111578723A (en) Metallurgical high temperature dust-containing waste gas treatment system
CN215002967U (en) A sintering-pelletizing process waste gas recycling system and sintering-pelletizing system
JPH08503292A (en) Method and apparatus for cooling high temperature gas
CN210261848U (en) A converter furnace gas post-treatment and waste heat recovery device
CN113150799A (en) Integrated dry quenching waste heat utilization system with primary dust removal function
JP2022107226A (en) Heat exchanger, circulating fluidized bed boiler plant and heat exchange method
JP2978019B2 (en) Heat transfer surface arrangement structure in combustion chamber of circulating fluidized bed device
CN2180940Y (en) Vertical heat-pipe non-pressure boiler for water heating
CN2212748Y (en) Continuous briquette back-fire heat-pipe transfer boiler
SU1273680A1 (en) Boiler set
JPS6040574Y2 (en) Dry dust collection and heat recovery equipment for converter exhaust gas