[go: up one dir, main page]

JPS61285389A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS61285389A
JPS61285389A JP12619785A JP12619785A JPS61285389A JP S61285389 A JPS61285389 A JP S61285389A JP 12619785 A JP12619785 A JP 12619785A JP 12619785 A JP12619785 A JP 12619785A JP S61285389 A JPS61285389 A JP S61285389A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
tube
heat exchanger
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12619785A
Other languages
Japanese (ja)
Inventor
Keiji Murata
村田 圭治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12619785A priority Critical patent/JPS61285389A/en
Publication of JPS61285389A publication Critical patent/JPS61285389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To obtain the heat exchanger, prominent in heat exchanging performance, by a method wherein refrigerant is made to flow between inner and outer tubes while heat source fluid is made to flow through a heat exchanging chamber between the bundle of tubes, consisting of the inner and outer tubes, and the outer shell of the heat exchanger. CONSTITUTION:In the heat exchanger for low temperature difference electric power generating plate or the like, the refrigerant 8, such as Flon or the like, flows into a refrigerant inlet chamber 6 through a refrigerant inlet port 9, passes through a space between the inner tube 2 and the outer tube 5 of a double tube A while being evaporated and flows out of an outlet port 10 through a refrigerant outlet chamber 7. On the other hand, the heat source fluid 11 flows directly into the het exchanging chamber 14 between the outer shell 13 of main body 1 of the heat exchanger and the bundle of tubes consisting of the outer tubes 5 from an inlet port 12, flows to a direction reverse to the flow of refrigerant 8 and flows out of an outlet port 15. Another heat source fluid 11 flows from the inlet port 16 into a heat source fluid inlet chamber 3, flows through the inner tube 2 into a direction reverse to the flow of refrigerant 8 and flows out of the outlet port 17 through an outlet chamber 4. Thus, the improvement of heat exchanging performance may be contrived.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、地熱バイナリ−サイクル発電等の低温度差発
電プラントあるいは、ヒートポンプや冷凍機等に用いら
れる熱交換器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a heat exchanger used in a low temperature difference power generation plant such as geothermal binary cycle power generation, or a heat pump or refrigerator.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

この種の熱交換器を用いた冷凍装置例を第8図によりて
説明する。冷凍装置は、圧縮機22.凝縮器23.減圧
装置(例えば毛細管)24.蒸発器25.をパイプPで
接続して閉ループt−構成したもので、ループにはフロ
ン等の冷媒8が封入されている。その動作は、まず冷媒
8の蒸気全圧縮機22で圧縮し、U縮器23で高温源に
熱を放出して凝縮させる。次に凝縮された冷媒8の蒸気
を減圧装置24で等エンタルピー膨張させた後、蒸発器
25で低温源から熱を奪って蒸気とし、圧縮機22番こ
戻す。
An example of a refrigeration system using this type of heat exchanger will be explained with reference to FIG. The refrigeration system includes a compressor 22. Condenser 23. Pressure reducing device (e.g. capillary tube) 24. Evaporator 25. are connected by a pipe P to form a closed loop T-, and a refrigerant 8 such as fluorocarbon is sealed in the loop. Its operation is such that the refrigerant 8 is first compressed by the vapor total compressor 22, and the U-condenser 23 emits heat to a high temperature source to condense it. Next, the vapor of the condensed refrigerant 8 is subjected to isenthalpic expansion in the decompression device 24, and then is converted into vapor by removing heat from the low temperature source in the evaporator 25, which is then returned to the compressor 22.

この様な冷凍装置に用いられる従来の蒸発器25(ある
いは凝縮器23)t−第9図に示す、同図の蒸発器25
(あるいは凝縮器23)では熱源流体11が蒸発器25
の外、殻13と伝熱管26からなる管束との間りを流れ
、冷媒8が伝熱管26内を蒸発(あるいは凝縮〕しなが
ら流れる。
A conventional evaporator 25 (or condenser 23) used in such a refrigeration system is shown in FIG.
(or the condenser 23), the heat source fluid 11 is transferred to the evaporator 25
Besides, the refrigerant 8 flows between the shell 13 and the tube bundle consisting of the heat transfer tubes 26, and the refrigerant 8 flows inside the heat transfer tubes 26 while evaporating (or condensing).

伝熱管26内を流れる冷媒8の流動様式は、蒸発(ある
いは凝縮)の進行と共に変化するが、大部分の領域で第
10図に示すよう表液膜18が伝熱管26の内壁に沿っ
て、また蒸気27が中心部を流れる環状流となる。
The flow pattern of the refrigerant 8 flowing through the heat exchanger tubes 26 changes as evaporation (or condensation) progresses, but in most areas, the surface liquid film 18 runs along the inner wall of the heat exchanger tubes 26, as shown in FIG. Also, the steam 27 forms an annular flow flowing through the center.

〔発明の目的〕 本発明は、上記欠点を考慮し、熱交換性能のよ〔発明の
概要〕 本発明は、伝熱壁を介して相変化する冷媒と熱源流体と
の熱交換器において、熱交換器の長手方向に平行かつ互
いIC離間された少なくとも1つ以上の内管を内部に含
む外管からなる管束、及び前記内管の一端部と連通ずる
熱源流体入口室、及び前記内管の他端部と連通ずる熱源
流体出口室、及び前記外管の一端部と連通ずる冷媒入口
室、及び前記外管の他端部と連通ずる冷媒量ロ室金、熱
交換器内に設け、冷媒が前記内管と前記外管との間を流
れ、熱源流体が前記内管、及び前記外管からなる管束と
熱交換器の外殻との間の熱交換室を流れるよう構成した
熱交換器である。
[Object of the Invention] The present invention takes the above-mentioned drawbacks into consideration and improves the heat exchange performance. a tube bundle consisting of an outer tube including at least one inner tube parallel to the longitudinal direction of the exchanger and spaced apart from each other; a heat source fluid inlet chamber communicating with one end of the inner tube; a heat source fluid outlet chamber communicating with the other end; a refrigerant inlet chamber communicating with the one end of the outer tube; and a refrigerant volume chamber communicating with the other end of the outer tube; flows between the inner tube and the outer tube, and the heat source fluid flows through a heat exchange chamber between the inner tube and the outer shell of the heat exchanger and a tube bundle consisting of the outer tube. It is.

〔発明の効果〕〔Effect of the invention〕

本発明によれば熱交換性能の良好な熱交換器を得ること
ができる。
According to the present invention, a heat exchanger with good heat exchange performance can be obtained.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例について図面を参照して詳細に説明する
0図面中従来例と同一部分については同一番号を使用す
る。
Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same numbers are used for the same parts as in the conventional example.

第1図は1本発明の第一の実施例を示したものである0
本実施列に於ける熱交換器1は、4本の二重前人からな
る管束、及び二重管Aの内管2と連通する熱源流体入口
室3.及び二重前人の内管2と連通ずる熱源流体出口室
4.及び二重管Aの外管5と連通する冷媒入口室6.及
び二重管Aの外管5と連通する冷媒出口室7からなる蒸
発器である。
Figure 1 shows a first embodiment of the present invention.
The heat exchanger 1 in this embodiment consists of a tube bundle consisting of four double tubes, and a heat source fluid inlet chamber 3, which communicates with the inner tube 2 of the double tube A. and a heat source fluid outlet chamber 4 which communicates with the inner tube 2 of the double front. and a refrigerant inlet chamber 6 communicating with the outer pipe 5 of the double pipe A. This is an evaporator consisting of a refrigerant outlet chamber 7 communicating with the outer pipe 5 of the double pipe A.

フロン等の冷媒8は、冷媒入口9から冷媒入口室61こ
流入し、二重前人の内管2と外管5との閣Eを蒸発しな
がら流れ、冷媒出口室7t−通って冷媒出口10から流
出する。熱源流体11は、熱源流体人口12から熱交換
器1本体の外殻13と外管5からなる管束との間の熱交
換室14に直接流入し、冷媒8の流れと逆方向に流れ、
熱源流体出口15から流出する。そしてこれとは別Iこ
熱源流体11は熱源流体入口16から熱源流体入口室3
に流入し、内管2内を冷媒8の流れと逆方向に流れ、熱
源流体出口室4を通りて熱源流体出口17から流出する
A refrigerant 8 such as fluorocarbon flows into the refrigerant inlet chamber 61 from the refrigerant inlet 9, flows through the cabinet E between the inner pipe 2 and the outer pipe 5 while evaporating, passes through the refrigerant outlet chamber 7t, and reaches the refrigerant outlet. It flows out from 10. The heat source fluid 11 directly flows from the heat source fluid population 12 into the heat exchange chamber 14 between the outer shell 13 of the heat exchanger 1 main body and the tube bundle consisting of the outer tube 5, and flows in the opposite direction to the flow of the refrigerant 8.
It flows out from the heat source fluid outlet 15. Separately from this, the heat source fluid 11 is passed from the heat source fluid inlet 16 to the heat source fluid inlet chamber 3.
, flows in the inner tube 2 in the opposite direction to the flow of the refrigerant 8 , passes through the heat source fluid outlet chamber 4 , and flows out from the heat source fluid outlet 17 .

第2図は1本実施例の蒸発器において二重管Aの内管2
と外管5との間Hを蒸発しながら流れる冷媒8の流動様
式の一ガヲ示したものである。冷媒8の流動様式は、蒸
発の進行と共に変化するが。
Figure 2 shows the inner tube 2 of double tube A in the evaporator of this embodiment.
This figure shows one flow pattern of the refrigerant 8 flowing between the outer tube 5 and the outer tube 5 while evaporating H. The flow pattern of the refrigerant 8 changes as evaporation progresses.

大部分の領域で同図に示すような環状流となシ、液lI
!18が、内管2の外表面S・1と外管5の内表面S・
2に沿9て流れる。
In most areas, there is a circular flow as shown in the figure, and the liquid lI
! 18 is the outer surface S.1 of the inner tube 2 and the inner surface S.1 of the outer tube 5.
It flows along 2nd and 9th.

本実施例のような蒸発器では、冷媒流路の断面積が同じ
でも冷媒8が管内を流れる従来の蒸発器25(第9図参
照)よシも流路のぬれぶち長さが長い。このため、伝熱
面に沿って流れる液[18は薄くなシ、冷媒81111
の熱伝達率は増大し、熱交換器1の伝熱性能は向上する
In the evaporator of this embodiment, even if the cross-sectional area of the refrigerant flow path is the same, the wetted length of the flow path is longer than that of the conventional evaporator 25 (see FIG. 9) in which the refrigerant 8 flows inside the tube. Therefore, the liquid flowing along the heat transfer surface [18 is not thin, the refrigerant 81111
The heat transfer coefficient of is increased, and the heat transfer performance of the heat exchanger 1 is improved.

また、内管2と外管5の管壁が両方とも伝熱面とまるの
で、冷媒流路の断面積が同じでも従来の熱交換器25よ
υも伝熱面積が増大する。従って。
Further, since the tube walls of the inner tube 2 and the outer tube 5 both stop at the heat transfer surface, the heat transfer area is increased compared to the conventional heat exchanger 25 even if the cross-sectional area of the refrigerant flow path is the same. Therefore.

第2図に示した環状流以外の流動様式でも伝熱性能は向
上する。
Heat transfer performance is improved even with flow modes other than the annular flow shown in FIG.

〔発明の他の実施例〕[Other embodiments of the invention]

次に、その他の実施列について説明する。 Next, other implementation sequences will be explained.

第3図は本発明の第二の実施例を示したものである。本
実ya例は第1図と$2図で示した溝−のる。
FIG. 3 shows a second embodiment of the invention. The present example is shown in FIGS. 1 and 2.

この様な構造にすれば、第1の実施例に於ける熱源流体
人口12.熱源流体出口15がいらなくなり%熱交換器
本体及び配管等の構成が非常に簡単になって、コスト低
下につながる。
With such a structure, the heat source fluid population in the first embodiment can be reduced to 12. Since the heat source fluid outlet 15 is not required, the structure of the heat exchanger body, piping, etc. becomes extremely simple, leading to cost reduction.

次fこ、第三の実ts例t−説明する。Next, a third real example will be explained.

#!4図は本発明の第三の実施例を示すもので。#! Figure 4 shows a third embodiment of the present invention.

第5図は第4図中の断面A−A’を示したものである。FIG. 5 shows a cross section A-A' in FIG. 4.

本実施例の構造は前述した実施列とほぼ同様であるが、
第5図中に示されるように外管5の内部ζこは互いに離
間された複数本(本実施列中では7本)の内管2が含ま
れており、フロン等の冷媒8は、7本の内管2からなる
管束と外管5との間金相変化を伴りて流れる。
The structure of this example is almost the same as the above-mentioned example, but
As shown in FIG. 5, the inside of the outer tube 5 includes a plurality of inner tubes 2 (seven in this embodiment) spaced apart from each other, and the refrigerant 8 such as fluorocarbon is Flow occurs between the tube bundle consisting of the inner tube 2 and the outer tube 5 with a metal phase change.

熱源流体11は、内管2、及び外管5からなる管束と熱
交換器1本体の外殻13との間の熱交換室14を冷媒の
流れと逆方向に流れる。
The heat source fluid 11 flows in a direction opposite to the flow of the refrigerant through the heat exchange chamber 14 between the tube bundle consisting of the inner tube 2 and the outer tube 5 and the outer shell 13 of the heat exchanger 1 body.

本実施例でも、第1.第2で示した前述の実施例と同様
の理由で伝熱性能が向上する。
In this embodiment as well, the first. Heat transfer performance is improved for the same reason as in the second embodiment described above.

第6図、第7図に本発明の第四の実施列を示す。A fourth embodiment of the present invention is shown in FIGS. 6 and 7.

本実施列は冷媒に非共沸混合媒体20を用いた蒸発器で
、その構造は第1図に示された第一の実施例とその構造
全略同じくし異なる部分は二重管人の外管5の外表面に
第7図に示すような軸方向lこ長いフィン21を設けた
ものである。
This embodiment is an evaporator that uses a non-azeotropic mixed medium 20 as the refrigerant, and its structure is almost the same as the first embodiment shown in Fig. 1, except for the double pipe structure. The outer surface of the tube 5 is provided with fins 21 which are elongated in the axial direction as shown in FIG.

来る可能性があることから、近年特に注目されている。It has been attracting particular attention in recent years because of the possibility that it may occur.

非共沸混合媒体の特性上有効に生かすには、蒸発器や凝
縮器に於いて熱源流体と非共沸混合媒体の対向R1−実
現する必要がある。
In order to make effective use of the characteristics of the non-azeotropic mixed medium, it is necessary to realize the opposing R1 of the heat source fluid and the non-azeotropic mixed medium in the evaporator or condenser.

本実施例では、外管5の外表面に軸方向のフィン21が
設けられているので、熱源流体11は外管5からなる管
束と熱交換器1本体の外jl13との間の熱交換室14
t−二重管の軸方向lこ平行lこ流れる。このため熱源
流体11と非共沸混合媒体20とのほぼ完全な対向流が
実現できる。したがりて、非共沸混合媒体20の特性t
−有効に生かすことができる。更に、上記フィン21に
よりて伝熱面積も増加するので、伝熱性能も向上する。
In this embodiment, since the axial fins 21 are provided on the outer surface of the outer tube 5, the heat source fluid 11 flows into the heat exchange chamber between the tube bundle consisting of the outer tube 5 and the outer tube 13 of the heat exchanger 1 body. 14
It flows parallel to the axial direction of the T-double pipe. Therefore, almost complete counterflow between the heat source fluid 11 and the non-azeotropic mixed medium 20 can be realized. Therefore, the characteristic t of the non-azeotropic mixed medium 20
-Can be used effectively. Furthermore, since the heat transfer area is increased by the fins 21, heat transfer performance is also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第10は本発明の第一の実施例を示す構成図、ごす〜 実施例を示1す構成図、第4図は本発明の第3実施例を
示す構成図、第5因は第4図中のA−A’断面を示す断
面図、第6図は本発明の第f嘴施ガを示す構成図、第7
図は第4の実tIAnに於ける外管の様子を示す斜視図
、第8図は冷凍装置の概略系統図、第9図は従来の蒸発
器(あるいは凝縮器)を示す構成図、第10図は従来の
蒸発器(あるいは凝縮器)に於いて伝熱管内を流動する
冷媒の様子を示す断面図である。 1・・・熱交換器、2・・・内管、3可熱源流体入口室
。 4・・・熱源流体出口室% 5・・・外!、6・・・冷
媒入口室。 7・・・冷媒出口室、8・・・冷媒、11・・・熱源流
体、14・・・熱交換室、19・・・連通管、21・・
・フィン。 代理人弁理士  則 近 憲 佑(ばか1名)第  4
 図 第  5!ii!l 第  6 図
Fig. 10 is a block diagram showing the first embodiment of the present invention, Figure 4 is a block diagram showing the third embodiment of the present invention, and the fifth factor is the fourth embodiment. A sectional view showing the AA' cross section in the figure, FIG. 6 is a configuration diagram showing the f-th beak treatment of the present invention, and FIG.
The figure is a perspective view showing the state of the outer tube in the fourth actual tIAn, FIG. 8 is a schematic system diagram of the refrigeration system, FIG. 9 is a configuration diagram showing a conventional evaporator (or condenser), and FIG. The figure is a cross-sectional view showing the state of refrigerant flowing in heat transfer tubes in a conventional evaporator (or condenser). 1... Heat exchanger, 2... Inner pipe, 3 Heatable source fluid inlet chamber. 4...Heat source fluid outlet chamber% 5...Outside! , 6... Refrigerant inlet chamber. 7... Refrigerant outlet chamber, 8... Refrigerant, 11... Heat source fluid, 14... Heat exchange chamber, 19... Communication pipe, 21...
·fin. Representative Patent Attorney Kensuke Chika (1 idiot) No. 4
Figure number 5! ii! l Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)伝熱壁を介して相変化する第一の流体と熱源とな
る第二の流体との熱交換を行う熱交換器において、前記
熱交換器の長手方向に平行かつ互いに離間された少なく
とも1つ以上の内管を内部に含む外管からなる管束、及
び前記内管の一端部と連通する第二の流体の入口室、及
び前記内管の他端部と連通する第二の流体の出口室、及
び前記外管の一端部と連通する第一の流体の入口室、及
び前記外管の他端部と連通する第一の流体の出口室を、
前記熱交換器内に設け、前記第一の流体が前記内管と前
記外管との間を流れ、前記第二の流体が前記内管、及び
前記外管からなる管束と前記熱交換器の外殻との間の熱
交換室を流れるよう構成したことを特徴とする熱交換器
(1) In a heat exchanger that performs heat exchange between a first fluid that undergoes a phase change and a second fluid that serves as a heat source through a heat transfer wall, at least one fluid that is parallel to the longitudinal direction of the heat exchanger and spaced from each other A tube bundle consisting of an outer tube containing one or more inner tubes, a second fluid inlet chamber communicating with one end of the inner tube, and a second fluid inlet chamber communicating with the other end of the inner tube. an outlet chamber, a first fluid inlet chamber communicating with one end of the outer tube, and a first fluid outlet chamber communicating with the other end of the outer tube;
The first fluid flows between the inner tube and the outer tube, and the second fluid flows between the inner tube and the outer tube and the heat exchanger. A heat exchanger characterized in that a heat exchange chamber between the outer shell and the outer shell is configured to allow fluid to flow through the heat exchange chamber.
(2)外管からなる管束と熱交換器の外殻との間の熱交
換室と第二の流体の入口室とを連通する連通管、及び前
記熱交換室と前記第二の流体の出口室を連通する連通管
を設けたことを特徴とする特許請求の範囲第1項記載の
熱交換器。
(2) A communication pipe that communicates the heat exchange chamber between the tube bundle made of the outer tube and the outer shell of the heat exchanger with the second fluid inlet chamber, and the heat exchange chamber and the second fluid outlet. 2. The heat exchanger according to claim 1, further comprising a communication pipe that communicates the chambers.
(3)外管の外表面に前記外管の長手方向に平行なフィ
ン又はスパイラル状のフィンを設けたことを特徴とする
特許請求の範囲第1項および第2項のいずれかに記載の
熱交換器。
(3) The heat according to any one of claims 1 and 2, characterized in that the outer surface of the outer tube is provided with fins or spiral fins parallel to the longitudinal direction of the outer tube. exchanger.
JP12619785A 1985-06-12 1985-06-12 Heat exchanger Pending JPS61285389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12619785A JPS61285389A (en) 1985-06-12 1985-06-12 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12619785A JPS61285389A (en) 1985-06-12 1985-06-12 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS61285389A true JPS61285389A (en) 1986-12-16

Family

ID=14929103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12619785A Pending JPS61285389A (en) 1985-06-12 1985-06-12 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS61285389A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1189007A3 (en) * 2000-09-19 2005-02-09 Piero Pasqualini Heat exchanger
JP2008517864A (en) * 2004-10-26 2008-05-29 ハルドール・トプサー・アクチエゼルスカベット Reactor and method for carrying out endothermic or exothermic contact reactions
JP2013117348A (en) * 2011-12-02 2013-06-13 Sumikoo Homes Kk Heat exchanger for air conditioning
CN107036464A (en) * 2017-04-06 2017-08-11 无锡科技职业学院 A kind of high-efficiency tubular heat exchanger
WO2019177209A1 (en) * 2018-03-14 2019-09-19 주식회사 에너솔라 Heat exchange device and heat pump sequential control apparatus having same
CN115127369A (en) * 2022-06-30 2022-09-30 江苏省特种设备安全监督检验研究院 a heat exchange device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1189007A3 (en) * 2000-09-19 2005-02-09 Piero Pasqualini Heat exchanger
JP2008517864A (en) * 2004-10-26 2008-05-29 ハルドール・トプサー・アクチエゼルスカベット Reactor and method for carrying out endothermic or exothermic contact reactions
JP2013117348A (en) * 2011-12-02 2013-06-13 Sumikoo Homes Kk Heat exchanger for air conditioning
CN107036464A (en) * 2017-04-06 2017-08-11 无锡科技职业学院 A kind of high-efficiency tubular heat exchanger
WO2019177209A1 (en) * 2018-03-14 2019-09-19 주식회사 에너솔라 Heat exchange device and heat pump sequential control apparatus having same
CN115127369A (en) * 2022-06-30 2022-09-30 江苏省特种设备安全监督检验研究院 a heat exchange device

Similar Documents

Publication Publication Date Title
JP3045382B2 (en) Refrigeration cycle device with two evaporation temperatures
CA1064718A (en) High performance heat exchanger
RU2227883C2 (en) Two-phase heat-exchanger with liquid cooling (variants)
JP3056151B2 (en) Heat exchanger
JP2002267289A (en) Plate heat exchanger
JP2001336896A (en) Heat exchanger and refrigeration cycle equipment
JPH06213518A (en) Heat pump type air conditioner for mixed refrigerant
US4512394A (en) Variable effect absorption machine and process
JPS61285389A (en) Heat exchanger
GB2344413A (en) Refrigerators having freezing and cooling compartment evaporators
Panchal et al. Thermal performance of advanced heat exchangers for ammonia refrigeration systems
JPS6252238B2 (en)
JPH02143094A (en) Heat exchanger equipped with heat transfer tube
JPS61140762A (en) Evaporator for non-eutectic mixed medium
CN206890923U (en) Shell-tube heat exchanger
JPH0579726A (en) Freezing cycle device
JP2719408B2 (en) Absorption refrigerator
Chiriac et al. Ammonia condensation heat transfer in air-cooled mesochannel heat exchangers
CN109900028A (en) High-efficient refrigerating plant of evaporation and condensation process quality adjustable
KR200168000Y1 (en) Evaporator for room airconditioner
CN107091546A (en) Shell-tube heat exchanger
GB2314149A (en) Thermosyphon refrigeration apparatus
JP2647098B2 (en) Shell tube heat exchanger
RU2156425C2 (en) Reversing heat-transfer apparatus
JP2000055509A (en) Heat exchanger for air conditioner