JP2000055509A - Heat exchanger for air conditioner - Google Patents
Heat exchanger for air conditionerInfo
- Publication number
- JP2000055509A JP2000055509A JP10220757A JP22075798A JP2000055509A JP 2000055509 A JP2000055509 A JP 2000055509A JP 10220757 A JP10220757 A JP 10220757A JP 22075798 A JP22075798 A JP 22075798A JP 2000055509 A JP2000055509 A JP 2000055509A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- heat exchanger
- refrigerant
- air conditioner
- insert
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、空気調和機の室内
又は室外熱交換器に係り、とりわけ、凝縮器としての過
冷却度を大きくとれるように伝熱管内の構造を改良した
空気調和機の熱交換器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an indoor or outdoor heat exchanger of an air conditioner, and more particularly to an air conditioner having an improved structure inside a heat transfer tube so that a supercooling degree as a condenser can be increased. It relates to a heat exchanger.
【0002】[0002]
【従来の技術】図14は、空気調和機における冷凍サイ
クルを構成する熱交換器2,3の一般的な構成を示す模
式図である。ここで、図15に示すように、一般的な空
気調和機の冷凍サイクルは、圧縮機1、室内熱交換器
2、絞り機構4、室外熱交換器3および四方弁5をそれ
ぞれ冷媒配管で接続してなり、冷媒流れ方向が実線矢印
のようになる暖房運転と、同じく破線矢印のようになる
冷房運転とを四方弁5によって切り替えられるように構
成されている。そして、このような空気調和機において
は、暖房運転時に室内熱交換器2が、冷房運転時に室外
熱交換器3がそれぞれ凝縮器(放熱側)となる。2. Description of the Related Art FIG. 14 is a schematic diagram showing a general configuration of heat exchangers 2 and 3 constituting a refrigeration cycle in an air conditioner. Here, as shown in FIG. 15, the refrigeration cycle of a general air conditioner has a compressor 1, an indoor heat exchanger 2, a throttle mechanism 4, an outdoor heat exchanger 3, and a four-way valve 5 connected by refrigerant pipes. The four-way valve 5 switches between a heating operation in which the refrigerant flow direction is as indicated by a solid arrow and a cooling operation in which the refrigerant flow direction is also indicated by a dashed arrow. In such an air conditioner, the indoor heat exchanger 2 serves as a condenser (radiation side) during the heating operation, and the outdoor heat exchanger 3 serves as the condenser during the cooling operation.
【0003】これらの熱交換器2,3は一般に、図14
に示すように、冷媒の流れる屈曲した伝熱管7と、この
伝熱管7が貫通する多数のフィン6とを備えている。そ
して、凝縮器としての熱交換器2,3の伝熱管7内を流
れる冷媒は、冷媒入口側から出口側へ至る過程で伝熱管
7外を流れる空気等の流体と熱交換して放熱し、液冷媒
に凝縮される。[0003] Generally, these heat exchangers 2 and 3 are shown in FIG.
As shown in FIG. 5, the heat transfer pipe 7 includes a bent heat transfer pipe 7 through which the refrigerant flows, and a number of fins 6 through which the heat transfer pipe 7 passes. The refrigerant flowing in the heat transfer tubes 7 of the heat exchangers 2 and 3 as condensers exchanges heat with a fluid such as air flowing outside the heat transfer tubes 7 in a process from the refrigerant inlet side to the outlet side to radiate heat, Condensed into liquid refrigerant.
【0004】このような凝縮器としての熱交換器2,3
の性能向上、すなわち冷媒出口側での冷媒の過冷却度向
上を図る手段としては、一般に冷凍サイクルへの冷媒封
入量を増大させることが考えられる。Heat exchangers 2 and 3 as such condensers
As a means for improving the performance of the above, that is, for improving the degree of supercooling of the refrigerant at the refrigerant outlet side, it is generally considered to increase the amount of refrigerant charged into the refrigeration cycle.
【0005】また従来、図16に示すような、いわゆる
複数パス構成の熱交換器(この場合は2―1パス構成の
室内熱交換器)2"も提案されている。図16におい
て、円弧形熱交換器20と平形熱交換器22とを備えた
室内熱交換器2"は、(矢印で示すように)凝縮器とし
ての冷媒入口側で2パス構成となっている伝熱管7が、
途中の合流部24から1パス構成となって出口側に至っ
ている。Conventionally, a heat exchanger having a so-called multi-pass configuration (in this case, an indoor heat exchanger having a 2-1 pass configuration) 2 "as shown in FIG. 16 has also been proposed. In FIG. The indoor heat exchanger 2 ″ including the shape heat exchanger 20 and the flat heat exchanger 22 includes a heat transfer tube 7 having a two-pass configuration on the refrigerant inlet side as a condenser (as indicated by an arrow).
A one-pass configuration is formed from the junction 24 on the way to the exit side.
【0006】そして、このような複数パス構成の熱交換
器2"において冷媒の過冷却度向上を図る手段として、
図16に示すように出口側の1パス部分の伝熱管7を長
く取るとこで冷媒の流速を上げると共に、冷媒封入量を
増大させるという提案がなされている。As means for improving the degree of supercooling of the refrigerant in the heat exchanger 2 ″ having such a multi-pass structure,
As shown in FIG. 16, a proposal has been made to increase the flow rate of the refrigerant by increasing the length of the heat transfer tube 7 in the one-pass portion on the outlet side, and to increase the amount of charged refrigerant.
【0007】[0007]
【発明が解決しようとする課題】上述したような従来の
空気調和機の熱交換器には、以下のような問題点があ
る。すなわち、冷媒封入量を増やすと、圧縮機の信頼性
が低下し、これを防ぐためにアキュムレータ(気液分離
器)やレシーバ(受液器)等の補助的機器類を追加する
必要が生ずる等の問題がある。The above-mentioned conventional heat exchangers for air conditioners have the following problems. In other words, if the amount of refrigerant charged is increased, the reliability of the compressor is reduced. To prevent this, it is necessary to add auxiliary equipment such as an accumulator (gas-liquid separator) and a receiver (liquid receiver). There's a problem.
【0008】また、図16に示したような複数パス構成
の熱交換器において、出口側の少パス部分の伝熱管7を
長く取ると、熱伝達率の低い液冷媒の占める伝熱管7の
部分が多くなって熱交換器全体の熱伝達性能が低下し、
熱交換器温度が高くなってしまう。また、当該熱交換器
が蒸発器となる場合に、入口側となる少パス部分の伝熱
管7での冷媒の圧力損失が大きくなり、蒸発能力が低下
してしまうという問題もある。In a heat exchanger having a multi-pass structure as shown in FIG. 16, if the heat transfer tubes 7 in the small number of passages on the outlet side are made long, the heat transfer tubes 7 occupied by the liquid refrigerant having a low heat transfer coefficient can be obtained. And the heat transfer performance of the entire heat exchanger decreases,
The heat exchanger temperature will be high. Further, when the heat exchanger is an evaporator, there is also a problem that the pressure loss of the refrigerant in the heat transfer tube 7 in the small-pass portion on the inlet side is increased, and the evaporating capacity is reduced.
【0009】本発明は、このような点を考慮してなされ
たものであり、冷媒封入量を増やしたり、複数パス構成
の熱交換器において出口側の少パス部分の伝熱管を長く
取ったりしなくても、凝縮器となる場合に冷媒の過冷却
度を大きく取れるような空気調和機の熱交換器を提供す
ることを目的とする。The present invention has been made in view of the above points, and increases the amount of refrigerant to be charged and increases the length of the heat transfer tube in the small number of outlets on the outlet side in a heat exchanger having a plurality of passes. It is an object of the present invention to provide a heat exchanger of an air conditioner that can obtain a large degree of supercooling of a refrigerant in a case where the heat exchanger is used as a condenser.
【0010】[0010]
【課題を解決するための手段】第1の手段は、冷媒の流
れる伝熱管を備えた空気調和機の熱交換器において、当
該熱交換器が凝縮器となる場合の冷媒出口側の前記伝熱
管内に内挿体が設けられ、この内挿体は、前記伝熱管内
に略同軸に配置された略円柱状の内挿体本体と、この本
体の表面に設けられ前記伝熱管の内壁面に当接する複数
の突起部とを有することを特徴とする空気調和機の熱交
換器である。A first means is that in a heat exchanger of an air conditioner provided with a heat transfer tube through which a refrigerant flows, the heat transfer at a refrigerant outlet side when the heat exchanger is a condenser. An insert is provided in the tube, and the insert is provided with a substantially cylindrical insert body disposed substantially coaxially in the heat transfer tube, and an inner wall surface of the heat transfer tube provided on the surface of the body. A heat exchanger for an air conditioner, comprising: a plurality of projections that come into contact with each other.
【0011】この第1の手段によれば、内挿体が設けら
れた伝熱管の内部においては、内挿体本体によって流路
が伝熱管の内壁面側に狭められ、冷媒の流速が増大する
と共に、冷媒が伝熱管の内壁面側だけを流れるので、伝
熱管の内壁面と冷媒との間の伝熱を促進させることがで
きる。また、内挿体の複数の突起部が伝熱管の内壁面に
当接しているので、内挿体を通じて、伝熱管の内壁面と
冷媒との間の間接的な熱伝達を図ることができる。これ
らのことにより、内挿体が設けられた伝熱管の内部にお
ける熱伝達性能を、他の伝熱管部分に比べて向上させる
ことができる。第2の手段は、第1の手段において、前
記内挿体の突起部は、前記内挿体本体の軸線方向に螺旋
状に延びているものである。According to the first means, inside the heat transfer tube provided with the insert, the flow passage is narrowed by the insert body to the inner wall surface side of the heat transfer tube, and the flow rate of the refrigerant increases. In addition, since the refrigerant flows only on the inner wall surface side of the heat transfer tube, heat transfer between the inner wall surface of the heat transfer tube and the refrigerant can be promoted. Further, since the plurality of protrusions of the insert are in contact with the inner wall surface of the heat transfer tube, indirect heat transfer between the inner wall surface of the heat transfer tube and the refrigerant can be achieved through the insert. With these, the heat transfer performance inside the heat transfer tube provided with the insert can be improved as compared with other heat transfer tube portions. According to a second means, in the first means, the protrusion of the insert body extends spirally in the axial direction of the insert body body.
【0012】この第2の手段によれば、第1の手段にお
いて、内挿体の突起部によって冷媒の流れを螺旋状に旋
回させることで、内挿体が設けられた伝熱管の内部にお
ける熱伝達性能をより一層向上させることができる。According to the second means, in the first means, the flow of the refrigerant is spirally swirled by the projections of the insert, so that the heat inside the heat transfer tube provided with the insert is provided. The transmission performance can be further improved.
【0013】第3の手段は、第1の手段において、前記
内挿体本体の表面に、略軸線方向に延びる複数の溝部が
形成されているものである。A third means is the first means, wherein a plurality of grooves extending substantially in the axial direction are formed on the surface of the insert body.
【0014】この第3の手段によれば、第1の手段にお
いて、内挿体本体の複数の溝部によって内挿体本体と冷
媒との間の熱伝達を促進させることにより、内挿体を通
じての伝熱管の内壁面と冷媒との間の間接的な熱伝達量
を増大させ、内挿体が設けられた伝熱管の内部における
熱伝達性能をより一層向上させることができる。According to the third means, in the first means, the heat transfer between the insert body and the refrigerant is promoted by the plurality of grooves of the insert body so that the heat can be transmitted through the insert body. The amount of indirect heat transfer between the inner wall surface of the heat transfer tube and the refrigerant can be increased, and the heat transfer performance inside the heat transfer tube provided with the insert can be further improved.
【0015】第4の手段は、第1乃至第3の手段のいず
れかにおいて、前記内挿体は、アルミニウムまたはアル
ミニウム合金から作られているものである。According to a fourth aspect, in any one of the first to third aspects, the insert is made of aluminum or an aluminum alloy.
【0016】この第4の手段によれば、第1乃至第3の
手段のいずれかにおいて、内挿体の熱伝導率を向上させ
ることで、内挿体を通じての伝熱管の内壁面と冷媒との
間の間接的な熱伝達量を増大させ、内挿体が設けられた
伝熱管の内部における熱伝達性能をより一層向上させる
ことができる。According to the fourth means, in any one of the first to third means, by improving the thermal conductivity of the insert, the inner wall surface of the heat transfer tube through the insert, the refrigerant, And the amount of indirect heat transfer during the heat transfer can be increased, and the heat transfer performance inside the heat transfer tube provided with the insert can be further improved.
【0017】第5の手段は、冷媒の流れる伝熱管を備え
た空気調和機の熱交換器において、前記伝熱管の内壁面
に、略軸線方向に延びる複数の管内溝が形成されると共
に、これらの管内溝の深さは、当該熱交換器が凝縮器と
なる場合の冷媒出口側の方が、冷媒入口側よりも深くな
っているものである。The fifth means is that in the heat exchanger of the air conditioner provided with the heat transfer tubes through which the refrigerant flows, a plurality of tube grooves extending substantially in the axial direction are formed on the inner wall surface of the heat transfer tubes. Is smaller on the refrigerant outlet side than on the refrigerant inlet side when the heat exchanger is a condenser.
【0018】この第5の手段によれば、伝熱管の管内溝
の深さが深くなるほど伝熱管の内壁面と冷媒との間の伝
熱を促進させることができるので、当該熱交換器が凝縮
器となる場合の冷媒出口側の伝熱管の内部における熱伝
達性能を、入口側に比べて向上させることができる。According to the fifth means, the heat transfer between the inner wall surface of the heat transfer tube and the refrigerant can be promoted as the depth of the groove in the heat transfer tube becomes deeper. The heat transfer performance inside the heat transfer tube on the refrigerant outlet side in the case of a container can be improved as compared with the inlet side.
【0019】第6の手段は、第1乃至第5の手段のいず
れかにおいて、熱交換器を室内熱交換器としたものであ
る。According to a sixth aspect, in any one of the first to fifth aspects, the heat exchanger is an indoor heat exchanger.
【0020】この第6の手段によれば、第1乃至第5の
手段のいずれかにおいて、室内熱交換器が凝縮器となる
空気調和機の暖房運転時に、当該室内熱交換器における
冷媒の過冷却度を大きく取ることで、空気調和機の暖房
能力を向上させることができる。According to the sixth means, in any one of the first to fifth means, during the heating operation of the air conditioner in which the indoor heat exchanger serves as a condenser, excess refrigerant in the indoor heat exchanger is provided. By increasing the degree of cooling, the heating capacity of the air conditioner can be improved.
【0021】第7の手段は、第1乃至第5の手段のいず
れかにおいて、熱交換器を室外熱交換器としたものであ
る。According to a seventh aspect, in any one of the first to fifth aspects, the heat exchanger is an outdoor heat exchanger.
【0022】この第7の手段によれば、第1乃至第5の
手段のいずれかにおいて、室外熱交換器が凝縮器となる
空気調和機の冷房運転時に、当該室外熱交換器における
冷媒の過冷却度を大きく取ることで、空気調和機の冷房
能力を向上させることができる。According to the seventh means, in any one of the first to fifth means, during the cooling operation of the air conditioner in which the outdoor heat exchanger serves as a condenser, the excess amount of refrigerant in the outdoor heat exchanger. By increasing the degree of cooling, the cooling capacity of the air conditioner can be improved.
【0023】[0023]
【発明の実施の形態】次に、図面を参照して本発明の実
施の形態について説明する。図1乃至図13は本発明に
よる空気調和機の熱交換器の実施の形態を示す図であ
る。なお、図1乃至図13に示す本発明の実施の形態に
おいて、図14および図15に示す一般的な空気調和機
の熱交換器または図16に示す従来例と同一の構成部分
には同一符号を付すと共に適宜、図14および図15も
参照して説明する。Next, an embodiment of the present invention will be described with reference to the drawings. 1 to 13 are views showing an embodiment of a heat exchanger of an air conditioner according to the present invention. In the embodiments of the present invention shown in FIGS. 1 to 13, the same components as those of the general heat exchanger of the air conditioner shown in FIGS. 14 and 15 or those of the conventional example shown in FIG. And description will be made with reference to FIGS. 14 and 15 as appropriate.
【0024】[第1の実施形態]まず、図1乃至図5に
より本発明の第1の実施形態について説明する。まず、
図15に示す一般的な空気調和機の冷凍サイクルは、圧
縮機1、室内熱交換器2、絞り機構4、室外熱交換器3
および四方弁5をそれぞれ冷媒配管で接続してなり、冷
媒流れ方向が実線矢印のようになる暖房運転と、同じく
破線矢印のようになる冷房運転とを四方弁5によって切
り替えられるように構成されている。そして、このよう
な空気調和機においては、暖房運転時に室内熱交換器2
が、冷房運転時に室外熱交換器3がそれぞれ凝縮器(放
熱側)となる。[First Embodiment] First, a first embodiment of the present invention will be described with reference to FIGS. First,
A refrigeration cycle of a general air conditioner shown in FIG. 15 includes a compressor 1, an indoor heat exchanger 2, a throttle mechanism 4, and an outdoor heat exchanger 3.
And the four-way valve 5 are connected by refrigerant pipes, respectively, so that the four-way valve 5 can switch between a heating operation in which the refrigerant flow direction is as indicated by a solid arrow and a cooling operation in which the refrigerant flow direction is also indicated by a dashed arrow. I have. In such an air conditioner, the indoor heat exchanger 2 is used during the heating operation.
However, during the cooling operation, the outdoor heat exchangers 3 each become a condenser (radiation side).
【0025】これらの熱交換器2,3は一般に、図14
に示すように、冷媒の流れる屈曲した伝熱管7と、この
伝熱管7が貫通する多数のフィン6とを備えている。こ
のうち伝熱管7は一般に銅管であり、フィン6は一般に
アルミ合金板である。そして、凝縮器としての熱交換器
2,3の伝熱管7内を流れる冷媒は、冷媒入口側から出
口側へ至る過程で伝熱管7外を流れる空気等の流体と熱
交換して放熱し、液冷媒に凝縮される。These heat exchangers 2 and 3 are generally connected to each other as shown in FIG.
As shown in FIG. 5, the heat transfer pipe 7 includes a bent heat transfer pipe 7 through which the refrigerant flows, and a number of fins 6 through which the heat transfer pipe 7 passes. The heat transfer tube 7 is generally a copper tube, and the fins 6 are generally an aluminum alloy plate. The refrigerant flowing in the heat transfer tubes 7 of the heat exchangers 2 and 3 as condensers exchanges heat with a fluid such as air flowing outside the heat transfer tubes 7 in a process from the refrigerant inlet side to the outlet side to radiate heat, Condensed into liquid refrigerant.
【0026】ここで、図1に示すように、本実施形態の
熱交換器2,3は、当該熱交換器2,3が凝縮器となる場
合の冷媒出口側の伝熱管7内に内挿体8が設けられてい
る。この内挿体8は、図2に示すように、伝熱管7内に
同軸に配置された円柱状の内挿体本体80と、この本体
80の表面に設けられた複数(この場合4つ)の突起部
82とを有している。これらの突起部82は、内挿体本
体80(および伝熱管7)に対して軸線方向に延びると
共に半径方向に突出し、その先端部が伝熱管7の内壁面
に当接している。Here, as shown in FIG. 1, the heat exchangers 2, 3 of the present embodiment are inserted into the heat transfer tubes 7 on the refrigerant outlet side when the heat exchangers 2, 3 are condensers. A body 8 is provided. As shown in FIG. 2, the insert body 8 has a cylindrical insert body 80 coaxially arranged in the heat transfer tube 7 and a plurality (four in this case) provided on the surface of the body 80. And the projection 82. These projections 82 extend in the axial direction and protrude in the radial direction with respect to the insert body 80 (and the heat transfer tube 7), and the tips thereof are in contact with the inner wall surface of the heat transfer tube 7.
【0027】次に、このような構成よりなる本実施形態
の作用効果について説明する。本実施形態によれば、内
挿体8が設けられた伝熱管7の内部においては、内挿体
本体80によって流路が伝熱管7の内壁面側に狭めら
れ、冷媒の流速が増大すると共に、冷媒が伝熱管7の内
壁面側だけを流れるので、伝熱管7の内壁面と冷媒との
間の伝熱を促進させることができる。また、内挿体8の
複数の突起部82が伝熱管7の内壁面に当接しているの
で、内挿体8を通じて、伝熱管7の内壁面と冷媒との間
の間接的な熱伝達を図ることができる。これらのことに
より、内挿体8が設けられた伝熱管7の内部における熱
伝達性能を、他の伝熱管7部分に比べて向上させること
ができる。Next, the operation and effect of this embodiment having the above configuration will be described. According to the present embodiment, inside the heat transfer tube 7 provided with the insert 8, the flow path is narrowed by the insert body 80 toward the inner wall surface side of the heat transfer tube 7, and the flow rate of the refrigerant is increased. Since the refrigerant flows only on the inner wall surface side of the heat transfer tube 7, heat transfer between the inner wall surface of the heat transfer tube 7 and the refrigerant can be promoted. Further, since the plurality of protrusions 82 of the insert 8 are in contact with the inner wall surface of the heat transfer tube 7, the indirect heat transfer between the inner wall surface of the heat transfer tube 7 and the refrigerant is performed through the insert 8. Can be planned. With these, the heat transfer performance inside the heat transfer tube 7 provided with the insert 8 can be improved as compared with the other heat transfer tube 7 portions.
【0028】従って、熱交換器2,3が凝縮器となる場
合の冷媒出口側の伝熱管7内の熱伝達性能を向上させ、
冷媒封入量を特に増やさなくても、当該熱交換器2,3
における冷媒の過冷却度を大きく取ることが可能とな
る。このため、冷媒封入量を増やすことに伴う圧縮機1
の信頼性低下や補助的機器類の必要を回避しつつ、凝縮
器の性能を向上させ、空気調和機の能力向上や小型化を
図ることが可能となる。Therefore, the heat transfer performance in the heat transfer tube 7 on the refrigerant outlet side when the heat exchangers 2 and 3 become condensers is improved.
The heat exchangers 2 and 3 can be used without increasing the amount of refrigerant charged.
It is possible to increase the degree of supercooling of the refrigerant at the time. For this reason, the compressor 1 accompanying the increase in the amount of refrigerant charged
It is possible to improve the performance of the condenser, improve the performance of the air conditioner, and reduce the size of the air conditioner, while avoiding a decrease in the reliability of the air conditioner and the need for auxiliary equipment.
【0029】具体的には、図15において、室内熱交換
器2が凝縮器となる暖房運転時に、当該室内熱交換器2
における冷媒の過冷却度を大きく取ることで、空気調和
機の暖房能力を向上させることができる。一方、室外熱
交換器3が凝縮器となる冷房運転時に、当該室外熱交換
器3における冷媒の過冷却度を大きく取ることで、空気
調和機の冷房能力を向上させることができる。Specifically, in FIG. 15, during the heating operation in which the indoor heat exchanger 2 becomes a condenser, the indoor heat exchanger 2
By increasing the degree of supercooling of the refrigerant in the above, the heating capacity of the air conditioner can be improved. On the other hand, during the cooling operation in which the outdoor heat exchanger 3 serves as a condenser, the cooling capacity of the air conditioner can be improved by increasing the degree of supercooling of the refrigerant in the outdoor heat exchanger 3.
【0030】ここで、図3乃至図5により、本実施形態
の内挿体8の各種変形例について説明する。まず、図3
に示す内挿体8Aは、上記突起部82が、内挿体本体8
0の軸線方向に螺旋状に延びているものである。この場
合、内挿体8Aの突起部82によって冷媒の流れを螺旋
状に旋回させることで、内挿体8Aが設けられた伝熱管
7の内部における熱伝達性能をより一層向上させること
ができる。Here, various modifications of the insert 8 of the present embodiment will be described with reference to FIGS. First, FIG.
In the insert body 8A shown in FIG.
It extends helically in the axial direction of 0. In this case, the flow of the refrigerant is spirally swirled by the projections 82 of the insert 8A, so that the heat transfer performance inside the heat transfer tube 7 provided with the insert 8A can be further improved.
【0031】次に、図4に示す内挿体8Bは、内挿体本
体80の表面に、略軸線方向に延びる複数の溝部84が
形成されている。この場合、内挿体本体80の複数の溝
部84によって内挿体本体80と冷媒との間の熱伝達を
促進させることにより、内挿体8Bを通じての伝熱管7
の内壁面と冷媒との間の間接的な熱伝達量を増大させ、
内挿体8Bが設けられた伝熱管7の内部における熱伝達
性能をより一層向上させることができる。Next, in the insert 8B shown in FIG. 4, a plurality of grooves 84 extending substantially in the axial direction are formed on the surface of the insert body 80. As shown in FIG. In this case, heat transfer between the insert body 80 and the refrigerant is promoted by the plurality of grooves 84 of the insert body 80, so that the heat transfer tube 7 through the insert body 8B is formed.
Increase the amount of indirect heat transfer between the inner wall surface and the refrigerant,
The heat transfer performance inside the heat transfer tube 7 provided with the insert 8B can be further improved.
【0032】次に、図5に示す内挿体8Cは、上記突起
部82に代えて、伝熱管7の内壁面に密着した複数(こ
の場合4つ)の板状接触部88と、これらの接触部88
と内挿体本体80とを各々連結する連結部86とを有し
ている。この場合、複数の板状接触部88によって伝熱
管7の内壁面と内挿体8Cとの接触面積を大きく取るこ
とで、内挿体8Cを通じての伝熱管7の内壁面と冷媒と
の間の間接的な熱伝達量を増大させ、内挿体8Cが設け
られた伝熱管7の内部における熱伝達性能をより一層向
上させることができる。Next, the insert body 8C shown in FIG. 5 has a plurality (four in this case) of plate-like contact portions 88 in close contact with the inner wall surface of the heat transfer tube 7 instead of the projections 82, and Contact part 88
And a connecting portion 86 for connecting the inner body 80 with the inner body 80. In this case, by increasing the contact area between the inner wall surface of the heat transfer tube 7 and the insert 8C by the plurality of plate-shaped contact portions 88, the gap between the refrigerant and the inner wall surface of the heat transfer tube 7 through the insert 8C is increased. The indirect heat transfer amount can be increased, and the heat transfer performance inside the heat transfer tube 7 provided with the insert 8C can be further improved.
【0033】なお、以上のような内挿体8〜8Cは、熱
伝導率の高いアルミニウムまたはアルミニウム合金から
作られていることが、内挿体8〜8Cを通じての伝熱管
7の内壁面と冷媒との間の間接的な熱伝達量を増大さ
せ、内挿体8が設けられた伝熱管7の内部における熱伝
達性能をより一層向上させる観点から好ましい。It should be noted that the inserts 8 to 8C as described above are made of aluminum or an aluminum alloy having a high thermal conductivity, because the inner wall surface of the heat transfer tube 7 through the inserts 8 to 8C and the refrigerant From the viewpoint of increasing the amount of indirect heat transfer between the heat transfer pipe 7 and the heat transfer performance inside the heat transfer tube 7 provided with the insert 8.
【0034】[第2の実施形態]次に、図6乃至図13
により本発明の第2の実施形態について説明する。な
お、図6乃至図9に示す本実施形態において、図1およ
び図2に示す上記第1の実施形態と同一の構成部分には
同一符号を付し、詳細な説明は省略する。[Second Embodiment] Next, FIGS.
The second embodiment of the present invention will be described with reference to FIG. In the present embodiment shown in FIGS. 6 to 9, the same components as those of the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
【0035】図6には、本実施形態の室内熱交換器2′
が示され、図7には、同じく室外熱交換器3′が示され
ている。これらの熱交換器2′,3′は、いわゆる複数
パス構成の熱交換器であり、図6に示す室内熱交換器
2′は2―1パス構成、図7に示す室外熱交換器3′は
4―2パス構成となっている。FIG. 6 shows an indoor heat exchanger 2 'of this embodiment.
FIG. 7 also shows an outdoor heat exchanger 3 '. These heat exchangers 2 'and 3' are so-called multi-pass heat exchangers. The indoor heat exchanger 2 'shown in FIG. 6 has a 2-1 pass structure and the outdoor heat exchanger 3' shown in FIG. Has a 4-2 path configuration.
【0036】具体的には、図6に示す室内熱交換器2′
は、上部で屈曲した円弧形熱交換器20と、この円弧形
熱交換器20の後上方部分(図6の右側部分)の上に配
置された平形熱交換器22とを備えている。また、室内
熱交換器2′は、(矢印で示すように)凝縮器としての
冷媒入口側で2パス構成となっている伝熱管7が、円弧
形熱交換器20における途中の合流部24から1パス構
成となり、さらに平形熱交換器22を通って出口側に至
っている。この場合、室内熱交換器2′を構成する伝熱
管7のうち、平形熱交換器22部分における伝熱管を、
特に符号7aで示す。Specifically, the indoor heat exchanger 2 'shown in FIG.
Has an arcuate heat exchanger 20 bent at the top, and a flat heat exchanger 22 disposed on a rear upper portion (right side portion in FIG. 6) of the arcuate heat exchanger 20. . The indoor heat exchanger 2 ′ includes a heat transfer tube 7 having a two-pass configuration on the refrigerant inlet side as a condenser (as indicated by an arrow). , And further passes through the flat heat exchanger 22 to the outlet side. In this case, among the heat transfer tubes 7 constituting the indoor heat exchanger 2 ′, the heat transfer tubes in the flat heat exchanger 22 are
Particularly, it is indicated by reference numeral 7a.
【0037】また、図7に示す室外熱交換器3′は、
(矢印で示すように)凝縮器としての冷媒入口側で2パ
ス×2=4パス構成となっている伝熱管7が、途中の各
合流部30から1パス×2=2パス構成となり、それぞ
れ出口側に至っている。この場合、室外熱交換器3′を
構成する伝熱管7のうち、各パス毎に出口側から2本ず
つ計4本の伝熱管7を、特に符号7bで示す。The outdoor heat exchanger 3 'shown in FIG.
The heat transfer tube 7 having a 2-pass × 2 = 4-pass configuration on the refrigerant inlet side as a condenser (as indicated by an arrow) has a 1-pass × 2 = 2-pass configuration from each merging portion 30 on the way. It leads to the exit side. In this case, among the heat transfer tubes 7 constituting the outdoor heat exchanger 3 ′, a total of four heat transfer tubes 7, two from the outlet side for each pass, are particularly indicated by reference numeral 7 b.
【0038】次に、図8および図9により、各熱交換器
2′,3′の伝熱管7,7a,7bについて説明する。ま
ず、図8に示すように、における伝熱管7のうち、上記
伝熱管7a,7bの内部にだけ内挿体8Dが設けられて
いる。これらの内挿体8Dは、各伝熱管7a,7b内に
同軸に配置された円柱状の内挿体本体80と、この本体
80の表面に設けられ伝熱管7a,7bの内壁面に当接
した2対の突起部83とを有している。Next, the heat transfer tubes 7, 7a, 7b of each heat exchanger 2 ', 3' will be described with reference to FIGS. First, as shown in FIG. 8, among the heat transfer tubes 7, the insert 8D is provided only inside the heat transfer tubes 7a and 7b. These inserts 8D abut a cylindrical insert body 80 coaxially arranged in each of the heat transfer tubes 7a, 7b and an inner wall surface of the heat transfer tubes 7a, 7b provided on the surface of the body 80. And two pairs of projections 83.
【0039】次に、図9に示すように、各熱交換器
2′,3′における伝熱管7(伝熱管7a,7bを含む)
の内壁面に、軸線方向に延びる多数の管内溝(リップル
溝)70が形成されている。そして、各熱交換器2′,
3′が凝縮器となる場合の冷媒出口側の伝熱管7a,7
bにおける管内溝70の深さCは、その他の伝熱管7に
おける管内溝70の深さCよりも深くなっている。Next, as shown in FIG. 9, the heat transfer tubes 7 (including the heat transfer tubes 7a and 7b) in each of the heat exchangers 2 'and 3'.
On the inner wall surface, a number of pipe grooves (ripple grooves) 70 extending in the axial direction are formed. And each heat exchanger 2 ',
Heat transfer tubes 7a, 7 on the refrigerant outlet side when 3 'is a condenser
The depth C of the inner groove 70 in b is deeper than the depth C of the inner groove 70 in the other heat transfer tubes 7.
【0040】次に、このような構成よりなる本実施形態
の作用効果について説明する。本実施形態によれば、内
挿体8Dが設けられた伝熱管7a,7bの内部において
は、内挿体本体80によって流路が伝熱管7a,7bの
内壁面側に狭められ、冷媒の流速が増大すると共に、冷
媒が伝熱管7a,7bの内壁面側だけを流れるので、伝
熱管7a,7bの内壁面と冷媒との間の伝熱をより促進
させることができる。Next, the operation and effect of this embodiment having the above configuration will be described. According to the present embodiment, inside the heat transfer tubes 7a and 7b provided with the inserts 8D, the flow path is narrowed by the insert body 80 toward the inner wall surfaces of the heat transfer tubes 7a and 7b, and the flow rate of the refrigerant is reduced. And the refrigerant flows only on the inner wall surfaces of the heat transfer tubes 7a and 7b, so that heat transfer between the inner wall surfaces of the heat transfer tubes 7a and 7b and the refrigerant can be further promoted.
【0041】また、伝熱管7,7a,7bの管内溝70の
深さCが深くなるほど伝熱管7,7a,7bの内壁面と冷
媒との間の伝熱がより促進されるので、管内溝70の深
さCの深い方の伝熱管7a,7bにおける内壁面と冷媒
との間の伝熱を、その他の伝熱管7に比べて向上させる
ことができる。Further, as the depth C of the inner grooves 70 of the heat transfer tubes 7, 7a, 7b becomes larger, the heat transfer between the inner wall surfaces of the heat transfer tubes 7, 7a, 7b and the refrigerant is further promoted. The heat transfer between the inner wall surface and the refrigerant in the deeper heat transfer tubes 7 a and 7 b having a depth C of 70 can be improved as compared with the other heat transfer tubes 7.
【0042】従って、当該熱交換器2′,3′が凝縮器
となる場合の冷媒出口側の伝熱管7a,7bの内部にお
ける熱伝達性能を、その他の伝熱管7に比べて向上させ
ることができるので、複数パス構成の熱交換器2′,
3′において出口側の少パス部分(室内熱交換器2′で
は1パス部分、室外熱交換器3′では2パス部分)の伝
熱管7を長く取ったり、冷媒封入量を増やしたりしなく
ても、当該熱交換器2′,3′における冷媒の過冷却度
を大きく取ることが可能となる。Therefore, the heat transfer performance inside the heat transfer tubes 7a and 7b on the refrigerant outlet side when the heat exchangers 2 'and 3' are condensers can be improved as compared with the other heat transfer tubes 7. The heat exchanger 2 ′,
At 3 ', the heat transfer tube 7 of the small-pass portion on the outlet side (1 pass portion in the indoor heat exchanger 2', 2 pass portion in the outdoor heat exchanger 3 ') does not have to be lengthened, nor does the amount of refrigerant charged increase. Also, the degree of supercooling of the refrigerant in the heat exchangers 2 'and 3' can be increased.
【0043】このため、凝縮器出口側の上記少パス部分
の伝熱管7を特に長く取らなくても、過冷却度を大きく
することができるので、熱伝達率の低い液冷媒の占める
伝熱管7の部分が多くなって熱交換器全体の熱伝達性能
が低下することを防止し、熱交換器温度を低く保つこと
ができる。また、当該熱交換器2′,3′が蒸発器とな
る場合に、入口側となる少パス部分の伝熱管7での冷媒
の圧力損失が大きくなることを防止し、蒸発能力の低下
を回避することができる。For this reason, the supercooling degree can be increased without making the heat transfer tube 7 in the above-mentioned small path portion on the condenser outlet side particularly long, so that the heat transfer tube 7 occupied by the liquid refrigerant having a low heat transfer coefficient can be obtained. Can be prevented from increasing and the heat transfer performance of the entire heat exchanger is reduced, and the temperature of the heat exchanger can be kept low. Further, when the heat exchangers 2 'and 3' are evaporators, the pressure loss of the refrigerant in the heat transfer tube 7 in the small-pass portion on the inlet side is prevented from increasing, and a decrease in the evaporation capacity is avoided. can do.
【0044】また、冷媒封入量を増やすことに伴う圧縮
機の信頼性低下や補助的機器類の必要を回避しつつ、凝
縮器の性能を向上させ、空気調和機の能力向上や小型化
を図ることが可能となる。In addition, the performance of the condenser is improved, and the performance and the size of the air conditioner are improved while avoiding the decrease in the reliability of the compressor and the necessity of auxiliary equipment due to the increase in the amount of the charged refrigerant. It becomes possible.
【0045】[0045]
【実施例】次に、図8および図9並びに図10乃至図1
3により上記第2の実施形態における実施例について説
明する。本実施例は、図9に示す上記伝熱管7,7a,7
bの外径A、肉厚Bおよび管内溝深さC、並びに図8に
示す上記内挿体本体80の外径Dの各寸法を、それぞれ
図10に示すように設定したものである。FIG. 8 and FIG. 9 and FIGS.
3, an example of the second embodiment will be described. In this embodiment, the heat transfer tubes 7, 7a, 7 shown in FIG.
The outer diameter A, the thickness B, and the depth C of the groove in the pipe b, and the outer diameter D of the insert body 80 shown in FIG. 8 are set as shown in FIG.
【0046】なお、図10において、「平形熱交換器」
とあるのは、室内熱交換器2′において平形熱交換器2
2を構成する上記伝熱管7aを表し、「円弧形熱交換
器」とあるのは、室内熱交換器2′において円弧形熱交
換器20を構成するその他の伝熱管7を表している。ま
た、同じく「室外熱交換器の出口2本」とあるのは、室
外内熱交換器3′において各パスの出口側の2本ずつの
伝熱管を構成する上記伝熱管7bを表し、「室外熱交換
器」とあるのは、室外熱交換器3′のその他の伝熱管7
を表している。In FIG. 10, "flat heat exchanger"
There is a flat heat exchanger 2 in the indoor heat exchanger 2 '.
2 and the “arc-shaped heat exchanger” represents the other heat-transfer tubes 7 that constitute the arc-shaped heat exchanger 20 in the indoor heat exchanger 2 ′. . Similarly, "two outdoor heat exchanger outlets" refers to the heat transfer tubes 7b constituting two heat transfer tubes on the outlet side of each path in the outdoor heat exchanger 3 '. "Heat exchanger" means the other heat transfer tubes 7 of the outdoor heat exchanger 3 '.
Is represented.
【0047】また、従来例として、上記伝熱管7a,7
bを用いないで、単に凝縮器出口側の上記少パス部分の
伝熱管7を長く取ることで、本実施例の熱交換器2′,
3′と同じ過冷却度(この場合は、図11および図12
に示す凝縮器出口温度d)が得られるようにした室内お
よび室外熱交換器を用意した。そして、実際の空気調和
機について、これらの従来例と本実施例との熱交換器温
度の比較を行った。As a conventional example, the heat transfer tubes 7a, 7
b, the heat exchanger tubes 2 ′,
3 ′ (in this case, FIGS. 11 and 12
The indoor and outdoor heat exchangers were prepared so as to obtain the condenser outlet temperature d) shown in FIG. Then, with respect to the actual air conditioner, the heat exchanger temperature was compared between the conventional example and the present embodiment.
【0048】その比較結果が、図11乃至図13に示さ
れている。ここで、図11は、凝縮器入口から出口にか
けての熱交換器温度(熱交温度)の変化を示すグラフ、
図12は、冷媒のエンタルピ-圧力変化を示すモリエル
線図を、図11の温度変化との関係で示すグラフ、図1
3は、凝縮器としての各熱交換器の各段階における温度
を、図11および図12に対応して示す表である。The results of the comparison are shown in FIGS. Here, FIG. 11 is a graph showing the change of the heat exchanger temperature (heat exchange temperature) from the condenser inlet to the outlet.
FIG. 12 is a Mollier chart showing the enthalpy-pressure change of the refrigerant in relation to the temperature change of FIG.
3 is a table showing the temperature at each stage of each heat exchanger as a condenser, corresponding to FIGS. 11 and 12.
【0049】図11乃至図13から分かるように、凝縮
器の入口と出口との間における熱交換器の中間部分の温
度は、本実施例の温度c(=39℃/43℃)の方が、
従来例の温度b(=40℃/44℃)に比べて1℃程低
くなっている。このことからも、本実施形態によれば、
従来例に対して同じ過冷却度(凝縮器出口温度d)を得
るのに要する上記少パス部分の伝熱管長さをより短くで
き、熱交換器温度を低く保つことができることが裏付け
られた。As can be seen from FIGS. 11 to 13, the temperature of the intermediate portion of the heat exchanger between the inlet and the outlet of the condenser is the same as the temperature c (= 39 ° C./43° C.) in this embodiment. ,
The temperature is about 1 ° C. lower than the temperature b (= 40 ° C./44° C.) of the conventional example. From this, according to the present embodiment,
It has been proved that the length of the heat transfer tube in the small-pass portion required to obtain the same degree of supercooling (condenser outlet temperature d) as in the conventional example can be made shorter, and the temperature of the heat exchanger can be kept low.
【0050】[0050]
【発明の効果】本発明によれば、熱交換器が凝縮器とな
る場合の冷媒出口側の伝熱管内の熱伝達性能を向上させ
ることにより、冷媒封入量を増やしたり、複数パス構成
の熱交換器において出口側の少パス構成の伝熱管の部分
を長く取ったりしなくても、当該熱交換器における冷媒
の過冷却度を大きく取ることが可能となる。このため、
冷媒封入量を増やすことに伴う圧縮機の信頼性低下や補
助的機器類の必要を回避しつつ、凝縮器の性能を向上さ
せ、空気調和機の能力向上や小型化を図ることが可能と
なる。According to the present invention, by increasing the heat transfer performance in the heat transfer tube on the refrigerant outlet side when the heat exchanger is a condenser, it is possible to increase the amount of refrigerant enclosed or to increase the heat capacity of a plurality of passes. It is possible to increase the degree of supercooling of the refrigerant in the heat exchanger without having to take a long heat transfer tube having a small number of paths on the outlet side in the exchanger. For this reason,
It is possible to improve the performance of the condenser, improve the performance of the air conditioner, and reduce the size of the air conditioner, while avoiding the decrease in the reliability of the compressor and the need for auxiliary equipment due to the increase in the amount of refrigerant charged. .
【図1】本発明による空気調和機の熱交換器の第1の実
施形態を示す要部縦断面図。FIG. 1 is a longitudinal sectional view showing a main part of a first embodiment of a heat exchanger of an air conditioner according to the present invention.
【図2】図1に示す熱交換器における内挿体が設けられ
た伝熱管の横断面図。FIG. 2 is a cross-sectional view of a heat transfer tube provided with an insert in the heat exchanger shown in FIG.
【図3】図1に示す実施形態における内挿体の変形例を
示す斜視図。FIG. 3 is a perspective view showing a modification of the insert in the embodiment shown in FIG. 1;
【図4】図1に示す実施形態における内挿体の他の変形
例を、図2に対応して示す図。FIG. 4 is a view showing another modified example of the insert in the embodiment shown in FIG. 1 corresponding to FIG. 2;
【図5】図1に示す実施形態における内挿体の更に他の
変形例を、図2に対応して示す図。FIG. 5 is a view showing still another modified example of the insert body in the embodiment shown in FIG. 1 corresponding to FIG. 2;
【図6】本発明による空気調和機の熱交換器の第2の実
施形態における、室内熱交換器を示す横断面図。FIG. 6 is a cross-sectional view showing an indoor heat exchanger in a second embodiment of the air conditioner heat exchanger according to the present invention.
【図7】本発明による空気調和機の熱交換器の第2の実
施形態における、室外熱交換器(伝熱管の配置)を示す
横断面図。FIG. 7 is a cross-sectional view illustrating an outdoor heat exchanger (arrangement of heat transfer tubes) in a second embodiment of the heat exchanger of the air conditioner according to the present invention.
【図8】図6および図7に示す熱交換器における内挿体
が設けられた伝熱管を示す図であって、(a)は横断面
図、(b)は縦断面図。8 is a view showing a heat transfer tube provided with an insert in the heat exchanger shown in FIGS. 6 and 7, wherein FIG. 8 (a) is a transverse sectional view and FIG. 8 (b) is a longitudinal sectional view.
【図9】図6および図7に示す熱交換器における伝熱管
の管内溝を示す図であって、(a)は伝熱管の横断面
図、(b)は(a)の部分拡大図。FIGS. 9A and 9B are diagrams showing the internal grooves of the heat transfer tubes in the heat exchangers shown in FIGS. 6 and 7, wherein FIG. 9A is a cross-sectional view of the heat transfer tubes and FIG. 9B is a partially enlarged view of FIG.
【図10】図6および図7に示す熱交換器の実施例にお
ける、伝熱管および内挿体の各部寸法を示す表。FIG. 10 is a table showing dimensions of each part of a heat transfer tube and an insert in the embodiment of the heat exchanger shown in FIGS. 6 and 7;
【図11】図6および図7に示す熱交換器の実施例と従
来の熱交換器との比較において、凝縮器入口から出口に
かけての熱交換器温度の変化を示すグラフ。FIG. 11 is a graph showing a change in heat exchanger temperature from the inlet to the outlet of the condenser in a comparison between the embodiment of the heat exchanger shown in FIGS. 6 and 7 and a conventional heat exchanger.
【図12】図6および図7に示す熱交換器の実施例と従
来の熱交換器との比較において、冷媒のエンタルピ-圧
力変化を示すモリエル線図を、図11の温度変化との関
係で示すグラフ。12 is a Mollier diagram showing a change in enthalpy-pressure of a refrigerant in a comparison between the embodiment of the heat exchanger shown in FIGS. 6 and 7 and a conventional heat exchanger in relation to the temperature change in FIG. 11; The graph shown.
【図13】図6および図7に示す熱交換器の実施例にお
ける各段階の温度を、図11および図12に対応して示
す表。FIG. 13 is a table corresponding to FIGS. 11 and 12 showing temperatures at respective stages in the embodiment of the heat exchanger shown in FIGS. 6 and 7;
【図14】一般的な空気調和機の熱交換器の構造を示す
模式図。FIG. 14 is a schematic view showing a structure of a heat exchanger of a general air conditioner.
【図15】一般的な空気調和機の冷凍サイクル図。FIG. 15 is a refrigeration cycle diagram of a general air conditioner.
【図16】従来の複数パス構成の室内熱交換器の例を示
す横断面図。FIG. 16 is a cross-sectional view showing an example of a conventional indoor heat exchanger having a multi-pass configuration.
2,2′,2" 室内熱交換器 3,3′ 室外熱交換器 6 フィン 7 伝熱管 7a 室内熱交換器における凝縮器としての冷媒出口側
の伝熱管 7b 室外熱交換器における凝縮器としての冷媒出口側
の伝熱管 70 管内溝 8,8A,8B,8C,8D 内挿体 80 内挿体本体 82,83 突起部 84 溝部 88 板状接触部2,2 ', 2 "indoor heat exchanger 3,3' outdoor heat exchanger 6 fins 7 heat transfer tube 7a heat transfer tube on refrigerant outlet side as condenser in indoor heat exchanger 7b as heat exchanger in outdoor heat exchanger Refrigerant outlet side heat transfer tube 70 Pipe groove 8, 8A, 8B, 8C, 8D Insert body 80 Insert body 82, 83 Projection section 84 Groove section 88 Plate contact section
Claims (7)
熱交換器において、 当該熱交換器が凝縮器となる場合の冷媒出口側の前記伝
熱管内に内挿体が設けられ、 この内挿体は、前記伝熱管内に略同軸に配置された略円
柱状の内挿体本体と、この本体の表面に設けられ前記伝
熱管の内壁面に当接する複数の突起部とを有することを
特徴とする空気調和機の熱交換器。In a heat exchanger of an air conditioner provided with a heat transfer tube through which a refrigerant flows, an insert is provided in the heat transfer tube on the refrigerant outlet side when the heat exchanger is a condenser. The insert has a substantially cylindrical insert main body disposed substantially coaxially in the heat transfer tube, and a plurality of protrusions provided on the surface of the main body and in contact with the inner wall surface of the heat transfer tube. The air conditioner heat exchanger characterized by the above-mentioned.
軸線方向に螺旋状に延びていることを特徴とする請求項
1記載の空気調和機の熱交換器。2. The heat exchanger for an air conditioner according to claim 1, wherein the protrusion of the insert body extends helically in the axial direction of the insert body.
びる複数の溝部が形成されていることを特徴とする請求
項1記載の空気調和機の熱交換器。3. A heat exchanger for an air conditioner according to claim 1, wherein a plurality of grooves extending substantially in the axial direction are formed on the surface of said insert body.
ニウム合金から作られていることを特徴とする請求項1
乃至3のいずれかに記載の空気調和機の熱交換器。4. An insert according to claim 1, wherein said insert is made of aluminum or an aluminum alloy.
The heat exchanger for an air conditioner according to any one of claims 1 to 3.
熱交換器において、 前記伝熱管の内壁面に、略軸線方向に延びる複数の管内
溝が形成されると共に、 これらの管内溝の深さは、当該熱交換器が凝縮器となる
場合の冷媒出口側の方が、冷媒入口側よりも深くなって
いることを特徴とする空気調和機の熱交換器。5. A heat exchanger for an air conditioner having a heat transfer tube through which a refrigerant flows, wherein a plurality of tube grooves extending substantially in the axial direction are formed on an inner wall surface of the heat transfer tube. The heat exchanger of an air conditioner, wherein the depth of the refrigerant outlet side when the heat exchanger is a condenser is deeper than the refrigerant inlet side.
徴とする請求項1乃至5のいずれかに記載の空気調和機
の熱交換器。6. The heat exchanger for an air conditioner according to claim 1, wherein the heat exchanger is an indoor heat exchanger.
徴とする請求項1乃至5のいずれかに記載の空気調和機
の熱交換器。7. The heat exchanger for an air conditioner according to claim 1, wherein the heat exchanger is an outdoor heat exchanger.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10220757A JP2000055509A (en) | 1998-08-04 | 1998-08-04 | Heat exchanger for air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10220757A JP2000055509A (en) | 1998-08-04 | 1998-08-04 | Heat exchanger for air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000055509A true JP2000055509A (en) | 2000-02-25 |
Family
ID=16756076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10220757A Withdrawn JP2000055509A (en) | 1998-08-04 | 1998-08-04 | Heat exchanger for air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000055509A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20102048A1 (en) * | 2010-11-04 | 2012-05-05 | Unical Ag Spa | OPTIMIZATION DEVICE FOR HEAT TRANSMISSION IN TUBE OF CONVEYANCE OF FUMES IN HEAT EXCHANGE APPLIANCE. |
WO2018073994A1 (en) * | 2016-10-18 | 2018-04-26 | 株式会社エコラ・テック | Radiator, condenser unit, and refrigeration cycle |
WO2019220541A1 (en) | 2018-05-15 | 2019-11-21 | 三菱電機株式会社 | Refrigeration cycle device |
-
1998
- 1998-08-04 JP JP10220757A patent/JP2000055509A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20102048A1 (en) * | 2010-11-04 | 2012-05-05 | Unical Ag Spa | OPTIMIZATION DEVICE FOR HEAT TRANSMISSION IN TUBE OF CONVEYANCE OF FUMES IN HEAT EXCHANGE APPLIANCE. |
WO2012059250A1 (en) * | 2010-11-04 | 2012-05-10 | Unical Ag S.P.A. | Device for optimizing the transmission of heat in a pipe for conveying exhaust gases in a heat exchange apparatus |
WO2018073994A1 (en) * | 2016-10-18 | 2018-04-26 | 株式会社エコラ・テック | Radiator, condenser unit, and refrigeration cycle |
WO2019220541A1 (en) | 2018-05-15 | 2019-11-21 | 三菱電機株式会社 | Refrigeration cycle device |
JPWO2019220541A1 (en) * | 2018-05-15 | 2021-03-11 | 三菱電機株式会社 | Refrigeration cycle equipment |
JP7000566B2 (en) | 2018-05-15 | 2022-01-19 | 三菱電機株式会社 | Refrigeration cycle device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7140424B2 (en) | Refrigerant condenser used for automotive air conditioner | |
CA1064718A (en) | High performance heat exchanger | |
US20090084129A1 (en) | Heat exchanger and refrigeration cycle apparatus having the same | |
US20080105420A1 (en) | Parallel Flow Heat Exchanger With Crimped Channel Entrance | |
CN111059802B (en) | Condensing device and air conditioning system having the same | |
WO2014147919A1 (en) | Heat exchanger, refrigeration cycle device, and production method for heat exchanger | |
JP2019510193A (en) | Internal heat exchanger double pipe structure of air conditioning system with alternative refrigerant | |
US20220282927A1 (en) | Cooling system | |
JP4196774B2 (en) | Internal heat exchanger | |
JP2005133999A (en) | Heat pump water heater | |
JP2003042597A (en) | Integrated heat exchanger | |
US4253225A (en) | Method of manufacturing a heat exchanger element | |
JP2000055509A (en) | Heat exchanger for air conditioner | |
WO2013094084A1 (en) | Air conditioner | |
AU2017444848B2 (en) | Heat exchanger and refrigeration cycle device | |
JP2004138306A (en) | Heat exchanger | |
JP3367235B2 (en) | Refrigeration cycle of vehicle air conditioner | |
JPH0247417Y2 (en) | ||
WO2015132968A1 (en) | Refrigeration cycle device | |
KR200314025Y1 (en) | Fin tube type heat exchanger and airconditioner and refrigerator using the heat exchanger | |
JP2005009808A (en) | Air conditioner heat exchanger. | |
KR19980061905A (en) | Condenser of car air conditioners | |
US20060225460A1 (en) | Evaporator for a refrigeration appliance | |
CN222481175U (en) | Cover plate of heat exchanger, heat exchanger and vehicle heating, ventilation and/or air conditioning system | |
JP2002122390A (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20051004 |