JPS61274366A - High voltage semiconductor device - Google Patents
High voltage semiconductor deviceInfo
- Publication number
- JPS61274366A JPS61274366A JP60116077A JP11607785A JPS61274366A JP S61274366 A JPS61274366 A JP S61274366A JP 60116077 A JP60116077 A JP 60116077A JP 11607785 A JP11607785 A JP 11607785A JP S61274366 A JPS61274366 A JP S61274366A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- semiconductor
- film
- polycrystalline silicon
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/665—Vertical DMOS [VDMOS] FETs having edge termination structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
- H10D30/668—Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/111—Field plates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/101—Integrated devices comprising main components and built-in components, e.g. IGBT having built-in freewheel diode
- H10D84/141—VDMOS having built-in components
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、高耐圧パワーMO3FET、パワー用バイポ
ーラトランジスタやパワー用ダイオード等の高耐圧半導
体装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to high voltage semiconductor devices such as high voltage power MO3FETs, power bipolar transistors, and power diodes.
従来の技術
近年において、高耐圧大電力用のトランジスタの需要が
増加する中で、特に高性能高信頼性の優れたトランジス
タが望まれて来た。BACKGROUND OF THE INVENTION In recent years, as the demand for high-voltage, high-power transistors has increased, transistors with excellent performance and reliability have been desired.
一般的には、高耐圧、たとえば800■、1000■以
上のトランジスタは、低濃度のシリコン基板上に、空乏
層を広げるための、フィールドリミティングリングや、
空乏層が広がりやす<シ、電位を安定させるための、フ
ィールドプレート等が設けられ、信頼性を考慮して、リ
ンネ鈍物がドープされたPSG膜等のパッシベーション
膜を設けている。Generally, transistors with high breakdown voltages, such as 800μ or 1000μ or higher, are manufactured using field-limiting rings to expand the depletion layer on a low-concentration silicon substrate.
Since the depletion layer tends to spread, a field plate or the like is provided to stabilize the potential, and in consideration of reliability, a passivation film such as a PSG film doped with Linnaeus dull material is provided.
これを、高耐圧パワーMO3FE’I’の代表的なもの
であるDSA (口1ttusion 5elf−八l
ignment )構造のパワーMO3FETの構造例
について、添付図面の第5図の断面構造図を参照して説
明する。This is a DSA (mouth 1ttusion 5elf-8l) which is a typical high voltage power MO3FE'I'.
An example of the structure of the power MO3FET having the ignment) structure will be described with reference to the cross-sectional structural diagram of FIG. 5 of the accompanying drawings.
第5図は従来の縦形MO3FETの断面構造例を示して
おり、この縦形MO3FETは、二重拡散によりチャネ
ルを形成するもので、格子状のゲート多結晶シリコン電
極16に囲まれた同一の拡散窓によりチャネル領域形成
の不純物拡散(P型半導体層13)とソース領域形式の
不純物拡散(n+型型溝導体層14をふこなっているの
が特徴である。チャネル長はP型半導体層13とn+型
型溝導体層14拡散の深さの差で決まっているので数ミ
クロン以下の極めて短いチャネル領域を形成できる。ソ
ース電極はn4’型半導体層14のソース領域とチャネ
ル領域を形成するP型半導体層13と接しているP+型
半導体層13aと双方にAl膜8aにてオーミック接続
されている。FIG. 5 shows an example of the cross-sectional structure of a conventional vertical MO3FET. In this vertical MO3FET, a channel is formed by double diffusion, and the same diffusion window is surrounded by a gate polycrystalline silicon electrode 16 in a lattice shape. The feature is that the channel region is formed by impurity diffusion (P-type semiconductor layer 13) and the source region is formed by impurity diffusion (n+-type groove conductor layer 14).The channel length is between the P-type semiconductor layer 13 and the n+ Since this is determined by the difference in the diffusion depth of the mold-type trench conductor layer 14, an extremely short channel region of several microns or less can be formed.The source electrode is formed by connecting the source region of the n4'-type semiconductor layer 14 and the P-type semiconductor that forms the channel region. It is ohmically connected to the P+ type semiconductor layer 13a which is in contact with the layer 13 through an Al film 8a.
n“型半導体基板11とn型エピタキシャル層12がド
レイン領域であり、nオンn″構造となっている。ドレ
イン電極19はチップ裏面に形成されており、ゲート・
ソース間に正の電圧を加えてチ゛ャネルをオンさせると
、電流は基板より縦方向に流れ、チャネルを通ってソー
スに流れ込む。これがいわゆる縦形MO3FETと言わ
れるゆえんである。この従来の縦形MO3FETでは、
n型エピタキシャル層12には空乏層を広げるためのフ
ィールドリミティングリングを構成する逆導電型のP+
半導体層13c、13dが形成されており、P+型半導
体層13bとP“型半導体層13cとの間、P+型半導
体層13CとP+型半導体層13aとの間及びP゛型型
溝導体層13dら外方には、シリコン酸化膜であり絶縁
膜15Cが設けられ、これら絶縁膜15cの上に、パッ
シベーション膜としてのPSG膜15eが設けられてい
る。更に、この従来の縦形MO3FETは、ソースAI
電極18a、及びAIIVイ−ルプレー)18c、18
dを設けてなっている。The n" type semiconductor substrate 11 and the n type epitaxial layer 12 are the drain region, and have an n-on-n" structure. The drain electrode 19 is formed on the back surface of the chip, and is connected to the gate and
When a positive voltage is applied across the source to turn on the channel, current flows vertically away from the substrate, through the channel, and into the source. This is why it is called a vertical MO3FET. In this conventional vertical MO3FET,
In the n-type epitaxial layer 12, P+ of the opposite conductivity type constitutes a field limiting ring for expanding the depletion layer.
Semiconductor layers 13c and 13d are formed between the P+ type semiconductor layer 13b and the P" type semiconductor layer 13c, between the P+ type semiconductor layer 13C and the P+ type semiconductor layer 13a, and the P" type groove conductor layer 13d. An insulating film 15C, which is a silicon oxide film, is provided on the outside, and a PSG film 15e as a passivation film is provided on these insulating films 15c.Furthermore, in this conventional vertical MO3FET, the source AI
electrode 18a, and AIIV eel play) 18c, 18
d is provided.
発明が解決しようとする問題点
一般に前述したような半導体装置においては、高耐圧素
子とするため、l Q”atoms /cnf以下の低
濃度のシリコン基板を用いるので、半導体装置表面が周
囲を取り巻くおのおのの諸条件によって、変化しやすく
、特に水分、Naイオン、重金属イオン、あるいは樹脂
モールド封止等による汚れによって、バイポーラ型トラ
ンジスタではベース・コレクタ間電圧VCBQ SM
OS型トランジスタにおいてはソース・ドレイン間電圧
V n s s 等の劣化が生じ、素子特性を損ねてし
まう。Problems to be Solved by the Invention In general, in semiconductor devices such as those described above, a silicon substrate with a low concentration of less than l Q"atoms/cnf is used in order to create a high breakdown voltage element. In bipolar transistors, the base-collector voltage VCBQ SM tends to change easily depending on various conditions, especially due to moisture, Na ions, heavy metal ions, or contamination caused by resin mold sealing.
In an OS type transistor, deterioration of the source-drain voltage V n s s etc. occurs, impairing device characteristics.
つまり従来のPSG膜中のリンネ鈍物は重金属ナトリウ
ムイオンをトラップさせる効果は絶大だが、特に水分に
対する吸湿性が極めて大きく、800■以上の高耐圧を
必要とするトランジスタにおいては、特に高温逆バイア
ス試験、等で耐圧の劣化が生じていた。In other words, the Linnean dull material in the conventional PSG film is extremely effective in trapping heavy metal sodium ions, but it has an extremely high hygroscopicity and is especially useful for transistors that require a high withstand voltage of 800μ or more, especially in high-temperature reverse bias tests. , etc., deterioration of withstand voltage occurred.
本発明の目的は、前述したような従来の問題点を解消し
、耐圧特性等の素子特性の劣化のない信頼性の高い高耐
圧半導体装置を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and provide a highly reliable high voltage semiconductor device without deterioration of element characteristics such as voltage resistance characteristics.
問題点を解決するための手段
本発明の1つの特徴による高耐圧半導体装置では、一導
電型の半導体基体に該半導体基体とは逆導電型の第1半
導体層が設けられ、前記半導体基体上には、前記第1半
導体層と前記半導体基体との境界部上に一部重なるよう
にして前記第1半導体層から外方へ延びる第1絶縁膜が
設けられ、該第1絶縁膜上に不純物がドープされていな
い半導体膜が設けられている。Means for Solving the Problems In a high-voltage semiconductor device according to one feature of the present invention, a semiconductor substrate of one conductivity type is provided with a first semiconductor layer of a conductivity type opposite to that of the semiconductor substrate, and a first semiconductor layer of a conductivity type opposite to that of the semiconductor substrate is provided on the semiconductor substrate. A first insulating film extending outward from the first semiconductor layer is provided so as to partially overlap the boundary between the first semiconductor layer and the semiconductor substrate, and an impurity is formed on the first insulating film. An undoped semiconductor film is provided.
本発明の別の特徴による高耐圧半導体装置では、一導電
型の半導体基体に、該半導体基体とは逆導電型の第1半
導体層及び該第1半導体層の周囲に所定間隔を置いてリ
ング状で前記第1半導体層と同じ導電型の少なくとも1
つの第2半導体層が設けられ、前記半導体基体上には、
前記第1半導体層と前記半導体基体との境界部上及び前
記第2半導体層と前記半導体基体との境界部上に一部重
なるようにして且つそれらの間に延び、また、前記第2
半導体層と前記半導体基体との境界部上に一部重なるよ
うにして前記第2半導体層から外方へ延びる第1絶縁膜
が設けられ、該第1絶縁膜上に不純物がドープされてい
ない半導体膜が設けられ、前記第1半導体層と前記第2
半導体層とから延びる金属膜が第2絶縁膜を介して前記
半導体膜上に一部重なるように位置する。In a high-voltage semiconductor device according to another feature of the present invention, a first semiconductor layer of a conductivity type opposite to that of the semiconductor substrate is formed on a semiconductor substrate of one conductivity type, and a ring-shaped layer is formed around the first semiconductor layer at a predetermined interval. and at least one of the same conductivity type as the first semiconductor layer.
a second semiconductor layer is provided on the semiconductor substrate;
The second semiconductor layer extends between and partially overlaps the boundary between the first semiconductor layer and the semiconductor substrate and the boundary between the second semiconductor layer and the semiconductor substrate, and extends between them.
A first insulating film extending outward from the second semiconductor layer so as to partially overlap the boundary between the semiconductor layer and the semiconductor substrate, and an impurity is not doped on the first insulating film. a film is provided between the first semiconductor layer and the second semiconductor layer;
A metal film extending from the semiconductor layer is located so as to partially overlap the semiconductor film with a second insulating film interposed therebetween.
実施例
次に、添付図面の第1図から第4図に基づいて本発明の
実施例について本発明をより詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in more detail with reference to embodiments of the present invention with reference to FIGS. 1 to 4 of the accompanying drawings.
第1図(A)から(F)は、本発明による一実施例とし
てのDSA−MOSFETの製造工程を示す断面図であ
る。FIGS. 1A to 1F are cross-sectional views showing the manufacturing process of a DSA-MOSFET as an embodiment of the present invention.
第1図(A)に示すように、このDSA−MOSFET
を作るには、先ず、n+型半導体基板1上にn型エピタ
キシャル層2を例えば比抵抗40〜60Ωcm。As shown in Figure 1 (A), this DSA-MOSFET
To make this, first, an n-type epitaxial layer 2 is formed on an n+-type semiconductor substrate 1 to have a specific resistance of, for example, 40 to 60 Ωcm.
厚み80〜100μm形成後、表面にシリコン酸化膜5
aとP+型半導体層をたとえば15μm程度の深さに形
成する。このP“型半導体層は、ゲート多結晶シリコン
開口部に位置するセル内に位置するP+型半導体層3a
と、該セル集積部の周囲に位置しソース電極と電気的に
接しているP“型半導体層3bと、ソース・ドレイン間
耐圧(Voss) が大きく得られるためにP+型半導
体層3bからの空乏層が広がりやすくし該P“型半導体
層3bの周囲にリング状に位置するフィールドリミティ
ングリングと呼ばれているP゛型型半体体層3c3dと
からなり、これらは同じ拡散工程にて形成される。After forming a thickness of 80 to 100 μm, a silicon oxide film 5 is placed on the surface.
A and a P+ type semiconductor layer are formed to a depth of, for example, about 15 μm. This P" type semiconductor layer is a P+ type semiconductor layer 3a located in the cell located in the gate polycrystalline silicon opening.
The depletion from the P+ type semiconductor layer 3b, which is located around the cell integrated area and in electrical contact with the source electrode, and the P+ type semiconductor layer 3b, in order to obtain a large source-drain breakdown voltage (Voss). It consists of a P'' type half layer 3c3d, called a field limiting ring, which is located in a ring shape around the P'' type semiconductor layer 3b so that the layer spreads easily, and these are formed in the same diffusion process. be done.
その後、第1図(B)に示すように、約8000人程度
のフィールド用シリコン酸化膜5bをフィールドリミテ
ィングリング(P” 型半導体層3CN3d)上に形成
し、続いて、ゲート酸化膜5cを約1000人形成する
。Thereafter, as shown in FIG. 1(B), a field silicon oxide film 5b of about 8,000 layers is formed on the field limiting ring (P" type semiconductor layer 3CN3d), and then a gate oxide film 5c is formed. Approximately 1,000 people will be formed.
次に第1図(C)に示すように、不純物をドープされて
ない多結晶シリコン6aをた・とえば4000A程堆積
後選択的にバターニングする。Next, as shown in FIG. 1C, the undoped polycrystalline silicon 6a is selectively patterned after being deposited at, for example, 4000A.
この際、多結晶シリコン6aは、ゲート電極部とP゛型
型半体体層3b上らP′″型半型体導体層3cィールド
リミテイングリング上を被いチップ先端に至るまで形成
する。At this time, the polycrystalline silicon 6a is formed to cover the gate electrode portion, the P'' type half body layer 3b, the P'' type half body conductor layer 3c, and the field limiting ring up to the tip of the chip.
続いて、第1図(D)に示すよぢに、フォトエツチング
技術にて選択的にフィールドリミティングリング上の多
結晶シリコン6a上にフォトレジスト膜7を残し、ゲー
ト電極用多結晶シリコンパターンをマスクにイオン注入
を施し、チャネル領域のP型半導体層4を自己整合的に
形成する。この際、前記多結晶シリコン6aに、ゲート
保護ダイオードのP不純物を同時にイオン注入しP型子
結晶シリコン6bを形成する。Subsequently, as shown in FIG. 1(D), a photoresist film 7 is selectively left on the polycrystalline silicon 6a on the field limiting ring using a photoetching technique, and a polycrystalline silicon pattern for a gate electrode is formed. Ion implantation is performed using a mask to form the P-type semiconductor layer 4 in the channel region in a self-aligned manner. At this time, P impurities for a gate protection diode are simultaneously ion-implanted into the polycrystalline silicon 6a to form P-type subcrystalline silicon 6b.
次に、第1図(E)に示すように、再びフォトエツチン
グ技術を用いてフィールドリミテイングリングとゲート
保護ダイオード用の上の多結晶シリコンをフォトレジス
トにて選択的に被いイオン注入にてソースn+型半導体
層8とn++多結晶シリコン6cを形成後、CVD法に
て不純物を含まないCvD−8102膜5dを約300
OAと高濃度リンを含んだPSG膜5eを約500OA
形成する。Next, as shown in FIG. 1(E), the upper polycrystalline silicon for the field limiting ring and gate protection diode is selectively covered with photoresist using photoetching technology again, and then ion implantation is performed. After forming the source n+ type semiconductor layer 8 and the n++ polycrystalline silicon 6c, a CvD-8102 film 5d containing no impurities is deposited to a thickness of approximately 300 m using the CVD method.
Approximately 500 OA of PSG film 5e containing OA and high concentration of phosphorus
Form.
その後、第1図(F)に示すよ°うに、各種熱処理を施
した後に、コンタクトホールを開口し、ソース+電圧8
aとゲー)Al電極8bとを形成し、且つ、半導体基板
1に裏面電極膜9を形成して、DSA−MOSFETを
完成する。After that, as shown in FIG. 1(F), after various heat treatments are performed, contact holes are opened and the source + voltage is 8.
A and Ga) Al electrodes 8b are formed, and a back electrode film 9 is formed on the semiconductor substrate 1 to complete the DSA-MOSFET.
このような製造工程によれば、ゲート電極材料で用いら
れている半導体不純物イオンを含まない多結晶シリコン
を用いているため、同一プロセス工程にてゲート保護用
ダイオードと呼ばれ、極めて薄いゲート絶縁膜を静電気
破壊から防止するため、多結晶シリコン中にP型子結晶
シリコン6b(チャネルP型半導体層形成時)とn+型
型詰結晶シリコン6Cソースn+型半導体層形成時)を
形成することにより、多結晶シリコンダイオードを形成
することができ、しかもこの際、フィールドリミティン
グリング上の多結晶シリコン6aは、不純物イオンが注
入されていないように、フォトレジストにて被うことに
よって、不純物を含まない高抵抗で、強力なパシベーシ
ョン膜とすることができる。According to this manufacturing process, polycrystalline silicon, which does not contain semiconductor impurity ions used in the gate electrode material, is used, so in the same process step, a gate protection diode, which is called a gate protection diode, is formed, and an extremely thin gate insulating film is formed. In order to prevent static electricity damage, by forming P-type child crystalline silicon 6b (when forming a channel P-type semiconductor layer) and n+-type packed crystal silicon 6C (when forming a source n+-type semiconductor layer) in polycrystalline silicon, A polycrystalline silicon diode can be formed, and at this time, the polycrystalline silicon 6a on the field limiting ring is covered with a photoresist so that it does not contain impurities so that impurity ions are not implanted. It has high resistance and can be made into a strong passivation film.
特に高耐圧MO5型半導体装置においては、セル集積部
の周辺構造が、周囲の条件にいかに影響されずに、初期
特性を保てるかが最大Φポイントであり、信頼性の優れ
た素子を得るため、本発明の前述した構造では、ナトリ
ウムイオンや、重金属イオンは従来のPSG膜5eにて
トラツプし、該PSG膜5eを通過して来る上記イオン
をはじめ、特に水分等は高抵抗を持つ、半導体不純物を
含まない多結晶シリコン膜6aにて完全にしゃ断できる
ものとなっている。特にフィールド領域に存在する厚い
シリコン酸化膜5bと前記n型エピタキシャル層2との
界面での汚染を防止できるため、ソース・ドレイン間に
てリーク電流(In5s )の少ない高耐圧素子とする
ことができる。本発明によるこの実施例では、初期値1
200Vのソース・ドレイン間耐圧が得られた。Particularly in high-voltage MO5 type semiconductor devices, the biggest Φ point is how well the peripheral structure of the cell integrated part can maintain its initial characteristics without being affected by surrounding conditions, and in order to obtain a highly reliable device, In the above-described structure of the present invention, sodium ions and heavy metal ions are trapped in the conventional PSG film 5e, and the above-mentioned ions passing through the PSG film 5e, as well as especially moisture, are semiconductor impurities with high resistance. The polycrystalline silicon film 6a, which does not contain any oxides, can completely cut off the radiation. In particular, since contamination at the interface between the thick silicon oxide film 5b existing in the field region and the n-type epitaxial layer 2 can be prevented, a high voltage element with low leakage current (In5s) between the source and drain can be obtained. . In this embodiment according to the invention, the initial value 1
A source-drain breakdown voltage of 200V was obtained.
第4図は、従来構造の素子と、本発明によって試作した
素子の高温逆バイアス試験における、ソース・ドレイン
間耐圧の信頼性試験の様子を示す。FIG. 4 shows a reliability test of source-drain breakdown voltage in a high-temperature reverse bias test of an element having a conventional structure and an element prototyped according to the present invention.
この試験は、25℃にてゲー)−10V、ソース+電圧
で行なわれた。This test was conducted at 25° C. and −10 V source + voltage.
第4図のデータから、高耐圧MO3FETをはじめとす
る、高耐圧半導体装置は、従来のPSG膜や、フィール
ドプレートの工夫だけでは、充分でなく、本発明による
素子が、いかに優れてい°るかがわかる。From the data in Figure 4, it is clear that conventional PSG films and field plate improvements alone are not sufficient for high-voltage semiconductor devices such as high-voltage MO3FETs, and how superior the device according to the present invention is. I understand.
第2図は、本発明による別の実施例のDSA−MOSF
ETの断面構造を示す第1図(F)と同様の図である。FIG. 2 shows another embodiment of a DSA-MOSF according to the present invention.
It is a figure similar to FIG. 1 (F) showing the cross-sectional structure of ET.
この第2図のDSA −MOSFETは、第1図のもの
と次の点においてのみ異なっている。すなわち、第2図
の実施例では、フィールドリミティングリング3c、3
d上の不純物を含まない多結晶シリコン6aを選択的に
パターニングし、P+型半導体層3bと、P+型半導体
層(フィールドリミティングリング)3C,3dから、
Al膜のフィールドプレート8c、8dを設けることに
より、空乏層の広がりを向上させ、電位の安定を図って
いる。不純物を含まない多結晶シリコンパターン6aは
、P+型半導体層3bから形成されているAlの第1フ
イールドプレート8aから、P+型半導体層3cのフィ
ールドリミティングリング上に設けられているAAの第
2フイールドプレー)8cに至るまで形成されているた
め、高耐圧半導体装置の重要なポイントであるセル集積
部(MOS型において)を取り囲む周辺構造を、Al膜
のフィールドプレートと不純物を含まない多結晶シリコ
ンパターンにて被うことができる。The DSA-MOSFET of FIG. 2 differs from that of FIG. 1 only in the following points. That is, in the embodiment of FIG. 2, the field limiting rings 3c, 3
The impurity-free polycrystalline silicon 6a on d is selectively patterned to form a P+ type semiconductor layer 3b and P+ type semiconductor layers (field limiting rings) 3C and 3d.
By providing field plates 8c and 8d made of Al films, the spread of the depletion layer is improved and the potential is stabilized. The impurity-free polycrystalline silicon pattern 6a extends from the first Al field plate 8a formed from the P+ type semiconductor layer 3b to the second AA field plate provided on the field limiting ring of the P+ type semiconductor layer 3c. The peripheral structure surrounding the cell integration part (in MOS type), which is an important point in high-voltage semiconductor devices, is formed using an Al film field plate and impurity-free polycrystalline silicon. It can be covered with a pattern.
第3図は、本発明の更に別の実施例のDSA−MOSF
ETの断面構造を示す第2図と同様の図である。この第
3図のDSA−MOSFETは、第2図のものと次の点
において異なっている。すなわち、AI!膜フィールド
プレート8a18C及び8dは、その下の絶縁膜5e、
5dに形成した開口部10を通して多結晶シリコン膜6
aに接触させられており、こうすることによって、フィ
ールドプレート効果がより高められるようにされている
。FIG. 3 shows a DSA-MOSF of yet another embodiment of the present invention.
FIG. 2 is a diagram similar to FIG. 2 showing the cross-sectional structure of ET. The DSA-MOSFET shown in FIG. 3 differs from that shown in FIG. 2 in the following points. In other words, AI! The film field plates 8a18C and 8d have an underlying insulating film 5e,
The polycrystalline silicon film 6 is passed through the opening 10 formed at 5d.
a, thereby further enhancing the field plate effect.
また、本発明では、P+型半導体層3bからP+型半導
体層3Cの途中まで、不純物が含まない多結晶シリコン
としてもよい。Further, in the present invention, polycrystalline silicon containing no impurities may be used from the P+ type semiconductor layer 3b to the middle of the P+ type semiconductor layer 3C.
尚、前述した実施例において、半導体不純物を含まない
多結晶シリコンとは、全く不純物を含まないものはもち
ろんのこと、例えば、微量のn−型不純物やP−型不純
物が、前記多結晶シリコンを堆積する際に混入してもか
まわない。すなわち、本発明の実施例における不純物を
含まない多結晶シリコン6aとは、P+型半導体層3b
とP+型半導体層3C1さらに絶縁膜を介して位置する
多結晶シリコン6aが導電性を増し、M OA動作ある
いはこれに近い動作をおこなって、最適なシリコンウェ
ハー濃度、厚さ、フィールドリミティングリングを満足
しているにもかかわらず、正規の耐圧が得られないとい
う現象が生じない程度の、例えば、数キロオームあるい
は数ミグオーム以上のシート抵抗を持つ多結晶シリコン
であれば良い。In the above-mentioned embodiments, polycrystalline silicon that does not contain semiconductor impurities refers to not only polycrystalline silicon that does not contain any impurities, but also polycrystalline silicon that contains a trace amount of n-type impurity or P-type impurity. It does not matter if it gets mixed in during deposition. That is, the polycrystalline silicon 6a that does not contain impurities in the embodiment of the present invention refers to the P+ type semiconductor layer 3b.
The polycrystalline silicon 6a located through the P+ type semiconductor layer 3C1 and the insulating film increases its conductivity, performs MOA operation or an operation similar to this, and achieves the optimum silicon wafer concentration, thickness, and field limiting ring. Any polycrystalline silicon may be used as long as it has a sheet resistance of, for example, several kiloohms or several milligohms or more, which does not cause the phenomenon that a normal breakdown voltage cannot be obtained even though the resistance is satisfied.
又、前述の実施例では、フィールドシリコン酸化膜上に
不純物を含まない多結晶シリコンを用いたが、これに代
わるものとして非晶質シリコン膜でもよい。Further, in the above embodiment, polycrystalline silicon containing no impurities was used on the field silicon oxide film, but an amorphous silicon film may be used instead.
特に非晶質シリコンに不純物ドープの無い場合デポジシ
ョン工程において、極低濃度のn−型の非晶質シリコン
が形成されるため、これまた極めて低濃度のP−型不純
物を混入させることによってlOI′〜101012a
tO/C[II以下の極めて低濃度の非晶質シリコンが
可能である。よって非晶質シリコンは、特に200〜3
00℃程度のプラズマ雰囲気中にてデポジションするこ
とから、あらかじめ、たとえばMO3型半導体装置にお
いては、シャロー−ジャンクシEl 7 (Shall
ow Junction )を必要とするチャネル長等
を形成した後、フィールドシリコン酸化膜中にパッシベ
ーション膜として用いることが可能であるばかりかA1
電極上においても、たとえば、ポリイミド樹脂や、プラ
ズマ酸化膜や、プラズマ酸化膜等の極めて低温プロセス
が可能な絶縁膜と併せてパシベーション膜あるいは、多
層配線の層間絶縁膜として用いられる。In particular, when amorphous silicon is not doped with impurities, n-type amorphous silicon with an extremely low concentration is formed during the deposition process. '~101012a
Amorphous silicon with an extremely low concentration of tO/C[II or less is possible. Therefore, amorphous silicon is particularly suitable for 200 to 3
Since the deposition is performed in a plasma atmosphere at about 00°C, for example, in an MO3 type semiconductor device, shallow-junction
After forming a channel length etc. that requires a junction), it is possible to use it as a passivation film in a field silicon oxide film, and also to use A1 as a passivation film.
Also on the electrode, it is used as a passivation film or an interlayer insulating film for multilayer wiring together with an insulating film that can be processed at an extremely low temperature, such as a polyimide resin, a plasma oxide film, or a plasma oxide film.
また、前述の実施例は、MO3型半導体装置ではあった
が、本発明は、これに限らず、バイポーラ型半導体装置
ある゛いはダイオード等地の高耐圧。Further, although the above-mentioned embodiment is an MO3 type semiconductor device, the present invention is not limited to this, but can also be applied to a bipolar type semiconductor device or a high breakdown voltage such as a diode.
半導体装置にも応用可能である。又、本発明は、低耐圧
用半導体装置に用いても良い。本発明の前述の実施例に
おいて、半導体型であるPとnは逆にしても良い。It can also be applied to semiconductor devices. Further, the present invention may be used in a low voltage semiconductor device. In the above embodiments of the invention, the semiconductor types P and n may be reversed.
発明の効果
前述したように、本発明の高耐圧半導体装置では、セル
集積部の周辺構造が、不純物がドープされていない半導
体膜で被われているので、通常のPSG膜等の絶縁膜を
通過してしまうようなナトリウムイオン、重金属イオン
をはじめ、特に水分等をも完全にしゃ断できるので、高
耐圧特性等の素子特性の劣化を完全に防止でき、より信
頼性の高い素子とすることができる。Effects of the Invention As mentioned above, in the high-voltage semiconductor device of the present invention, the peripheral structure of the cell integrated section is covered with a semiconductor film that is not doped with impurities, so that it can pass through an insulating film such as a normal PSG film. Since it can completely block out sodium ions, heavy metal ions, and especially moisture, which would cause damage, it can completely prevent deterioration of device characteristics such as high voltage resistance characteristics, making the device more reliable. .
また、本発明の前述したようなMO3型半導体装置の製
造工程によれば、不純がドープされていない半導体膜を
形成するために付与する多結晶シリコン膜を利用するこ
とにより、フォトエツチングプロセス工程を増すことな
く、ゲート絶縁膜破壊を防止するゲート保護ダイオード
を同時に形成できるので、取扱い注意の不要な生産性コ
ストの低い素子を提供できる。Further, according to the manufacturing process of the MO3 type semiconductor device as described above of the present invention, the photoetching process step can be performed by using the polycrystalline silicon film applied to form the semiconductor film that is not doped with impurities. Since a gate protection diode for preventing breakdown of the gate insulating film can be formed at the same time without increasing the cost, it is possible to provide an element with low productivity and cost that does not require care in handling.
第1図(A)から(F)は、本発明による一実施例とし
てのDSA−MOSFETの製造工程を示す断面図、第
2図は本発明の別の実施例のDSA−MOSFETの構
造を示す断面図、第3図は本発明の更に別の実施例のD
SA−MOSFETの構造を示す断面図、第4図は従来
構造の素子と本発明によって試作した素子の高温逆バイ
アス試験におけるソース・ドレイン間耐圧の信頼性試験
の結果を示す図、第5図は従来の縦形MO3FETの断
面構造例を示す図である。
1・・・・・・n++半導体基板、2・・・・・・n型
エピタキシャル層、3a、3b、3c、3d・・・・・
・P+型半導体層、4・・・・・・P型半導体層、5b
・・・・・・フィールド用シリコン酸化膜、5c・・・
・・・ゲート酸化膜、6a・・・・・・不純物をドープ
されていない多結晶シリコン、6b・・・・・・P型子
M晶シリコン、6c・・・・・・n+型型詰結晶シリコ
ン7・・・・・・フォトレジスト膜、8・・・・・・ソ
ースn+型半導体層、8a・・・・・・ソース/l電極
、8b・・・・・・ゲー)AI電極、8c18d・・・
・・・A1フィールドプレート、9・・・・・・裏面電
極膜、10・・・・・・開口部。
第4図
時間(H)Figures 1 (A) to (F) are cross-sectional views showing the manufacturing process of a DSA-MOSFET as an embodiment of the present invention, and Figure 2 shows the structure of a DSA-MOSFET as another embodiment of the present invention. A sectional view, FIG. 3 is D of still another embodiment of the present invention.
FIG. 4 is a cross-sectional view showing the structure of the SA-MOSFET. FIG. 4 is a diagram showing the reliability test results of source-drain breakdown voltage in high-temperature reverse bias tests of devices with conventional structure and devices prototyped according to the present invention. FIG. FIG. 2 is a diagram showing an example of the cross-sectional structure of a conventional vertical MO3FET. 1...n++ semiconductor substrate, 2...n-type epitaxial layer, 3a, 3b, 3c, 3d...
・P+ type semiconductor layer, 4...P type semiconductor layer, 5b
...Silicon oxide film for field, 5c...
...Gate oxide film, 6a...Polycrystalline silicon not doped with impurities, 6b...P-type M-crystalline silicon, 6c...N+ type packed crystal Silicon 7...Photoresist film, 8...Source n+ type semiconductor layer, 8a...Source/l electrode, 8b...Ga) AI electrode, 8c18d ...
... A1 field plate, 9 ... Back electrode film, 10 ... Opening. Figure 4 Time (H)
Claims (7)
型の第1半導体層が設けられ、前記半導体基体上には、
前記第1半導体層と前記半導体基体との境界部上に一部
重なるようにして前記第1半導体層から外方へ延びる第
1絶縁膜が設けられ、該第1絶縁膜上に不純物がドープ
されていない半導体膜が設けられていることを特徴とす
る高耐圧半導体装置。(1) A first semiconductor layer of a conductivity type opposite to that of the semiconductor substrate is provided on a semiconductor substrate of one conductivity type, and on the semiconductor substrate,
A first insulating film is provided extending outward from the first semiconductor layer so as to partially overlap the boundary between the first semiconductor layer and the semiconductor substrate, and an impurity is doped onto the first insulating film. A high-voltage semiconductor device characterized in that it is provided with a semiconductor film that does not have a high breakdown voltage.
る特許請求の範囲第(1)項記載の高耐圧半導体装置。(2) The high voltage semiconductor device according to claim (1), wherein the semiconductor film is formed of polycrystalline silicon.
る特許請求の範囲第(1)項記載の高耐圧半導体装置。(3) The high voltage semiconductor device according to claim (1), wherein the semiconductor film is formed of amorphous silicon.
電型の第1半導体層及び該第1半導体層の周囲に所定間
隔を置いてリング状で前記第1半導体層と同じ導電型の
少なくとも1つの第2半導体層が設けられ、前記半導体
基体上には、前記第1半導体層と前記半導体基体との境
界部上及び前記第2半導体層と前記半導体基体との境界
部上に一部重なるようにして且つそれらの間に延び、ま
た、前記第2半導体層と前記半導体基体との境界部上に
一部重なるようにして前記第2半導体層から外方へ延び
る第1絶縁膜が設けられ、該第1絶縁膜上に不純物がド
ープされていない半導体膜が設けられ、前記第1半導体
層と前記第2半導体層とから延びる金属膜が第2絶縁膜
を介して前記半導体膜上に一部重なるように位置するこ
とを特徴とする高耐圧半導体装置。(4) A first semiconductor layer of a conductivity type opposite to that of the semiconductor substrate, and a ring-shaped ring formed at a predetermined interval around the first semiconductor layer, of the same conductivity type as the first semiconductor layer, on a semiconductor substrate of one conductivity type. At least one second semiconductor layer is provided on the semiconductor substrate, and one layer is provided on the boundary between the first semiconductor layer and the semiconductor substrate and on the boundary between the second semiconductor layer and the semiconductor substrate. a first insulating film extending outward from the second semiconductor layer so as to partially overlap and extend between them, and partially overlapping a boundary between the second semiconductor layer and the semiconductor substrate; a semiconductor film not doped with impurities is provided on the first insulating film, and a metal film extending from the first semiconductor layer and the second semiconductor layer is disposed on the semiconductor film via the second insulating film. A high voltage semiconductor device characterized in that it is located so as to partially overlap the .
導体層と前記第2半導体層との間に延びる前記半導体膜
の部分とは、前記第2絶縁膜の部分に形成された開口部
を通して接触しており、前記第2半導体層から延びる金
属膜と前記第2半導体層から外方へ延びる前記半導体膜
の部分とは前記第2絶縁膜の部分に形成された開口部を
通して接触している特許請求の範囲第(4)項記載の高
耐圧半導体装置。(5) The metal film extending from the first semiconductor layer and the portion of the semiconductor film extending between the first semiconductor layer and the second semiconductor layer are the openings formed in the second insulating film. a metal film extending from the second semiconductor layer and a portion of the semiconductor film extending outward from the second semiconductor layer are in contact through an opening formed in a portion of the second insulating film; A high voltage semiconductor device according to claim (4).
る特許請求の範囲第(4)項又は第(5)項記載の高耐
圧半導体装置。(6) The high voltage semiconductor device according to claim (4) or (5), wherein the semiconductor film is formed of polycrystalline silicon.
る特許請求の範囲第(4)項又は第(5)項記載の高耐
圧半導体装置。(7) The high voltage semiconductor device according to claim (4) or (5), wherein the semiconductor film is formed of amorphous silicon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60116077A JPS61274366A (en) | 1985-05-29 | 1985-05-29 | High voltage semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60116077A JPS61274366A (en) | 1985-05-29 | 1985-05-29 | High voltage semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61274366A true JPS61274366A (en) | 1986-12-04 |
Family
ID=14678138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60116077A Pending JPS61274366A (en) | 1985-05-29 | 1985-05-29 | High voltage semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61274366A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04127540A (en) * | 1990-09-19 | 1992-04-28 | Nec Corp | Insulated-gate field-effect transistor |
JPH07193241A (en) * | 1990-12-21 | 1995-07-28 | Siliconix Inc | Defect formation control method in manufacturing silicon integrated circuit, oxide film quality and defect formation control method, double diffusion integrated circuit device cell, and integrated circuit MOSFET cell formation method |
JP2005286328A (en) * | 2004-03-26 | 2005-10-13 | Siliconix Inc | Process for producing termination region of trench MIS device, semiconductor die including MIS device, and method of forming the same |
JP2006310508A (en) * | 2005-04-28 | 2006-11-09 | Sanyo Electric Co Ltd | Semiconductor device and manufacturing method thereof |
JP2007281515A (en) * | 1994-08-15 | 2007-10-25 | Siliconix Inc | Trench type DMOS transistor manufactured with a relatively small number of masking steps and having a thick oxide layer in the terminal region and method for manufacturing the same |
JP2009124169A (en) * | 2009-02-02 | 2009-06-04 | Renesas Technology Corp | Semiconductor device, and its manufacturing method |
-
1985
- 1985-05-29 JP JP60116077A patent/JPS61274366A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04127540A (en) * | 1990-09-19 | 1992-04-28 | Nec Corp | Insulated-gate field-effect transistor |
JPH07193241A (en) * | 1990-12-21 | 1995-07-28 | Siliconix Inc | Defect formation control method in manufacturing silicon integrated circuit, oxide film quality and defect formation control method, double diffusion integrated circuit device cell, and integrated circuit MOSFET cell formation method |
JP2007281515A (en) * | 1994-08-15 | 2007-10-25 | Siliconix Inc | Trench type DMOS transistor manufactured with a relatively small number of masking steps and having a thick oxide layer in the terminal region and method for manufacturing the same |
JP2005286328A (en) * | 2004-03-26 | 2005-10-13 | Siliconix Inc | Process for producing termination region of trench MIS device, semiconductor die including MIS device, and method of forming the same |
JP2006310508A (en) * | 2005-04-28 | 2006-11-09 | Sanyo Electric Co Ltd | Semiconductor device and manufacturing method thereof |
JP2009124169A (en) * | 2009-02-02 | 2009-06-04 | Renesas Technology Corp | Semiconductor device, and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3039967B2 (en) | Semiconductor device | |
US4688323A (en) | Method for fabricating vertical MOSFETs | |
JPS63141375A (en) | Insulated gate field effect transistor | |
JPS63102264A (en) | Thin film semiconductor device | |
JPS61274366A (en) | High voltage semiconductor device | |
JP2808871B2 (en) | Method for manufacturing MOS type semiconductor device | |
US3518750A (en) | Method of manufacturing a misfet | |
JPH0945905A (en) | Semiconductor device and manufacturing method thereof | |
JP3469664B2 (en) | High voltage semiconductor device | |
JPH06349852A (en) | Mos type field-effect transistor | |
US3936862A (en) | MISFET and method of manufacture | |
JPH01194349A (en) | Semiconductor device | |
JPS62123736A (en) | Semiconductor device | |
JPS61289667A (en) | Semiconductor device and manufacture thereof | |
JP3071615B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS63291473A (en) | Manufacture of vertical field-effect transistor | |
JPH0371673A (en) | Vertical mosfet | |
JPH0472771A (en) | MOSFET | |
JP2948256B2 (en) | Method for manufacturing semiconductor memory device | |
JP3223125B2 (en) | Semiconductor device and method of manufacturing semiconductor device | |
JP3157203B2 (en) | High voltage semiconductor device | |
JP2560218B2 (en) | Method for manufacturing semiconductor device | |
JPH0387072A (en) | Semiconductor device | |
JPH0289358A (en) | Complementary mis integrated circuit | |
JPS6014512B2 (en) | Insulated gate field effect transistor |