[go: up one dir, main page]

JPS61272972A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JPS61272972A
JPS61272972A JP60114822A JP11482285A JPS61272972A JP S61272972 A JPS61272972 A JP S61272972A JP 60114822 A JP60114822 A JP 60114822A JP 11482285 A JP11482285 A JP 11482285A JP S61272972 A JPS61272972 A JP S61272972A
Authority
JP
Japan
Prior art keywords
conductivity type
layer
type
polycrystalline silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60114822A
Other languages
Japanese (ja)
Inventor
Moriya Nakahara
中原 守弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60114822A priority Critical patent/JPS61272972A/en
Publication of JPS61272972A publication Critical patent/JPS61272972A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To realize the electrical effective channel length of a submicron region with excellent controllability, and to inhibit the generation of hot electrons by forming a first conduction type semiconductor layer at the central section in the channel length direction and second conduction type semiconductor layers on both sides of the first conduction type semiconductor layer. CONSTITUTION:A thermal oxide film 22 and an silicon nitride film 23 are formed onto a P-type Si substrate 21, a field oxide film 24 is shaped while using the film 23 as a mask, and the films 23, 22 are removed. A gate oxide film 25 is shaped, and the ions of B and As are implanted. A polycrystalline silicon layer 26 is deposited, and P ions are implanted and changed into an N type. The layer 26 and the film 25 are patterned. A patterned polycrystalline silicon layer 27 is irradiated by focus ion beams, and As ions are implanted in order to form a source, a drain and a diffusion layer. A P<+> type polycrystalline silicon layer 27a and N<+> type polycrystalline silicon layers 27b, 27c are shaped. N<+> type source-drain regions 28, 29 and an N-type diffusion layer 30 are formed simultaneously.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置及びその製造方法く関し、特にゲー
ト電極の構造に改良を加えたものである− 〔発明の技術的背景とその問題点〕 従来、MOSトランジスタは、例えば第3図(Ml〜(
C)に示す如く製造されている。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor device and its manufacturing method, and particularly improves the structure of a gate electrode. [Technical Background of the Invention and Problems thereof] Conventionally, MOS transistors are, for example, shown in FIG.
It is manufactured as shown in C).

まず、P型(100)シリコン基板1上にゲート酸化膜
2、多結晶シリコン層3を順次形成し死後、多結晶シリ
コン層3上のゲート電極形成予定線にレジスト4を形成
する(第3図(a)因不)。
First, a gate oxide film 2 and a polycrystalline silicon layer 3 are sequentially formed on a P-type (100) silicon substrate 1, and after death, a resist 4 is formed on the planned gate electrode formation line on the polycrystalline silicon layer 3 (see Fig. 3). (a) cause and effect).

つづいて、このレジスト4をマスクとして前記多結晶シ
リコン層3を反応性イオンエラをング(RIB)により
選択的にエツチング除去し、多結晶シリコンからなるゲ
ート電極5を形成する。
Subsequently, using this resist 4 as a mask, the polycrystalline silicon layer 3 is selectively etched away by reactive ion bombardment (RIB) to form a gate electrode 5 made of polycrystalline silicon.

次に、このゲート電極5″ftマスクとして基板IK 
ヒ素’I:’jJrJm 電圧40 Ke Vl)”−
−e ill 2X 10”/(MFL”の条件でイオ
ン注入し、イオン注入層6t−形成する(第3図(b)
図示)。しかる後、イオン注入層6中のヒ素を電気的に
活性化するために例えばアニールを1000℃、20分
間窒素中で行ない、N 型のソース、ドレイン領域2.
8を形成する。更に、全面に保護膜として、P2O(P
hospho−8i1icate Glass )膜9
を形成し、前記ソース、ドレイン領域7.8に対応する
前記PSG膜9及びゲート酸化に2にコンタクトホール
10を開ロレ、ひ−きつづきこのコンタクトホール10
に前記P8G膜上を走るAd配+w1ノを形成してMO
a型トランジスタを製造する(@3図(C)図示)。
Next, the substrate IK is used as a 5″ft mask for this gate electrode.
Arsenic'I:'jJrJm Voltage 40 Ke Vl)"-
Ion implantation is performed under the conditions of -e ill 2X 10"/(MFL") to form an ion implantation layer 6t (Fig. 3(b)).
(Illustrated). Thereafter, in order to electrically activate the arsenic in the ion-implanted layer 6, annealing is performed in nitrogen at 1000° C. for 20 minutes, and the N-type source and drain regions 2.
form 8. Furthermore, P2O (P
phospho-8ilicate Glass) membrane 9
Then, a contact hole 10 is opened in the PSG film 9 and the gate oxide corresponding to the source and drain regions 7.8.
Then, an Ad pattern +w1 running on the P8G film is formed to form MO.
Manufacture an a-type transistor (as shown in Figure 3 (C)).

ところで、今後の半導体集積回路の高密度化に伴いデー
ト電極寸法は増々微細になりつつあり、最近ではゲート
長1.0μ肩以下のサブミクロン領域に達している。従
って、従来技術によnば、フォトリソグラフィー技術で
レノスト寸法を再現性良くばらつき少なくパター°ン形
成することは非常に困難である。このことは、今後の微
[M08/LSIにおけるゲート電極寸法加工精度上問
題となる。また、ゲート長の微細化に伴い、MOSトラ
ンジスタのドレイン近傍の電界が強まり、ホットエレク
トロンが生成し易くなる。その結果、このホットエレク
トロンがゲート酸化膜中へ注入し、トランジスタ特性が
劣化してMOSトランジスタの信頼性が低下する。なお
、前述したことはL8Iが大規模化し、ゲート長がサブ
ミクロン領域になるとともに一層起りやすい。
Incidentally, as the density of semiconductor integrated circuits increases in the future, the dimensions of date electrodes are becoming increasingly finer, and have recently reached the submicron region with a gate length of 1.0 μm or less. Therefore, according to the prior art, it is extremely difficult to form a pattern with good reproducibility and little variation in Lennost dimensions using photolithography. This will pose a problem in terms of the precision of gate electrode dimension processing in future micro[M08/LSIs]. Furthermore, as the gate length becomes smaller, the electric field near the drain of the MOS transistor becomes stronger, making it easier to generate hot electrons. As a result, these hot electrons are injected into the gate oxide film, deteriorating the transistor characteristics and reducing the reliability of the MOS transistor. Note that the above-mentioned problem becomes more likely to occur as L8I becomes larger and the gate length becomes submicron region.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、サブミクロ
ン領域の電気的な冥効チャネル長を制御性よく冥現する
とともに、ドレイン近傍の電界ft緩和してホットエレ
クトロンの発住ヲ抑制できる高信頼性の半導体装置及び
その製造方ff:を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to realize the electrical effect channel length in the submicron region with good controllability, and to suppress the generation of hot electrons by relaxing the electric field near the drain. An object of the present invention is to provide a reliable semiconductor device and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本願第1の発明は、$1導電型の半導体基板と、この基
板表面に設けられた第2導電型のソース、ドレイン領域
と、同基板表面でかつソース、ドレイン領域間に設けら
れた第2導電型の拡散層と、前記基板上に絶縁膜を介し
て設けられ、チャネル長方向の中央部に@1導電型の半
導体層をかつこの半導体層のチャネル長方向の両側に第
2導電型の半導体層を有したゲート電極と、前記第1、
第2導電型の半導体層を電気的に接続する手段とを具備
し、実効チャネル長の良好な制御性の実現とホットエレ
クトロン発生の抑制を図ったものである。
A first invention of the present application provides a $1 conductivity type semiconductor substrate, a second conductivity type source and drain region provided on the surface of the substrate, and a second conductivity type semiconductor substrate provided on the surface of the substrate and between the source and drain regions. a diffusion layer of conductivity type, a semiconductor layer of @1 conductivity type provided on the substrate via an insulating film, a semiconductor layer of @1 conductivity type in the center part in the channel length direction, and a semiconductor layer of the second conductivity type on both sides of this semiconductor layer in the channel length direction. a gate electrode having a semiconductor layer;
The semiconductor layer is provided with means for electrically connecting the semiconductor layer of the second conductivity type, and is intended to realize good controllability of the effective channel length and suppress generation of hot electrons.

また、本願1g2の発明は、第1導電型の半導体基板に
第2導を型の不純物を導入する工程と、前記基板上にゲ
ート酸化膜を介して第2導電型の半導体層を形成する工
程と、この半導体層をマスクとして前記基板に第2導電
型の不純物を導入する工程と、この半導体層のチャネル
長方向の中央部に第1導礪型の不純物をフォーカス電型
の半導体層とし前記第2導電型の半導体層とともにゲー
ト電極を形成する工程と、熱処理により基板に導入した
前記不純物を活性化し渠2導電型のソース、ドレイン領
域及びこnら佃載量に第2導電型の拡散層を形成する工
程と、前記@1、第2導電型の半導体層を電気的に接続
する手段を形成する工程とを具備することにより、本願
第1の発明と同様な効果を得らnる。
The invention of Application 1g2 also includes a step of introducing a second conductivity type impurity into a first conductivity type semiconductor substrate, and a step of forming a second conductivity type semiconductor layer on the substrate via a gate oxide film. a step of introducing impurities of a second conductivity type into the substrate using this semiconductor layer as a mask; A step of forming a gate electrode together with a semiconductor layer of a second conductivity type, and activating the impurity introduced into the substrate by heat treatment and diffusing the second conductivity type into the source and drain regions of the second conductivity type and the amount deposited thereon. By comprising the step of forming a layer and the step of forming a means for electrically connecting the semiconductor layers of the @1 and second conductivity types, the same effect as the first invention of the present application can be obtained. .

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をNチャネル型MO8)ランジスタの製造
に適用した場合について第1図(a)〜(gl lr:
参照して説明する。
Hereinafter, the case where the present invention is applied to the manufacture of an N-channel type MO8) transistor is shown in FIGS. 1(a) to (gl lr:
Refer to and explain.

〔1〕  まず、例えばP型(100)シリコン基板2
1上に厚さ100OAの熱酸化膜22、厚さ2500A
の窒化シリコン膜23t−形成した後、素子領域形成予
定部を除く領域の窒化シリコン膜23を除去した(第1
図(a)図不)。つづいて、この窒化シリコンp23’
J(マスクとしてフィールド酸化P!J:24を形成し
、前記窒化シリコン膜23を剥離した後、前記熱酸化膜
22を除去した。史に、素子領域の表面に厚さ150A
のゲート酸化Ill 25 t−形成した後、同素子領
域にパンチスルーを防止するためにポロンを加速電圧8
Q Key、  ドーズ量3 X 10”/call’
の条件でイオン注入した。しかる後、後記するP 型ゲ
ート電極直下のチャネル領域のしきい値電圧を制御する
ために、ヒ素を加速電圧100 KeV 、  ドーズ
量2X10”/aI!の条件でイオン注入した(第1図
(b)図示)。
[1] First, for example, a P-type (100) silicon substrate 2
1, a thermal oxide film 22 with a thickness of 100 OA and a thickness of 2500 Å
After forming the silicon nitride film 23t-, the silicon nitride film 23 in the area excluding the part where the element region is to be formed was removed (first
Figure (a) (not shown). Next, this silicon nitride p23'
After forming field oxidation P!J:24 as a mask and peeling off the silicon nitride film 23, the thermal oxide film 22 was removed.
After forming the gate oxidation Ill 25 t-, the poron was accelerated at a voltage of 8 to prevent punch-through in the same device region.
Q Key, dose amount 3 x 10"/call'
Ion implantation was performed under the following conditions. Thereafter, in order to control the threshold voltage of the channel region directly under the P-type gate electrode, which will be described later, arsenic was ion-implanted under the conditions of an acceleration voltage of 100 KeV and a dose of 2 x 10''/aI! (see Fig. 1(b)). ).

〔2〕  次に、全面に厚さ4000^の多結晶シリコ
ン層26を堆積した後、リンを加速電圧120 KeV
 、  ドーズ量I X 101m/cIIiの条件で
イオン注入した。つづいて、窒素雰囲気中で900℃、
30分アニールを行い、電気活性化を施すとともにイオ
ン注入したリン原子を多結晶シリコン層26中に一様に
拡散させN型化した(第1図(C)図不)0次いで、フ
ォトリソグラフィー技術及び反応性イオンエツチング技
術により多結晶シリコン層26、ゲート酸化VIJ!2
5を夫々ノ母ターニングした0更に、ノ々ターニングし
た多結晶シリコン層22のチャネル長方向の 。
[2] Next, after depositing a polycrystalline silicon layer 26 with a thickness of 4000^ on the entire surface, phosphorus was accelerated at a voltage of 120 KeV.
, Ion implantation was performed at a dose of I x 101 m/cIIi. Subsequently, at 900°C in a nitrogen atmosphere,
Annealing was performed for 30 minutes to electrically activate the ion-implanted phosphorus atoms and uniformly diffuse them into the polycrystalline silicon layer 26 to make it N-type (FIG. 1(C), not shown).Next, photolithography technology was applied. And polycrystalline silicon layer 26, gate oxidation VIJ! by reactive ion etching technique. 2
In the channel length direction of the polycrystalline silicon layer 22, which has been subjected to single-turning, the polycrystalline silicon layer 22 has been subjected to single-turning.

中央−に対応する領域に、ビーム径0.5μ隅のボロy
を加速電圧80KeV、  ドーズ@1x10に/c1
)1の条件でフォーカスイオンビームの照射を行った。
In the area corresponding to the center, a beam diameter of 0.5μ corner y
Accelerating voltage 80KeV, dose @1x10/c1
) Focused ion beam irradiation was performed under the conditions of 1.

この際1、このビームの直径がほぼ実効チャネル長と等
しくなるため、ビーム径を変えることによりサブミクロ
ン領域の実効チャネル長を任意に変えさせることが可能
である。
In this case, 1. Since the diameter of this beam is approximately equal to the effective channel length, it is possible to arbitrarily change the effective channel length in the submicron region by changing the beam diameter.

しかる後、ソース、ドレイン領域、拡散層の形成のため
、ヒ素を加速電圧40 KeV 、  ドーズ量2 X
 10”/−の条件でイオン注入した(第1図(d1図
不)。
After that, arsenic was heated at an acceleration voltage of 40 KeV and a dose of 2X to form the source, drain regions, and diffusion layers.
Ion implantation was performed under the condition of 10''/- (Figure 1 (d1 not shown).

〔3〕  次に、イオン注入されたポロン、ヒ素を活性
化するため、及び多結晶シリコン層27中のポロンが多
結晶シリコン層全領域に拡散させない様(多結晶シリコ
ン中の不純物の拡散層は単結晶中に比べ速い)はぼフォ
ーカスイオンビームの不純物分布がそのまま保存さnる
ようにタングステンへログンランプにヨiJ 1000
℃、10秒のラピツドサーマルアニールヲ行ッた。
[3] Next, in order to activate the implanted poron and arsenic, and to prevent the poron in the polycrystalline silicon layer 27 from diffusing into the entire region of the polycrystalline silicon layer (the impurity diffusion layer in the polycrystalline silicon is In order to preserve the impurity distribution of the focused ion beam (faster than that in a single crystal), the tungsten lamp was used to maintain the impurity distribution of the focused ion beam.
A rapid thermal annealing was performed at ℃ for 10 seconds.

この結果、多結晶シリコン層27においては、フォーカ
スイオンビームによるがロンがイオン注入さnた領域は
P 型多結晶シリコン層21aとなり、その両側はN 
型多結晶シリコン層27b、27Cとなった。なお、こ
nら多結晶シリコン層27a〜27cを総称してゲート
電極と呼ぶ。また、同時に、素子領域にはN 型゛のソ
ース、ドレイン領域28.29、及びこれら領域28.
29間にN型の拡散層30が形成された。つづいて、全
面に厚さ3000AのCVD−8i0z膜31を堆積し
た(第1図(e1図不)。次イテ、RI E K ヨ’
J コOCV D −8+ Oを膜31t−エツチング
し、これを多結晶シリコン層27b、27Cの側壁に残
存させた。更に、全面にチタン(Ti )を厚さ100
0 A、8着し、窒素雰囲気中で650℃、305+h
シリサイデージ欝ンを行った。その結果、前記ソース、
ドレイン領域28.29上及び多結晶シリコン層27a
〜27c上にチタンシリサイド層32が形成さnた。こ
の際、フィールド酸化膜24上及ヒCV D−5iO1
)1!lJ l上にはシリコンが存在しないため、チタ
ンは反応しない。しかる後、反応せずに残存しているチ
タンをエツチング除去するためにフッ化アンモニ9ムと
過酸化水素との混合液を用いてチタンをエツチングした
As a result, in the polycrystalline silicon layer 27, the region into which Ron ions were implanted by the focused ion beam becomes a P-type polycrystalline silicon layer 21a, and the regions on both sides thereof are N-type.
type polycrystalline silicon layers 27b and 27C. Note that these polycrystalline silicon layers 27a to 27c are collectively referred to as a gate electrode. At the same time, the element region includes N-type source and drain regions 28, 29, and these regions 28.
An N type diffusion layer 30 was formed between 29 and 29. Subsequently, a CVD-8i0z film 31 with a thickness of 3000 Å was deposited on the entire surface (Fig. 1 (e1 not shown).
A film 31t of OCV D -8+ O was etched and left on the side walls of the polycrystalline silicon layers 27b and 27C. Furthermore, titanium (Ti) is applied to the entire surface to a thickness of 100 mm.
0 A, 8 pieces, 650℃, 305+h in nitrogen atmosphere
I performed a silicidage depression. As a result, the source,
On drain region 28, 29 and polycrystalline silicon layer 27a
A titanium silicide layer 32 was formed on 27c. At this time, the CVD-5iO1 on the field oxide film 24 and
)1! Since there is no silicon on lJ l, titanium does not react. Thereafter, in order to remove unreacted titanium by etching, the titanium was etched using a mixed solution of ammonium fluoride and hydrogen peroxide.

なお、多結晶シリコン層27a〜27c上にはチタンシ
リサイド層32が形成されているため、+ N 型多結晶シリコン層27b、27cとP+型多結晶
シリ37層21aFi電気的に接続さnている。゛また
、ソース、ドレイン領域28.29上にもチタンシリナ
イド層32が残存した(第1図(f)図示)。更に、全
面に厚さ5000AのP S G / 8 i 0 を
膜33t−堆積し、前記ソース、ドレイン領域28.2
9上及びゲート邂極上のPSG/SiO,膜33の一部
を開孔してコンタクトホール34を形成し、こnらコン
タクトホール34にAl電極35を形成してNチャネル
型M08トランソスダを製造した(第1図(gl及び第
2図図六)。ここで、萬2図は第1図(g)を品分的に
拡大してホした断面図である。
Note that since the titanium silicide layer 32 is formed on the polycrystalline silicon layers 27a to 27c, the +N type polycrystalline silicon layers 27b and 27c are electrically connected to the P+ type polycrystalline silicon layer 21aFi. . Furthermore, the titanium silinide layer 32 remained on the source and drain regions 28 and 29 (as shown in FIG. 1(f)). Furthermore, a film 33t of PSG/8 i 0 with a thickness of 5000 Å is deposited on the entire surface, and the source and drain regions 28.2 are
A contact hole 34 was formed by opening a part of the PSG/SiO film 33 on top of the contact hole 9 and on the gate electrode, and an Al electrode 35 was formed in the contact hole 34 to manufacture an N-channel type M08 transosulfur. (Fig. 1 (gl) and Fig. 2 (gl)). Here, Fig. 2 is a cross-sectional view of Fig. 1 (g) enlarged in terms of parts.

本発明に係るNfヤネル型MO8)ランソスタは、21
図(g)に承す如く、P型のシリコン基板21の素子領
域表面にNgのソース、ドレイン領域28.29を設け
、同素子領域表面でかつソース、ドレイン領域28.2
9間にN型の拡散層30を設け、同素子領域上にゲート
酸化$25を介してP 型、N 型多結晶シリコン層2
1a〜2にからなるゲート電極を設け、このゲート電極
及びソース、ドレイン領域31上にチタンシリサイド層
32t−設けた構造となっている。従って、本発明によ
れば、次に不す効果を有する。
The Nf Jarnel type MO8) Lansostar according to the present invention is 21
As shown in Figure (g), Ng source and drain regions 28.29 are provided on the surface of the element region of the P-type silicon substrate 21, and the source and drain regions 28.29 are provided on the surface of the element region.
An N-type diffusion layer 30 is provided between 9 and 9, and P-type and N-type polycrystalline silicon layers 2 are formed on the same element region via gate oxidation $25.
The structure has a structure in which a gate electrode consisting of 1a to 2 is provided, and a titanium silicide layer 32t is provided on the gate electrode and the source and drain regions 31. Therefore, according to the present invention, the following effects are achieved.

■ 上記NチャネルMOa型トランジスタのデート構造
は、第2図に示す通りである。即ち、チャネル領域の表
面近傍はN型の拡散N30となっている丸め、チャネル
領域4/、4Lの表[fJ(N  型多結晶シリコン層
21b、2’ICの直下)はゲート電圧Ovで、ソース
、ドレイン領域28.29がON状態のノーマリオン型
のトランジスタである。一方、同様な理由より、チャネ
ル領域4Jの表面(P 型多結晶シリコン層271の直
下)はある正のゲート電圧を印加しないとON状態にな
らないノーマリオフ型のトランジスタである。従って、
電気的な実効チャネル長はチャネル領域4Jの長さ即ち
P+型多結晶シリ77層27mの長さくL)と等しく、
この長さLLfiフォーカスイオンビームの直径とほぼ
等しroしかるに、フォーカスイオンビームの径をサブ
ミクロンの長さまで絞りこむことは容易であるので、サ
ブミクロン長のゲート長を持つMO8)ランジスタを制
限性よく実現することが可能である。
(2) The date structure of the N-channel MOa type transistor is as shown in FIG. That is, the surface of the channel region is rounded with an N-type diffusion N30, and the table of the channel region 4/4L [fJ (directly under the N-type polycrystalline silicon layer 21b, 2' IC) is the gate voltage Ov, It is a normally-on type transistor in which source and drain regions 28 and 29 are in an ON state. On the other hand, for the same reason, the surface of the channel region 4J (directly under the P-type polycrystalline silicon layer 271) is a normally-off transistor that does not turn on unless a certain positive gate voltage is applied. Therefore,
The electrical effective channel length is equal to the length of the channel region 4J, that is, the length L) of the P+ type polycrystalline silicon 77 layer 27m,
This length LLfi is almost equal to the diameter of the focused ion beam.However, since it is easy to narrow down the diameter of the focused ion beam to a submicron length, MO8) transistors with a submicron gate length can be used as a limiting factor. It is possible to realize it well.

■ チャネル領域41〜43L/1N3j:jになって
いるため、キャリアである電子はシリコン基板21表面
及び深さ方向にも広く流れている、いわゆるBurie
dチャネル型トランジスタとなっている。従って、ホッ
トエレクトロン発生場所が比較的基板21表面より深い
ところに位置し、ゲート酸化膜25中へのホットエレク
トロン注入が抑えられ、トランジスタ特性の劣化を抑制
できる。また、Burムedチャネル型特有の高実効移
動反になる。
■ Since the channel regions 41 to 43L/1N3j:j are formed, electrons, which are carriers, flow widely on the surface of the silicon substrate 21 and in the depth direction, so-called Burie.
It is a d-channel transistor. Therefore, the hot electron generation location is located relatively deeper than the surface of the substrate 21, suppressing injection of hot electrons into the gate oxide film 25, and suppressing deterioration of transistor characteristics. In addition, there is a high effective movement characteristic peculiar to the Burmu ED channel type.

また、本発明方法は、ポロンをフォーカスイオンビーム
技術によりノ母ターニングされた多結晶シリコン層27
にイオン注入、ラピツドナーマルアニールを行って多結
晶シリコン層22のチャネル長方向の中央SをP 型化
、この両側をN 型化して多結晶シリコンからなるゲー
ト電極を形成するとともに、その後の第1図Uの工程で
ゲート電極にチタンシリナイド層27を形成する等の工
程を経るため、前述の如くサブミクロン長のゲート長を
持つMO8)ランジスタを制御性よく実現できるととも
に、ホットエレクトロン注入を抑制してトランジスタ特
性の劣化を抑制できる。
In addition, the method of the present invention provides a polycrystalline silicon layer 27 which has been turned by poron using focused ion beam technology.
Ion implantation and rapid donor annealing are performed to make the center S of the polycrystalline silicon layer 22 in the channel length direction P-type, and both sides thereof are made N-type to form a gate electrode made of polycrystalline silicon. Since the process of FIG. 1U involves forming a titanium silinide layer 27 on the gate electrode, it is possible to realize an MO8) transistor with a submicron gate length as described above with good controllability, and also to inject hot electrons. can suppress deterioration of transistor characteristics.

なお、上記実施例では、P 型、N 型の多結晶シリコ
ン/IIを電気的に接続する手段としてチタンシリサイ
ドをゲート電極上全面に形成する場合について述べたが
、こnに限らず、単に前記多結晶シリコン層間を電気的
に接続するだけでよい。また、金属材料としては、チタ
ンの他、タングステン、モリブデン、白金等の高融点金
属を用いてもよい。
In the above embodiment, a case was described in which titanium silicide was formed on the entire surface of the gate electrode as a means for electrically connecting P type and N type polycrystalline silicon/II. It is only necessary to electrically connect the polycrystalline silicon layers. In addition to titanium, high melting point metals such as tungsten, molybdenum, and platinum may be used as the metal material.

また、上記実施例では、Ny−ヤネルMOSトランジス
タに適用した場合について述べたが、これに限らず、第
4図に示す如くPチャネルMO8)ランジスタについて
も適用できる。なお、第5図において、51はN型のシ
リコン基板を、52.53はP 型のソース、ドレイン
領域を、54はP型の拡散層を、55aはN+型多結晶
シリコン層を、55b、55CLliP+型多結晶シリ
コン層を夫々示す。
Further, in the above embodiment, the case where the present invention is applied to a Ny-Yarnel MOS transistor has been described, but the present invention is not limited to this, and the present invention can also be applied to a P-channel MO8 transistor as shown in FIG. In FIG. 5, 51 is an N type silicon substrate, 52 and 53 are P type source and drain regions, 54 is a P type diffusion layer, 55a is an N+ type polycrystalline silicon layer, 55b, 55CLliP+ type polycrystalline silicon layers are shown respectively.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によnば、サブミクロン領域の
電気的な実効チャネル長を制御性よく実現するとともに
、ホットエレクトロンの発生を抑制してトランジスタ特
性を同上し得る牛導体装置及びその製造方法を提供でき
る。
As detailed above, according to the present invention, a conductor device and its manufacture are capable of realizing an effective electrical channel length in the submicron region with good controllability, suppressing the generation of hot electrons, and improving transistor characteristics. I can provide a method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)は本発明の一実施例に係るNチャ
ネルMO8)ランジスタの製造方法を工程順にホす断面
図、第2図は本発明による効果を説明するためのNチャ
ネルMO8)ランジスタの略@面図、第3図+8)〜(
C1は従来のNチャネルMO8’)ランジスダの製造方
法を工程順に示す断面図、第4図は本発明の他の実施例
に係るPチャネルMO8)ランジスタの断面図である。 21・・・P型(100)シリコン基板、22・・・熱
酸化@、23・・・窒化シリコン膜、24・・・フィー
ルド酸化膜、25・・・ゲート酸化膜、26.21・・
・多結晶シリコン層、27m、55b、56c・・・P
+型多結晶シリコン層、21b、27c。 55a・・・N 型多結晶シリコン層、28.52・・
・ソース領域、29.53・・・ドレイン領域、30.
54・・・拡散層、31 ・・・CV D−ISiO,
1%、32・・・チタンシリサイド層、33・・・P8
G/8i01膜、34・・・コンタクトホール、35・
・・Alltm。 出願人代理人  弁理士 鈴 江 武 彦$+1)  
   げwp4 第1図 ¥41図 第2v!l
FIGS. 1(a) to (g) are cross-sectional views showing a method for manufacturing an N-channel MO8) transistor according to an embodiment of the present invention in the order of steps, and FIG. MO8) Schematic @ side view of transistor, Figure 3 +8) ~ (
C1 is a cross-sectional view showing a conventional N-channel MO8' transistor manufacturing method in order of steps, and FIG. 4 is a cross-sectional view of a P-channel MO8' transistor according to another embodiment of the present invention. 21... P type (100) silicon substrate, 22... Thermal oxidation@, 23... Silicon nitride film, 24... Field oxide film, 25... Gate oxide film, 26.21...
・Polycrystalline silicon layer, 27m, 55b, 56c...P
+ type polycrystalline silicon layer, 21b, 27c. 55a...N type polycrystalline silicon layer, 28.52...
- Source region, 29.53...Drain region, 30.
54... Diffusion layer, 31... CV D-ISiO,
1%, 32...Titanium silicide layer, 33...P8
G/8i01 film, 34... contact hole, 35.
...Alltm. Applicant's agent Patent attorney Takehiko Suzue $+1)
gewp4 Figure 1 ¥41 Figure 2v! l

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板と、この基板表面に設け
られた第2導電型のソース、ドレイン領域と、同基板表
面でかつソース、ドレイン領域間に設けられた第2導電
型の拡散層と、前記基板上に絶縁膜を介して設けられ、
チャネル長方向の中央部に第1導電型の半導体層をかつ
この半導体層のチャネル長方向の両側に第2導電型の半
導体層を有したゲート電極と、前記第1、第2導電型の
半導体層を電気的に接続する手段とを具備することを特
徴とする半導体装置。
(1) A semiconductor substrate of a first conductivity type, a source and drain region of a second conductivity type provided on the surface of this substrate, and a diffusion of a second conductivity type provided on the surface of the substrate and between the source and drain regions. layer, provided on the substrate via an insulating film,
a gate electrode having a semiconductor layer of a first conductivity type in a central part in the channel length direction and a semiconductor layer of a second conductivity type on both sides of the semiconductor layer in the channel length direction; and semiconductors of the first and second conductivity types. 1. A semiconductor device comprising: means for electrically connecting layers.
(2)ゲート電極が、第1導電型の多結晶シリコン層と
、この多結晶シリコン層のチャネル方向の両側の第2導
電型の多結晶シリコン層からなることを特徴とする特許
請求の範囲第1項記載の半導体装置。
(2) The gate electrode is comprised of a first conductivity type polycrystalline silicon layer and a second conductivity type polycrystalline silicon layer on both sides of the polycrystalline silicon layer in the channel direction. The semiconductor device according to item 1.
(3)第1、第2導電型の半導体層を電気的に接続する
手段が、これら半導体層上に設けられた高融点金属化合
物層であることを特徴とする特許請求の範囲第1項記載
の半導体装置。
(3) Claim 1, characterized in that the means for electrically connecting the first and second conductivity type semiconductor layers is a high melting point metal compound layer provided on these semiconductor layers. semiconductor devices.
(4)第1導電型の半導体基板に第2導電型の不純物を
導入する工程と、前記基板上にゲート酸化膜を介して第
2導電型の半導体層を形成する工程と、この半導体層を
マスクとして前記基板に第2導電型の不純物を導入する
工程と、この半導体層のチャネル長方向の中央部に第1
導電型の不純物をフォーカスイオンビーム技術によりイ
オン注入して第1導電型の半導体層とし前記第2導電型
の半導体層とともにゲート電極を形成する工程と、熱処
理により基板に導入した前記不純物を活性化し第2導電
型のソース、ドレイン領域及びこれら領域間に第2導電
型の拡散層を形成する工程と、前記第1、第2導電型の
半導体層を電気的に接続する手段を形成する工程とを具
備することを特徴とする半導体装置の製造方法。
(4) a step of introducing an impurity of a second conductivity type into a semiconductor substrate of a first conductivity type; a step of forming a semiconductor layer of a second conductivity type on the substrate via a gate oxide film; A step of introducing an impurity of a second conductivity type into the substrate as a mask, and a step of introducing an impurity of a second conductivity type into the substrate,
A step of ion-implanting a conductivity type impurity using focused ion beam technology to form a first conductivity type semiconductor layer and forming a gate electrode together with the second conductivity type semiconductor layer, and activating the impurity introduced into the substrate by heat treatment. forming a second conductive type source and drain region and a second conductive type diffusion layer between these regions; and forming a means for electrically connecting the first and second conductive type semiconductor layers. A method of manufacturing a semiconductor device, comprising:
JP60114822A 1985-05-28 1985-05-28 Semiconductor device and its manufacturing method Pending JPS61272972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60114822A JPS61272972A (en) 1985-05-28 1985-05-28 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60114822A JPS61272972A (en) 1985-05-28 1985-05-28 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JPS61272972A true JPS61272972A (en) 1986-12-03

Family

ID=14647550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60114822A Pending JPS61272972A (en) 1985-05-28 1985-05-28 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS61272972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190911B1 (en) * 1993-03-17 2001-02-20 Canon Kabushiki Kaisha Semiconductor device and fabrication method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123179A (en) * 1976-04-09 1977-10-17 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its production
JPS52123879A (en) * 1976-04-09 1977-10-18 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its production
JPS5834975A (en) * 1981-08-27 1983-03-01 Nec Corp Insulated gate type field effective semiconductor device
JPS5834875A (en) * 1981-08-22 1983-03-01 Asatsuki Soshoku Kk Adhesive for floor and wall materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123179A (en) * 1976-04-09 1977-10-17 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its production
JPS52123879A (en) * 1976-04-09 1977-10-18 Matsushita Electric Ind Co Ltd Mos type semiconductor device and its production
JPS5834875A (en) * 1981-08-22 1983-03-01 Asatsuki Soshoku Kk Adhesive for floor and wall materials
JPS5834975A (en) * 1981-08-27 1983-03-01 Nec Corp Insulated gate type field effective semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190911B1 (en) * 1993-03-17 2001-02-20 Canon Kabushiki Kaisha Semiconductor device and fabrication method thereof

Similar Documents

Publication Publication Date Title
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
JPS60254766A (en) Method of producing gage electrode
KR100396709B1 (en) method for manufacturing of semiconductor device
JPS5932173A (en) Manufacture of field effect transistor
JPS61272972A (en) Semiconductor device and its manufacturing method
JPH06310666A (en) Manufacture of cmos semiconductor device of dual gate structure
JP2582337B2 (en) Method of manufacturing MOS transistor having source / drain regions and silicide with shallow junction
JPH11186548A (en) Semiconductor device and manufacture thereof
KR100261185B1 (en) Method for manufacturing semiconductor device
JP2500075B2 (en) Method for improving parasitic diode characteristics of thin film transistor-static RAM cell
JPS5972173A (en) Mis type semiconductor device and manufacture thereof
JPS6190470A (en) Method for manufacturing compound semiconductor device
JPH02155238A (en) Semiconductor device
JPS60208863A (en) MOS transistor and its manufacturing method
JPS60134469A (en) Manufacturing method of semiconductor device
JPS6347982A (en) Semiconductor device
JPH0425030A (en) Manufacture of semiconductor device
JPH0439772B2 (en)
JPH02218164A (en) Mis type field-effect transistor
JPH04359468A (en) Compound semiconductor device and manufacture thereof
JPH02304934A (en) Manufacture of mis type transistor
JPS6147670A (en) Manufacturing method of semiconductor device
JPH03218025A (en) Manufacture of semiconductor device
JPH02155239A (en) Manufacturing method of semiconductor device
JPS6318677A (en) Iii-v compound semiconductor device