JPS61257291A - Treatment of waste water containing ammonium nitrate - Google Patents
Treatment of waste water containing ammonium nitrateInfo
- Publication number
- JPS61257291A JPS61257291A JP9829685A JP9829685A JPS61257291A JP S61257291 A JPS61257291 A JP S61257291A JP 9829685 A JP9829685 A JP 9829685A JP 9829685 A JP9829685 A JP 9829685A JP S61257291 A JPS61257291 A JP S61257291A
- Authority
- JP
- Japan
- Prior art keywords
- noble metal
- waste water
- wastewater
- ammonium nitrate
- concn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 51
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 22
- 239000000126 substance Substances 0.000 claims abstract description 18
- 239000003054 catalyst Substances 0.000 claims abstract description 16
- 150000002500 ions Chemical class 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000006864 oxidative decomposition reaction Methods 0.000 claims abstract description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 239000001301 oxygen Substances 0.000 claims description 21
- 229910052760 oxygen Inorganic materials 0.000 claims description 21
- 238000009279 wet oxidation reaction Methods 0.000 claims description 14
- 229910021529 ammonia Inorganic materials 0.000 claims description 12
- 238000000354 decomposition reaction Methods 0.000 claims description 7
- 150000002736 metal compounds Chemical class 0.000 claims description 4
- 229910052770 Uranium Inorganic materials 0.000 abstract description 5
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 3
- 229910002651 NO3 Inorganic materials 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000012958 reprocessing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- 239000002912 waste gas Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- -1 nickel-chromium-aluminum Chemical compound 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 150000002898 organic sulfur compounds Chemical class 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【発明の詳細な説明】
創U直11」
本発明は、硝酸アンモニウム含有廃水の処理方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater containing ammonium nitrate.
来 びその 。Next come.
近年、水質規制の観点から化学的酸素要求物質(COD
成分)のみならず、窒素成分(特にアンモニア態窒素)
の除去も重要な課題となって来た。In recent years, chemical oxygen demand substances (COD) have been
components) as well as nitrogen components (especially ammonia nitrogen)
Removal of this has also become an important issue.
本発明者等は、アンモニア含有廃水の処理方法について
長期にわたり種々研究を重ねた結果、特定の触媒の存在
下且つ特定の条件下に湿式酸化処理を行なうことにより
、操作容易にして実用上の経済性を備えたアンモニア含
有廃水の処理方法を完成した(特公昭59−19757
号、特公昭56−42992号、特公昭57−4239
1@、特公昭58−27999号、特公昭57−333
20号等)。As a result of long-term research on various methods for treating ammonia-containing wastewater, the present inventors have discovered that wet oxidation treatment can be carried out in the presence of a specific catalyst and under specific conditions, making it easy to operate and practical and economical. Completed a method for treating ammonia-containing wastewater with
No., Special Publication No. 56-42992, Special Publication No. 57-4239
1@, Special Publication No. 58-27999, Special Publication No. 57-333
No. 20, etc.).
最近、発電業界における原子力発電の比重が増大するに
従って、ウラン原料の処理及び使用済みウラン燃料の再
処理工程から排出されるNHhNOs含有廃水の処理が
重要な技術的課題となりつつある。本発明者は、この様
なNHANO3含有廃水の処理に上記一連のアンモニア
含有廃水の処理技術(以下先願技術という)を応用する
ことを試みた。この試みにおいて、NHa+イオンは極
めて高い効率で分解されるものの、No3−イオンにつ
いては必ずしも満足すべきものとは言い難い場合もある
ことが判明した。Recently, as the proportion of nuclear power generation in the power generation industry has increased, the treatment of NHhNOs-containing wastewater discharged from the processing of uranium raw materials and the reprocessing of spent uranium fuel is becoming an important technical issue. The present inventor attempted to apply the above-mentioned series of ammonia-containing wastewater treatment technologies (hereinafter referred to as prior art) to the treatment of such NHANO3-containing wastewater. In this trial, it was found that although NHa+ ions were decomposed with extremely high efficiency, the decomposition of No3- ions was not always satisfactory.
これは、上記廃水中のNH4N0311度が1%cio
ooopp■)から10%(100000pp■)程度
にも達する場合があることによるものと推測される。This means that the NH4N0311 degree in the wastewater is 1%cio
This is presumed to be due to the fact that it can reach as much as 10% (100,000 pp■) from ooopp■).
た の
本発明者は、上記の如き現状に鑑みて更に種々研究を重
ねた結果、担持触媒の存在下にpH8以上で湿式酸化を
行なう先頭技術に代えて、非担持触1(1)存在下にp
H3〜11.5 でNHa NOs含有廃水の湿式酸化
分解を行なう場合にはNHa+イオンのみならず、N0
s−イオンも効率良く分解されることを見出した。更に
本発明者の研究によれば、予めCOD成分を加えたNH
aNOs含有廃水を上記と同様にして湿式酸化分解に供
する場合には、分解効率がより一層改善されることを見
出した。即ち、本発明は、下記の2種の廃水処理方法を
提供するものである。In view of the above-mentioned current situation, the inventors of the present invention have conducted various studies, and as a result, instead of the leading technology of performing wet oxidation at pH 8 or higher in the presence of a supported catalyst, the present inventor has developed a method in the presence of an unsupported catalyst 1(1). ni p
When performing wet oxidative decomposition of NHa NOs-containing wastewater at H3~11.5, not only NHa+ ions but also N0
It has been found that s-ions are also efficiently decomposed. Furthermore, according to the research of the present inventor, NH to which a COD component has been added in advance
It has been found that when aNOs-containing wastewater is subjected to wet oxidative decomposition in the same manner as described above, the decomposition efficiency is further improved. That is, the present invention provides the following two types of wastewater treatment methods.
■ 硝酸アンモニウム含有廃水を貴金属、貴金属イオン
及び可溶性貴金属化合物の少なくとも1種からなる触媒
の存在下且つ廃水中のアンモニア、有機性物質及び無機
性物質をN2 、H20及びCO2にまで分解するに必
要な理論酸素量の1〜1.5倍量の酸素の存在下にpH
約3〜11.5、温度100〜370℃で湿式酸化分解
することを特徴とする硝酸アンモニウム含有廃水の処理
方法。■ Theory necessary for decomposing ammonia, organic substances, and inorganic substances in wastewater containing ammonium nitrate into N2, H20, and CO2 in the presence of a catalyst consisting of at least one of a noble metal, a noble metal ion, and a soluble noble metal compound. pH in the presence of 1 to 1.5 times the amount of oxygen
A method for treating wastewater containing ammonium nitrate, characterized by carrying out wet oxidative decomposition at a temperature of about 3 to 11.5°C and a temperature of 100 to 370°C.
■ COD成分を加えた硝酸アンモニウム含有廃水を貴
金属、貴金属イオン及び可溶性貴金属化合物の少なくと
も1種からなる触媒の存在下且つ廃水中のアンモニア、
有機性物質及び無機性物質をN2 、H20及びCO2
にまで分解するに必要な理論酸素量の1〜1.5倍量の
酸素の存在下にpH約3〜11.5、温度100〜37
0℃で湿式酸化分解することを特徴とする硝酸アンモニ
ウム含有廃水の処理方法。■ Ammonium nitrate-containing wastewater to which a COD component has been added is treated in the presence of a catalyst consisting of at least one of a noble metal, a noble metal ion, and a soluble noble metal compound, and the ammonia in the wastewater,
Organic and inorganic substances with N2, H20 and CO2
In the presence of 1 to 1.5 times the theoretical amount of oxygen required for decomposition to
A method for treating wastewater containing ammonium nitrate, characterized by wet oxidative decomposition at 0°C.
本発明は、NHaNOsを含む全ての廃水を処理の対象
とするものであり、特にNHaNOs濃度が1%以上の
高濃度廃水の処理に好適である。The present invention targets all wastewater containing NHaNOs, and is particularly suitable for treating high-concentration wastewater with an NHaNOs concentration of 1% or more.
尚、廃水は、有機性物質及びam性物質を併せて含んで
いても良い0本発明方法は、pH約3〜11.5、より
好ましくは8〜11で効率良〈実施されるので、必要な
らば、水酸化ナトリウム、炭酸ナトリウム、水酸化カル
シウム等のアルカリ性物質により廃水のpH講整を予め
行なっても良い。Note that the wastewater may contain both organic substances and ammonium substances. In this case, the pH of the wastewater may be adjusted in advance using an alkaline substance such as sodium hydroxide, sodium carbonate, or calcium hydroxide.
本発明で使用する触媒成分としては、白金、ルテニウム
、ロジウム、パラジウム、オスミウム及びイリジウム等
の貴金属及びそのイオン並びこれ等貴金属の水に対し可
溶性の貴金属の化合物が挙げられ、これ等の1種又は2
種以上を使用することが出来る。貴金属としては、より
具体的にルテニウムブラック、パラジウムブラック等が
例示される。貴金属イオンとしては、アンモニア、塩素
、シアン、ナトリウム、カリウム等を配位子として錯化
合物の形態にあるものが挙げられ、錯化合物としては、
(NHA )t (RuCQs (Ha O))、
(Ru (NHs )a )C(12、(RuCQ
(NHs ))s CQa 1N Q e (
P d CQ & )、(NHa )2 (PdC
Qa ) 、(Pd (NHa )& )CQ
2 、K2 (Pd (Not )a )2
H20゜Kg (Pd (CN)4 )3820等が
例示される。Catalyst components used in the present invention include noble metals such as platinum, ruthenium, rhodium, palladium, osmium, and iridium, their ions, and compounds of these noble metals that are soluble in water. 2
More than one species can be used. More specific examples of the noble metal include ruthenium black, palladium black, and the like. Examples of noble metal ions include those in the form of complex compounds with ammonia, chlorine, cyanide, sodium, potassium, etc. as ligands, and complex compounds include (NHA)t (RuCQs (HaO)),
(Ru(NHs)a)C(12,(RuCQ)
(NHs ))s CQa 1N Q e (
P d CQ & ), (NHa )2 (PdC
Qa), (Pd(NHa)&)CQ
2, K2 (Pd (Not)a)2
Examples include H20°Kg (Pd (CN)4)3820.
水に可溶性の化合物としては、RLJC(Is、RuC
Qt ・5H20、PtCQt 、PCJC;Qe、P
d CQ 2 ・2Ha O,RhCQs ・3H2
0,05CQ A 、I r CQ a等が例示される
。触媒成分は、処理開始後しばらくの閲廃水500cc
に対し通常0.01〜0.2Q程度の割合で反応系に供
給する。反応槽内には、接触面積を増大して反応を均一
に進行させる為に、チタニア、ジルコニア、アルミナ、
シリカ、アルミナ−シリカ、活性炭、或いは鉄、ニッケ
ル、ニッケルークロム、ニッケルークロム−アルミニウ
ム、ニッケルークロム−鉄等の金属多孔体等9球体又は
粉体(破砕片、粉粒体、ペレット、円柱体等)を充填し
ておいても良い。反応の進行とともに反応槽内表面又は
球体或いは粉体の表面に貴金属ブラックが付着形成され
、これが触媒としての作用を発揮し始めるので、この時
点で触媒の供給を停止すれば良い。更に時間の経過とと
もに上記の貴金属ブラックの触媒活性が低下すれば、触
媒成分の供給を再開する。Water-soluble compounds include RLJC (Is, RuC
Qt ・5H20, PtCQt, PCJC; Qe, P
d CQ 2 ・2Ha O, RhCQs ・3H2
Examples include 0,05CQ A and I r CQ a. The catalyst component is 500cc of waste water that has been washed for a while after the start of treatment.
It is usually supplied to the reaction system at a ratio of about 0.01 to 0.2Q. Inside the reaction tank, titania, zirconia, alumina,
Silica, alumina-silica, activated carbon, or metal porous bodies such as iron, nickel, nickel-chromium, nickel-chromium-aluminum, nickel-chromium-iron, etc. 9 spheres or powders (crushed pieces, granules, pellets, cylinders) body, etc.) may be filled. As the reaction progresses, noble metal black is deposited on the inner surface of the reaction vessel or on the surface of the spheres or powder, and this begins to act as a catalyst, so it is sufficient to stop supplying the catalyst at this point. Furthermore, if the catalytic activity of the noble metal black decreases with the passage of time, the supply of the catalyst component is restarted.
反応を回分式で行なう場合には、前記の3〜5倍量程度
の触媒成分を使用することが好ましい。When the reaction is carried out batchwise, it is preferable to use about 3 to 5 times the amount of the catalyst component as described above.
本発明で酸素源として使用するガスとしては、空気、酸
素富化空気、酸素、更には不純物としてシアン化水素、
硫化水素、アンモニア、硫黄酸化物、有機硫黄化合物、
窒素酸化物、炭化水素等の少なくとも1種を含有する酸
素含有廃ガスが挙げられる。これ等ガスの供給量は、廃
水中に存在するアンモニア、有機性物質及び無機性物質
を分解するに必要な理論酸素量を基準として定められ、
通常理論酸素量の1〜1.5倍量より好ましくは理論酸
素量の1.05〜1.2倍の酸素が反応系に存在する様
にする。酸素源として酸素含有廃ガスを使用する場合に
は、ガス中の有害成分も同時に分解無害化される。酸素
含有ガスは、一度に供給しても良く或いは複数回に分け
て供給しても良い。The gas used as an oxygen source in the present invention includes air, oxygen-enriched air, oxygen, and hydrogen cyanide as an impurity.
Hydrogen sulfide, ammonia, sulfur oxides, organic sulfur compounds,
Examples include oxygen-containing waste gas containing at least one of nitrogen oxides, hydrocarbons, and the like. The supply amount of these gases is determined based on the theoretical amount of oxygen necessary to decompose ammonia, organic substances, and inorganic substances present in wastewater.
Generally, oxygen is present in the reaction system in an amount of 1 to 1.5 times the theoretical amount of oxygen, preferably 1.05 to 1.2 times the theoretical amount of oxygen. When oxygen-containing waste gas is used as an oxygen source, harmful components in the gas are also decomposed and rendered harmless. The oxygen-containing gas may be supplied at once, or may be supplied in multiple doses.
反応時の温度は、通常100〜370℃、より好ましく
は200〜300℃とする。反応時の温度が高い程、N
HA÷イオン及びN0s−イオンの除去率が高まり且つ
反応塔内での廃水の滞留時間も短縮されるが、反面に於
て設備費が大となるので、廃水の種類、要求される処理
の程度、運転費、建設費等を総合的に考慮して定めれば
良い。The temperature during the reaction is usually 100 to 370°C, more preferably 200 to 300°C. The higher the temperature during the reaction, the more N
Although the removal rate of HA÷ ions and N0s- ions increases and the residence time of wastewater in the reaction tower is shortened, on the other hand, the equipment cost increases, so the type of wastewater and the degree of treatment required are , operating costs, construction costs, etc. should be comprehensively considered.
従って反応時の圧力は、最低限所定温度に於て廃水が液
相を保つ圧力であれば良い。Therefore, the pressure during the reaction may be any pressure at which the wastewater remains in a liquid phase at a minimum predetermined temperature.
NHaNOs含有廃水にCOD成分を添加する場合には
、廃水中のNoslモルに対しCOD成分を1モル以下
、より好ましくは0.1〜0.5モル程度添加する。こ
の場合の湿式酸化条件も上記と周様で良い。When adding a COD component to NHaNOs-containing wastewater, the COD component is added to 1 mol or less, more preferably about 0.1 to 0.5 mol, per mol of Nosl in the wastewater. In this case, the wet oxidation conditions may be similar to those described above.
81目と1里
本発明によれば、NH4NO3を高濃度で含有する廃水
を効率良く処理し、NHa”イオン及びN0s−イオン
濃度を大幅に低下させることが出来る。従って、例えば
、ウラン原料の処理工程又は使用済みウラン燃料の再処
理工程から排出され、NHLNOs濃度が10%以上に
も達することがある廃水等の処理を簡易な設備により容
易に行なうことが出来る。According to the present invention, wastewater containing a high concentration of NH4NO3 can be efficiently treated and the concentrations of NHa" ions and NOs- ions can be significantly reduced. Therefore, for example, it is possible to treat uranium raw materials. It is possible to easily treat wastewater and the like discharged from processes or spent uranium fuel reprocessing processes, where the concentration of NHLNOs can reach 10% or more, using simple equipment.
哀−1−1
以下実施例を示し、本発明の特徴とするところをより一
層明らかにする。Sadness-1-1 Examples will be shown below to further clarify the characteristics of the present invention.
実施例1
pH5,3、NHaNOsl1度1%
(NHs −N/NOs −N、 1)の廃水ioom
を容量300−のステンレススチール製オートクレープ
に収容し、250℃で60分分間式酸化処理した。尚、
反応器には、処理に先立って空気が封入されており、こ
れはアンモニア、有機性物質及び無機性物質を分解する
に必要な理論酸素量の約1.1倍に相当する酸素を含有
していた。又、廃水には、RuC950,50を溶解さ
せた。Example 1 Wastewater ioom with pH 5.3 and NHaNOsl 1 degree 1% (NHs-N/NOs-N, 1)
was placed in a 300-capacity stainless steel autoclave and subjected to oxidation treatment at 250° C. for 60 minutes. still,
The reactor is filled with air prior to treatment, containing approximately 1.1 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances. Ta. Furthermore, RuC950,50 was dissolved in the wastewater.
NHs 、NOs及び全窒素成分の分解率を実施例2〜
6の結果とともに第1表に示す。The decomposition rates of NHs, NOs and total nitrogen components were measured in Example 2~
The results are shown in Table 1 along with the results of No. 6.
実施例2
実施例1で処理したと同様のNHa NOs含有廃水に
所定量のCs Hs OHを加えてCOD/、。5−N
−約0.5(モル比)を調整したpH5,3の液を実施
例1と同様にして湿式酸化処理に供した。Example 2 A predetermined amount of Cs Hs OH was added to the same NHa NOs-containing wastewater as treated in Example 1 to produce COD/. 5-N
- A solution with a pH of 5.3, adjusted to about 0.5 (molar ratio), was subjected to wet oxidation treatment in the same manner as in Example 1.
実施例3
液のpHを7.8とした以外は実施例2と同様にしてN
HANO3含有廃水の湿式酸化処理を行なった。実施例
4
RucQsに代えてPdCQ2を触媒として使用する以
外は実施例1と同様にして廃水の湿式酸化処理を行なっ
た。Example 3 N
Wet oxidation treatment of HANO3-containing wastewater was performed. Example 4 Wet oxidation treatment of wastewater was carried out in the same manner as in Example 1 except that PdCQ2 was used as a catalyst instead of RucQs.
実施例5〜6
Ru CQ sに代えてPdCQtを使用する以外は実
施例2〜3と同様にしてNHaNOs含有廃水の湿式酸
化処理を行なった。Examples 5-6 Wet oxidation treatment of NHaNOs-containing wastewater was carried out in the same manner as in Examples 2-3 except that PdCQt was used instead of Ru CQ s.
実施例7
pH10、NHaNO*濃度10%
< N Hs −N/No、 −N−1−0)の廃水を
空間速度0.92’/(空塔基準)として高ニッh「
ケル鋼製円筒型反応器下部に供給しつつ、空気を空間速
度92 /h、(空塔基準、標準状態換算)として該
反応器下部に供給して湿式酸化処理を行なった。液の質
量速度は、2.12 ton/m’ ・hrであり、
供給空気は、アンモニア、有機性物質及び無機性物質を
分解するに必要な理論酸素量の約1.1倍に相当する酸
素を含有していた。反応器には、RuC(!sを1時間
当り0.55a供給゛し、湿式酸化は、温度250℃、
圧カフ 0 ko/C11I−Gの条件下に行なわれた
。又、反応器には、径5■lのチタニア球体が充填され
ていた。Example 7 Wastewater with a pH of 10 and a NHaNO* concentration of 10% <NHs -N/No, -N-1-0) was processed into a high-nitrogen steel cylindrical type with a space velocity of 0.92'/(sky column standard). Wet oxidation treatment was carried out by supplying air to the lower part of the reactor at a space velocity of 92/h (on a superficial basis, standard state conversion).The mass velocity of the liquid was 2.12/h. ton/m'・hr,
The feed air contained approximately 1.1 times the theoretical amount of oxygen required to decompose ammonia, organic materials, and inorganic materials. RuC (!s) was supplied to the reactor at a rate of 0.55 a per hour, and the wet oxidation was carried out at a temperature of 250°C.
It was carried out under the conditions of pressure cuff 0 ko/C11I-G. The reactor was also filled with titania spheres having a diameter of 5 liters.
反応を終えた気液混合相を熱回収に供した後、気液分離
器に導き、分離された気相及び液相をそれぞれ間接冷却
後、系外に取り出した。After the gas-liquid mixed phase that had completed the reaction was subjected to heat recovery, it was led to a gas-liquid separator, and the separated gas and liquid phases were each indirectly cooled and then taken out of the system.
第2表に本実施例及び実施例8〜10におけるNHs
、NOs及び全窒素成分の分解率を示す。Table 2 shows the NHs in this example and Examples 8 to 10.
, shows the decomposition rate of NOs and total nitrogen components.
尚、気相中には、NOx及びSOxは検出されなかった
。Note that NOx and SOx were not detected in the gas phase.
実施例8
COD/No3−N(モル比)が0.5となる様に06
H50Hを加えるとともに空気の空間速度を99’/h
rとした以外は実施例7と同様にしてN84NO3含有
廃水の湿式酸化処理を行なった。実施例9
RuCQsに代えてPdCQgを使用する以外は、実施
例7と同様にしてNHgNOx含有廃水の湿式酸化処理
を行なった。Example 8 06 so that COD/No3-N (molar ratio) is 0.5
Add H50H and increase the space velocity of air to 99'/h
Wet oxidation treatment of N84NO3-containing wastewater was carried out in the same manner as in Example 7 except that the temperature was changed to r. Example 9 Wet oxidation treatment of NHgNOx-containing wastewater was carried out in the same manner as in Example 7 except that PdCQg was used instead of RuCQs.
実施例10
RuC9sに代えてpdcQ2を使用する以外は、実施
例8と同様にしてN84NO3含有廃水の湿式酸化処理
を行なった。Example 10 Wet oxidation treatment of N84NO3-containing wastewater was carried out in the same manner as in Example 8, except that pdcQ2 was used in place of RuC9s.
実施例11
pH10、NHANO3濃度10%
(NHじ ’N0s−N=1)の廃水1001fiを容
量300mのステンレススチール製オートクレーブに収
容し、250℃で60分分間式酸化処理した。尚、反応
器には、処理に先立って空気が封入されており、これは
アンモニア、有機性物質及び無機性物質を分解するに必
要な理論酸素量の約1.1倍に相当する酸素を含有して
いた。又、廃水には、ルテニウムブラック0.20を加
えた。Example 11 1001 fi of wastewater with a pH of 10 and a NHANO3 concentration of 10% (NH2'N0s-N=1) was placed in a stainless steel autoclave with a capacity of 300 m and subjected to oxidation treatment at 250°C for 60 minutes. The reactor is filled with air prior to treatment, which contains oxygen equivalent to approximately 1.1 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances. Was. Further, ruthenium black 0.20 was added to the wastewater.
第3表に本実施例及び実施例12におけるNHs 、N
Os及び全窒素成分の分解率を示す。Table 3 shows NHs, N in this example and Example 12.
The decomposition rate of Os and total nitrogen components is shown.
実施例12
COD/ No、−N(モル比)が約0.5となる様に
Ce Hs OHを加えた以外は実施例11と同様にし
てNHa NOs含有廃水の湿式酸化処理を行なった。Example 12 A wet oxidation treatment of NHa NOs-containing wastewater was carried out in the same manner as in Example 11, except that Ce Hs OH was added so that the COD/No, -N (molar ratio) was about 0.5.
Claims (2)
ン及び可溶性貴金属化合物の少なくとも1種からなる触
媒の存在下且つ廃水中のアンモニア、有機性物質及び無
機性物質をN_2、H_2O及びCO_2にまで分解す
るに必要な理論酸素量の1〜1.5倍量の酸素の存在下
にpH約3〜11.5、温度100〜370℃で湿式酸
化分解することを特徴とする硝酸アンモニウム含有廃水
の処理方法。(1) Necessary for ammonium nitrate-containing wastewater to be decomposed into N_2, H_2O, and CO_2 in the presence of a catalyst consisting of at least one of a noble metal, a noble metal ion, and a soluble noble metal compound. A method for treating wastewater containing ammonium nitrate, which comprises carrying out wet oxidation decomposition at a temperature of 100 to 370°C at a pH of about 3 to 11.5 in the presence of 1 to 1.5 times the theoretical amount of oxygen.
貴金属、貴金属イオン及び可溶性貴金属化合物の少なく
とも1種からなる触媒の存在下且つ廃水中のアンモニア
、有機性物質及び無機性物質をN_2、H_2O及びC
O_2にまで分解するに必要な理論酸素量の1〜1.5
倍量の酸素の存在下にpH約3〜11.5、温度100
〜370℃で湿式酸化分解することを特徴とする硝酸ア
ンモニウム含有廃水の処理方法。(2) Ammonium nitrate-containing wastewater to which a COD component has been added is treated in the presence of a catalyst consisting of at least one of a noble metal, a noble metal ion, and a soluble noble metal compound, and ammonia, organic substances, and inorganic substances in the wastewater are removed by N_2, H_2O, and C.
1 to 1.5 of the theoretical amount of oxygen required to decompose to O_2
In the presence of double the amount of oxygen, the pH is approximately 3 to 11.5, and the temperature is 100.
A method for treating wastewater containing ammonium nitrate, characterized by wet oxidative decomposition at ~370°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60098296A JPH0691991B2 (en) | 1985-05-09 | 1985-05-09 | Treatment method of wastewater containing high concentration ammonium nitrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60098296A JPH0691991B2 (en) | 1985-05-09 | 1985-05-09 | Treatment method of wastewater containing high concentration ammonium nitrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61257291A true JPS61257291A (en) | 1986-11-14 |
JPH0691991B2 JPH0691991B2 (en) | 1994-11-16 |
Family
ID=14215954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60098296A Expired - Lifetime JPH0691991B2 (en) | 1985-05-09 | 1985-05-09 | Treatment method of wastewater containing high concentration ammonium nitrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0691991B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5641413A (en) * | 1995-10-27 | 1997-06-24 | Zimpro Environmental, Inc. | Removal of nitrogen from wastewaters |
US6395188B1 (en) | 2000-07-10 | 2002-05-28 | Air Products And Chemicals, Inc. | Treatment of water containing organic wastes with ammonium nitrate |
NL2000897C2 (en) * | 2006-10-03 | 2009-11-16 | Siemens Water Tech Corp | Wet oxidation of soot. |
US8501011B2 (en) | 2007-01-22 | 2013-08-06 | Siemens Energy, Inc. | Wet air oxidation process using recycled catalyst |
US8501149B2 (en) | 2011-02-18 | 2013-08-06 | Siemens Energy, Inc. | H2S conversion to sulfur using a regenerated iodine solution |
US9193613B2 (en) | 2006-10-03 | 2015-11-24 | Siemens Energy, Inc. | pH control to enable homogeneous catalytic wet air oxidation |
US9315401B2 (en) | 2007-01-22 | 2016-04-19 | Siemens Energy, Inc. | Wet air oxidation process using recycled copper catalyst |
US9630867B2 (en) | 2007-09-11 | 2017-04-25 | Siemens Energy, Inc. | Treatment of spent caustic waste |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5320663A (en) * | 1976-08-10 | 1978-02-25 | Osaka Gas Co Ltd | Method of treating waste water |
JPS5442851A (en) * | 1977-09-12 | 1979-04-05 | Osaka Gas Co Ltd | Method of simultaneously treating waste water and exhaust gas |
JPS5919757A (en) * | 1982-07-22 | 1984-02-01 | Sony Corp | Friction drive gear for rotary body |
JPS59115786A (en) * | 1982-12-21 | 1984-07-04 | Osaka Gas Co Ltd | Wet oxidation treatment of waste water |
JPS61222588A (en) * | 1985-03-28 | 1986-10-03 | Osaka Gas Co Ltd | Treatment of waste water containing ammonium nitrate |
-
1985
- 1985-05-09 JP JP60098296A patent/JPH0691991B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5320663A (en) * | 1976-08-10 | 1978-02-25 | Osaka Gas Co Ltd | Method of treating waste water |
JPS5442851A (en) * | 1977-09-12 | 1979-04-05 | Osaka Gas Co Ltd | Method of simultaneously treating waste water and exhaust gas |
JPS5919757A (en) * | 1982-07-22 | 1984-02-01 | Sony Corp | Friction drive gear for rotary body |
JPS59115786A (en) * | 1982-12-21 | 1984-07-04 | Osaka Gas Co Ltd | Wet oxidation treatment of waste water |
JPS61222588A (en) * | 1985-03-28 | 1986-10-03 | Osaka Gas Co Ltd | Treatment of waste water containing ammonium nitrate |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5641413A (en) * | 1995-10-27 | 1997-06-24 | Zimpro Environmental, Inc. | Removal of nitrogen from wastewaters |
US6395188B1 (en) | 2000-07-10 | 2002-05-28 | Air Products And Chemicals, Inc. | Treatment of water containing organic wastes with ammonium nitrate |
US8460557B2 (en) | 2006-10-03 | 2013-06-11 | Siemens Energy, Inc. | Catalytic wet oxidation systems and methods |
NL2003767C2 (en) * | 2006-10-03 | 2010-09-07 | Siemens Water Tech Corp | WET OXIDATION OF Soot. |
US7993588B2 (en) | 2006-10-03 | 2011-08-09 | Siemens Industry, Inc. | Catalytic wet oxidation systems and methods |
US8114297B2 (en) | 2006-10-03 | 2012-02-14 | Siemens Industry, Inc. | Wet oxidation of soot |
NL2000897C2 (en) * | 2006-10-03 | 2009-11-16 | Siemens Water Tech Corp | Wet oxidation of soot. |
US9193613B2 (en) | 2006-10-03 | 2015-11-24 | Siemens Energy, Inc. | pH control to enable homogeneous catalytic wet air oxidation |
US8501011B2 (en) | 2007-01-22 | 2013-08-06 | Siemens Energy, Inc. | Wet air oxidation process using recycled catalyst |
US9315401B2 (en) | 2007-01-22 | 2016-04-19 | Siemens Energy, Inc. | Wet air oxidation process using recycled copper catalyst |
US9630867B2 (en) | 2007-09-11 | 2017-04-25 | Siemens Energy, Inc. | Treatment of spent caustic waste |
US8501149B2 (en) | 2011-02-18 | 2013-08-06 | Siemens Energy, Inc. | H2S conversion to sulfur using a regenerated iodine solution |
US8828351B2 (en) | 2011-02-18 | 2014-09-09 | Siemens Energy, Inc. | H2S conversion to sulfur using a regenerated iodine solution |
Also Published As
Publication number | Publication date |
---|---|
JPH0691991B2 (en) | 1994-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02172590A (en) | Process for removing nitrite and nitrate from aqueous solution without leaving residue | |
JPS61257291A (en) | Treatment of waste water containing ammonium nitrate | |
CN114832596B (en) | Method and device for preparing ammonia by active molecule oxidation flue gas double-circulation denitration | |
JPS61257292A (en) | Treatment of waste water containing ammonium nitrate | |
JP5303263B2 (en) | Solid catalyst for treating nitrate nitrogen-containing water and method for treating nitrate nitrogen-containing water using the catalyst | |
JPS61245883A (en) | Treatment of waste water containing ammonium nitrate | |
JPH09276881A (en) | Treatment method for water containing nitrogen compounds | |
JPH0461987A (en) | Treatment of waste water containing ammonium nitrate | |
JP2969477B2 (en) | Treatment method for wastewater containing ammonium nitrate | |
JPH0227035B2 (en) | ||
JP4187845B2 (en) | Method for treating ammonia-containing water | |
JP2969467B2 (en) | Treatment method for wastewater containing ammonium nitrate | |
JPS61245884A (en) | Treatment of waste water containing ammonium nitrate | |
JP2969478B2 (en) | Treatment method for wastewater containing ammonium nitrate | |
JPS61222585A (en) | Treatment of waste water containing ammonium nitrate | |
JP2001009481A (en) | Treatment of wastewater containing metal and ammonia | |
JP3263968B2 (en) | Treatment of wastewater containing nitrate | |
JP3693354B2 (en) | Treatment method of wastewater containing nitrate | |
JP3565637B2 (en) | Treatment of wastewater containing ammonia | |
JPH0459094A (en) | Treatment of waste water containing ammonium nitrate | |
JPS61222588A (en) | Treatment of waste water containing ammonium nitrate | |
JPS61257290A (en) | Treatment of waste water containing ammonium nitrate | |
JP3822520B2 (en) | Nitrogen compound-containing water treatment method | |
JPS61222586A (en) | Treatment of waste water containing ammonium nitrate | |
US4044111A (en) | Method of treating calcium nitrate contained in denitration waste liquid |