[go: up one dir, main page]

JPS61245883A - Treatment of waste water containing ammonium nitrate - Google Patents

Treatment of waste water containing ammonium nitrate

Info

Publication number
JPS61245883A
JPS61245883A JP8730485A JP8730485A JPS61245883A JP S61245883 A JPS61245883 A JP S61245883A JP 8730485 A JP8730485 A JP 8730485A JP 8730485 A JP8730485 A JP 8730485A JP S61245883 A JPS61245883 A JP S61245883A
Authority
JP
Japan
Prior art keywords
noble metal
wastewater
oxygen
ammonia
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8730485A
Other languages
Japanese (ja)
Other versions
JPH0645027B2 (en
Inventor
Yoshiaki Harada
原田 吉明
Teizo Okino
沖野 貞造
Tomonori Ueda
上田 僚則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP60087304A priority Critical patent/JPH0645027B2/en
Publication of JPS61245883A publication Critical patent/JPS61245883A/en
Publication of JPH0645027B2 publication Critical patent/JPH0645027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To lower the concns. of an NH4<+> ion and a NO3<-> ion to a large extent, by applying wet thermal decomposition treatment to waste water containing ammonium nitrate, to which ammonia was added if necessary, in the presence of a specific catalyst and a specific amount of oxygen under a specific condition. CONSTITUTION:Wet thermal decomposition treatment is applied to NH4NO3- containing waste water not only in the presence of a catalyst comprising at least one of a noble metal, a noble metal ion and a soluble noble metal compound but also in presence of oxygen in an amount below a theoretical oxygen amount necessary for decomposing the ammonia component, org. substance and inorg. substance in the NH4NO3-containing waste water. Further, at this time, pH is adjusted to about 3-11.5 and reaction is performed at 100-370 deg.C and ammonia is preliminarily added so as to satisfy 1<NH3-N/NO2-N<=5 (mol ratio). Whereupon, decomposition efficiency is enhanced further and an NH4<+> ion and a NO3<-> ion are efficiently removed.

Description

【発明の詳細な説明】 産業上の利朋盆1 本発明は、硝酸アンモニウム含有廃水の処理方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Industrial Benefits 1 The present invention relates to a method for treating wastewater containing ammonium nitrate.

従来技術及びその問題点 近年、水質規制の観点から化学的酸素要求物質(COD
成分)のみならず、良素成分(特にアンモニア態窒素)
の除去も重要な課題となって来た。
Prior art and its problems In recent years, chemical oxygen demand substances (COD) have been increasing from the viewpoint of water quality regulation.
Ingredients) as well as benign elements (especially ammonia nitrogen)
Removal of this has also become an important issue.

本発明者等は、アンモニア含有廃水の処理方法について
長期にわたり種々研究を重ねた結果、特定の触媒の存在
下且つ特定の条件下に湿式酸化処理を行なうことにより
、操作容易にして実用上の経済性を備えたアンモニア含
有廃水の処理方法を完成した(特公昭59−19757
号、特公昭56−42992号、特公昭57−4239
1号、特公昭58−27999号、特公昭57−333
2O号等)。
As a result of long-term research on various methods for treating ammonia-containing wastewater, the present inventors have discovered that wet oxidation treatment can be carried out in the presence of a specific catalyst and under specific conditions, making it easy to operate and practical and economical. Completed a method for treating ammonia-containing wastewater with
No., Special Publication No. 56-42992, Special Publication No. 57-4239
1, Special Publication No. 58-27999, Special Publication No. 57-333
2O etc.).

最近、発電業界における原子力発電の比重が増大するに
従って、ウラン原料の処理及び使用済みウラン燃料の再
処理工程から排出されるNHaNOs含有廃水の処理が
重要な技術的課題となりつつある。本発明者は、この様
なNH4N03含有廃水の処理に上記一連のアンモ。
Recently, as the importance of nuclear power generation in the power generation industry increases, the treatment of NHaNOs-containing wastewater discharged from the processing of uranium raw materials and the reprocessing process of spent uranium fuel is becoming an important technical issue. The present inventor has developed the above-mentioned series of ammonia for the treatment of such NH4N03-containing wastewater.

ニア含有廃水の処理技術(以下先願技術という)を応用
することを試みた。この試みにおいて、NHa+イオン
は極めて高い効率で分解されるものの、NO3−イオン
については必ずしも満足すべきものとは言い難い場合も
あることが判明した。
An attempt was made to apply the treatment technology for wastewater containing Nia (hereinafter referred to as the prior application technology). In this trial, it was found that although NHa+ ions were decomposed with extremely high efficiency, the decomposition of NO3- ions was not always satisfactory.

これは、上記廃水中のNHaNOai!度が1%(10
000pE)鳳)から10%(100000EIEIm
 )程度にも達する場合があることによるものと推測さ
れる。
This is NHaNOai in the wastewater mentioned above! degree is 1% (10
000pE) to 10% (100000EIEIm)
).

同 点を解決するための一段 本発明者は、上記の如き現状に鑑みて更に種々研究を重
ねた結果、担持触媒の存在下に廃水中のアンモニア、有
機性物質及び無機性物質を分解するに必要な理論酸素ω
以上の酸素を使用して湿式酸化を行なう先願技術に代え
て、貴金属、貴金属イオン及び可溶性貴金属化合物の少
なくとも1種からなる触媒の存在下且つN84NO3含
有廃水中のアンモニア成分、有機性物質及び無機性物質
を分解するに必要な理論酸素量未満の酸素の存在下に該
NHaNOs含有廃水の湿式熱分解を行なう場合にはN
Ha÷イオンのみならず、NO3−イオンも効率良く分
解されることを見出した。更に本発明者の研究によれば
、1〈NH3−N/N03−N≦5(モル比)となる様
にアンモニアを加えたNHANO3含有廃水を上記と同
様にして湿式熱分解に供する場合には、分解効率がより
一層改善されることを見出した。即ち、本発明は、下記
の2種の廃水処理方法を提供するものである。
In view of the above-mentioned current situation, the inventor of the present invention has conducted various researches to solve the same problem, and as a result, has developed a method for decomposing ammonia, organic substances, and inorganic substances in wastewater in the presence of supported catalysts. Required theoretical oxygen ω
Instead of the prior art in which wet oxidation is performed using oxygen, ammonia components, organic substances, and inorganic substances in the N84NO3-containing wastewater are used in the presence of a catalyst consisting of at least one of a noble metal, a noble metal ion, and a soluble noble metal compound. When performing wet pyrolysis of the NHaNOs-containing wastewater in the presence of less than the theoretical amount of oxygen required to decompose the
It has been found that not only Ha÷ ions but also NO3- ions are efficiently decomposed. Furthermore, according to the research of the present inventor, when NHANO3-containing wastewater to which ammonia has been added so that 1〈NH3-N/N03-N≦5 (molar ratio) is subjected to wet pyrolysis in the same manner as above, It was found that the decomposition efficiency was further improved. That is, the present invention provides the following two types of wastewater treatment methods.

■ 硝酸アンモニウム含有廃水を貴金属、貴金属イオン
及び可溶性貴金属化合物の少なくとも1種からなる触媒
の存在下且つ廃水中のアンモニア、有機性物質及び無機
性物質をN2 、H2O及びCO2にまで分解するに必
要な理論l素置未満の酸素の存在下にpH約3〜11.
5、温度100〜370℃で湿式熱分解することを特徴
とする硝酸アンモニウム含有廃水の処理方法。
■ Theory necessary for decomposing ammonia, organic substances, and inorganic substances in wastewater containing ammonium nitrate into N2, H2O, and CO2 in the presence of a catalyst consisting of at least one of a noble metal, a noble metal ion, and a soluble noble metal compound. In the presence of less than 1 hour of oxygen, the pH is about 3-11.
5. A method for treating ammonium nitrate-containing wastewater, which comprises performing wet thermal decomposition at a temperature of 100 to 370°C.

■ 1〈NH3−N/N)≦5(モル比)となる様にア
ンモニアを加えた硝酸アンモニウム含有廃水を貴金属、
貴金属イオン及び可溶性貴金属化合物の少なくとも1種
からなる触媒の存在下且つ廃水中のアンモニア、有機性
物質及び無機性物質をN2 、H2O及びCO2にまで
分解するに必要な理論酸素量未満の酸素の存在下にpH
約3〜11.5、温度100〜370℃で湿式熱分解す
ることを特徴とする硝酸アンモニウム含有廃水の処理方
法。
■ Ammonium nitrate-containing wastewater to which ammonia has been added so that 1〈NH3-N/N)≦5 (molar ratio) is
Presence of oxygen in the presence of a catalyst consisting of at least one of noble metal ions and soluble noble metal compounds and less than the theoretical amount of oxygen necessary to decompose ammonia, organic substances and inorganic substances in the wastewater to N2, H2O and CO2. pH below
A method for treating wastewater containing ammonium nitrate, characterized by carrying out wet pyrolysis at a temperature of about 3 to 11.5°C and a temperature of 100 to 370°C.

本発明は、NH4NO2を含む全ての廃水を処理の対象
とするものであり、特にNHLNO3Fk1度が1%以
上の高濃度廃水の処理に好適である。
The present invention targets all wastewater containing NH4NO2, and is particularly suitable for treating high-concentration wastewater with NHLNO3Fk1 degree of 1% or more.

尚、廃水は、有機性物質及び無機性物質を併せて含んで
いても良い。本発明方法は、pH約3〜11.5、より
好ましくは5〜11で効率良〈実施されるので、必要な
らば、水酸化ナトリウム、炭酸ナトリウム、水酸化カル
シウム等のアルカリ性物質により廃水のpH調整を予め
行なっても良い。
Note that the wastewater may contain both organic substances and inorganic substances. Since the method of the present invention is carried out efficiently at a pH of about 3 to 11.5, more preferably 5 to 11, if necessary, the pH of the wastewater can be adjusted by adding an alkaline substance such as sodium hydroxide, sodium carbonate, calcium hydroxide, etc. Adjustments may be made in advance.

本発明で使用する触媒成分としては、白金、ルテニウム
、Oジウム、パラジウム、オスミウム及びイリジウム等
の貴金属、これ等貴金属のイオン及び水に対し可溶性の
貴金属の化合物が挙げられ、これ等の1種又は2種以上
を使用することが出来る。貴金属としてはルテニウムブ
ラック、パラジウムブラック等が例示され、貴金属イオ
ンとしては、アンモニア、塩素、シアン、ナトリウム、
カリウム等を配位子として錯化合物の形態にあるものが
挙げられ、錯化合物としては、 (NH4)2  (RuCQs  (H2O))、(R
u (N H3) s ) CQ 2、(RuCQ (
NH3))5 CQ 。
Examples of the catalyst component used in the present invention include noble metals such as platinum, ruthenium, Odium, palladium, osmium, and iridium, ions of these noble metals, and compounds of water-soluble noble metals. Two or more types can be used. Examples of noble metals include ruthenium black and palladium black, and examples of noble metal ions include ammonia, chlorine, cyanide, sodium,
Examples include those in the form of complex compounds using potassium etc. as a ligand. Examples of complex compounds include (NH4)2 (RuCQs (H2O)), (R
u (NH3) s ) CQ 2, (RuCQ (
NH3))5CQ.

N a 2(P d CQ & )、 (NH4)2  (PdCQa )、 (Pd (NH3)A )C122、 K2  (Pd (NO2)4 )2H2O、K2  
(Pd (CN)A )3H2O等が例示さIt6゜水
に可溶性の化合物としては、Ru CQ 3、RLIC
Qt ・5H2O%PtCQt 、RuCQ2、RuC
Q2 ・2H2O%RhCQ3 ・3H2O、QSC(
It 、IrC(12等が例示される。触媒成分は、処
理開始後しばらくの間廃水500CCに対し通常0.0
1〜0.2a程度の割合で反応槽に供給する。反応槽内
には、接触面積を増大して反応を均一に進行させる為に
、チタニア、ジルコニア、アルミナ、シリカ、アルミナ
−シリカ、活性炭、或いは鉄、ニッケル、ニッケルーク
ロム、ニッケルークロム−アルミニウム、ニッケルーク
ロム−鉄等の金属多孔体等の球体又は粉体く破砕片、粉
粒体、ペレット、円柱体等)を充填しておいても良い。
Na2(PdCQ&), (NH4)2(PdCQa), (Pd(NH3)A)C122, K2(Pd(NO2)4)2H2O, K2
(Pd(CN)A)3H2O etc. are exemplified.It6° water-soluble compounds include RuCQ3, RLIC
Qt ・5H2O%PtCQt, RuCQ2, RuC
Q2 ・2H2O%RhCQ3 ・3H2O, QSC(
Examples include It, IrC (12, etc.) The catalyst component is usually 0.0 cc per 500 cc of wastewater for a while after the start of treatment.
It is supplied to the reaction tank at a rate of about 1 to 0.2 a. In order to increase the contact area and make the reaction proceed uniformly, the reaction tank contains titania, zirconia, alumina, silica, alumina-silica, activated carbon, or iron, nickel, nickel-chromium, nickel-chromium-aluminum, It may be filled with spherical or powdered metal porous bodies such as nickel-chromium-iron (pulverized pieces, powder, granules, pellets, cylindrical bodies, etc.).

反応の進行とともに反応槽内表面又は球体或いは粉体の
表面に貴金属ブラックが付着形成され、これが触媒とし
ての作用を発揮し始めるので、この時点で触媒の供給を
停止すれば良い。更に時間の経過とともに上記の貴金属
ブラックの触媒活性が低下すれば、触媒成分の供給を再
開する。
As the reaction progresses, noble metal black is deposited on the inner surface of the reaction vessel or on the surface of the spheres or powder, and this begins to act as a catalyst, so it is sufficient to stop supplying the catalyst at this point. Furthermore, if the catalytic activity of the noble metal black decreases with the passage of time, the supply of the catalyst component is restarted.

反応を回分式で行なう場合には、前記の3〜5倍量程度
の触媒成分を使用することが好ましい。
When the reaction is carried out batchwise, it is preferable to use about 3 to 5 times the amount of the catalyst component as described above.

本発明で酸素源として使用するガスとしては、空気、酸
素富化空気、酸素、更には不純物としてシアン化水素、
硫化水素、アンモニア、硫黄酸化物、有機硫黄化合物、
窒素酸化物、炭化水素等の少なくとも1種を含有する酸
素含有廃ガスが挙げられる。これ等ガスの供給口は、廃
水中に存在するアンモニア、有機性物質及び無機性物質
を分解するに必要な理論酸素量を基準として定められ、
通常理論酸素口未満より好ましくは理論M素置の0.2
〜0.6倍の酸素が反応系に存在する様にする。酸素源
として酸素含有廃ガスを使用する場合には、ガス中の有
害成分も同時に分解無害化される。酸素含有ガスは、一
度に供給しても良く或いは複数回に分けて供給しても良
い。
The gas used as an oxygen source in the present invention includes air, oxygen-enriched air, oxygen, and hydrogen cyanide as an impurity.
Hydrogen sulfide, ammonia, sulfur oxides, organic sulfur compounds,
Examples include oxygen-containing waste gas containing at least one of nitrogen oxides, hydrocarbons, and the like. These gas supply ports are determined based on the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances present in wastewater.
Usually less than the theoretical oxygen port, preferably 0.2 of the theoretical M
~0.6 times as much oxygen is present in the reaction system. When oxygen-containing waste gas is used as an oxygen source, harmful components in the gas are also decomposed and rendered harmless. The oxygen-containing gas may be supplied at once, or may be supplied in multiple doses.

反応時の温度は、通常100〜370℃、より好ましく
は2O0〜300℃とする。反応時の温度が高い程、N
H4÷イオン及びN0a−イオンの除去率が高まり且つ
反応塔内での廃水の滞留時間も短縮されるが、反面に於
て設備費が大となるので、廃水の種類、要求される処理
の程度、運転費、建設費等を総合的に考慮して定めれば
良い。
The temperature during the reaction is usually 100 to 370°C, more preferably 200 to 300°C. The higher the temperature during the reaction, the more N
Although the removal rate of H4÷ ions and N0a- ions increases and the residence time of wastewater in the reaction tower is shortened, on the other hand, the equipment cost increases, so the type of wastewater and the degree of treatment required are , operating costs, construction costs, etc. should be comprehensively considered.

従って反応時の圧力は、最低限所定温度に於て廃水が液
相を保つ圧力であれば良い。
Therefore, the pressure during the reaction may be any pressure at which the wastewater remains in a liquid phase at a minimum predetermined temperature.

NHANO3含有廃水にアンモニアを加えて1〈NH3
−N/No、−N≦5(モル比)とした廃水を湿式熱分
解する場合の反応条件も上記と同様で良い。
Adding ammonia to NHANO3-containing wastewater produces 1〈NH3
-N/No, -N≦5 (molar ratio), the reaction conditions for wet thermal decomposition of wastewater may be the same as above.

発明の効果 本発明によれば、NH4NO2を高濃度で含有する廃水
を効率良く処理し、NHa÷イオン及びNO3−イオン
濃度を大幅に低下させることが出来る。従って、例えば
、ウラン原料の処理工程又は使用済みウラン燃料の再処
理工程から排出され、NHa N0331度が10%以
上にも達することがある廃水等の処理を簡易な設備によ
り容易に行なうことが出来る。
Effects of the Invention According to the present invention, wastewater containing a high concentration of NH4NO2 can be efficiently treated, and the concentrations of NHa÷ ions and NO3- ions can be significantly reduced. Therefore, for example, wastewater discharged from the uranium raw material processing process or the spent uranium fuel reprocessing process and whose NHa N0331 degree can reach 10% or more can be easily treated using simple equipment. .

友−皇−1 以下実旅例を示し、本発明の特徴とするところをより一
層明らかにする。
Tomo-Kou-1 Below, an actual travel example will be shown to further clarify the features of the present invention.

実施例1 1)HIO%NHzNOsllFK1%(”” −N/
N0s−N−1)の廃水100m12を容ff1300
−のステンレススチール製オートクレーブに収容し、2
50℃で60分間熱分解処理した。尚、反応器には、処
理に先立って空気が封入されており、これはアンモニア
、有機性物質及び無機性物質を分解するに必要な理論酸
素量の約0.2倍に相当する酸素を含有していた。廃水
には、RUC(130,50を溶解させた。
Example 1 1) HIO%NHzNOsllFK1% ("" -N/
Capacity: 100m12 of wastewater (N0s-N-1) ff1300
- housed in a stainless steel autoclave with 2
Thermal decomposition treatment was carried out at 50°C for 60 minutes. The reactor is filled with air prior to treatment, which contains oxygen equivalent to approximately 0.2 times the theoretical amount of oxygen required to decompose ammonia, organic substances, and inorganic substances. Was. RUC (130,50) was dissolved in the wastewater.

NHs 、NOs及び全窒素成分の分解率を実施例2〜
10及び比較例1の結果とともに第1表に示す。
The decomposition rates of NHs, NOs and total nitrogen components were measured in Example 2~
Table 1 shows the results of Comparative Example 10 and Comparative Example 1.

実施例2〜5 実施例1で処理したと同様のNH4NO3含有廃水に所
定量のNHaOHを加えてNH3N/N0a−N(モル
比)を調整した轡、更施例1と同様にして熱分解処理に
供した。
Examples 2 to 5 A predetermined amount of NHaOH was added to the same NH4NO3-containing wastewater as that treated in Example 1 to adjust the NH3N/N0a-N (molar ratio). Served.

実施例6 RuCQ3に代えてPdC(12を触媒として使用する
以外は実施例1と同様にして廃水の処理を行なった。
Example 6 Wastewater was treated in the same manner as in Example 1 except that PdC (12) was used as a catalyst instead of RuCQ3.

実施例7〜10 RuCQ3に代えてPdCQ2を使用する以外は実施例
2〜5と同様にしてNHaNO3含有廃水の熱分解処理
を行なった。
Examples 7 to 10 NHaNO3-containing wastewater was thermally decomposed in the same manner as Examples 2 to 5 except that PdCQ2 was used instead of RuCQ3.

比較例1 触媒を使用しない以外は実施例3と同様にしてNHa 
NOa含有廃水の熱分解処理を行なった。
Comparative Example 1 NHa was produced in the same manner as in Example 3 except that no catalyst was used.
Thermal decomposition treatment of NOa-containing wastewater was carried out.

実施例11〜14 NH−N’0311度及びpHを代えた以外は実施例1
と同様にして廃水の熱分解処理を行なった。
Examples 11-14 NH-N'03 Example 1 except that 11 degrees and pH were changed
The wastewater was thermally decomposed in the same manner as above.

結果は、第2表に示す通りである。The results are shown in Table 2.

実施例15〜17 N8480311度及びpHを代えた以外は実施例6と
同様にして廃水の熱分解処理を行なった。
Examples 15 to 17 The thermal decomposition treatment of wastewater was carried out in the same manner as in Example 6 except that the temperature and pH were changed.

結果は、第2表に示す通りである。The results are shown in Table 2.

実施例18 pH10、NHaNOsle度10% (NH3−N/N0a−N−’1.88)のJR水e空
間速度0.92  /、、(空塔基準)として高ニツケ
ル鋼製円筒型反応器下部に供給しつつ、空気を空間速度
17゜7 /hr(空塔基準、標準状態換算)として該
反応器下部に供給して熱分解処理を行なった。液の質量
速度は、1.2  ton/m2・h「であり、供給空
気は、アンモニア、有機性物質及び無機性物質を分解す
るに必要な理論酸素Ωの約0.24倍に相当する酸素を
含有していた。
Example 18 Lower part of a high nickel steel cylindrical reactor with pH 10 and NHaNOsle degree 10% (NH3-N/N0a-N-'1.88) with space velocity of JR water 0.92/, (based on sky column) Thermal decomposition treatment was carried out by supplying air to the lower part of the reactor at a space velocity of 17°7/hr (empty column standard, standard state conversion). The mass velocity of the liquid is 1.2 ton/m2・h, and the supplied air contains oxygen equivalent to approximately 0.24 times the theoretical oxygen Ω required to decompose ammonia, organic substances, and inorganic substances. It contained.

又、反応器には、径5−一のチタニア球体が充填されて
おり、1時間当りRuC(13o、55Qを供給し、熱
分解は、温度250℃、圧カフ 0 k!J/C12・
Gの条件下に行なわれた。
The reactor is filled with titania spheres with a diameter of 5-1, and RuC (13o, 55Q) is supplied per hour, and thermal decomposition is performed at a temperature of 250°C and a pressure cuff of 0 k!J/C12
It was carried out under the conditions of G.

反応を終えた気液混合相を熱回収に供した後、気液分離
器に導き、分離された気相及び液相をそれぞれ間接冷却
後、系外に取り出した。
After the gas-liquid mixed phase that had completed the reaction was subjected to heat recovery, it was led to a gas-liquid separator, and the separated gas and liquid phases were each indirectly cooled and then taken out of the system.

第3表にNH3、NO3及び全窒素成分の分解率を示す
Table 3 shows the decomposition rates of NH3, NO3 and total nitrogen components.

尚、気相中には、NOx及びSOxは検出されなかった
Note that NOx and SOx were not detected in the gas phase.

実施例19 RuCQ3に代えてPCjCQ2を触媒として使用する
以外は、実施例18と同様にして廃水の処理を行なった
。第3表に結果を示す。
Example 19 Wastewater was treated in the same manner as in Example 18, except that PCjCQ2 was used as a catalyst instead of RuCQ3. Table 3 shows the results.

尚、気相中には、NOx及びSOxは検出されなかった
Note that NOx and SOx were not detected in the gas phase.

第    3    表 実施例2O pH10、NH−NO311度10% (N83  N7N)、2)の廃水10〇−を容量30
011のステンレススチール製オートクレーブに収容し
、250℃で60分間熱分解処理した。
Table 3 Example 2O pH 10, NH-NO3 11 degrees 10% (N83 N7N), 100 - volume of waste water from 2)
The sample was placed in a No. 011 stainless steel autoclave and subjected to thermal decomposition treatment at 250°C for 60 minutes.

尚、反応器には、処理に先立って空気が封入されており
、これはアンモニア、有機性物質及び無機性物質を分解
するに必要な理論酸素Ωの約0.2倍に相当する酸素を
含有していた。廃水には、ルテニウムブラック0.2o
を触媒として加えた。
The reactor is filled with air prior to treatment, which contains oxygen equivalent to approximately 0.2 times the theoretical oxygen Ω required to decompose ammonia, organic substances, and inorganic substances. Was. Ruthenium black 0.2o for wastewater
was added as a catalyst.

第4表にNH3、NO3及び全窒素成分の分解率を示す
。    ゛
Table 4 shows the decomposition rates of NH3, NO3 and total nitrogen components.゛

Claims (2)

【特許請求の範囲】[Claims] (1)硝酸アンモニウム含有廃水を貴金属、貴金属イオ
ン及び可溶性貴金属化合物の少なくとも1種からなる触
媒の存在下且つ廃水中のアンモニア、有機性物質及び無
機性物質をN_2、H_2O及びCO_2にまで分解す
るに必要な理論酸素量未満の酸素の存在下にpH約3〜
11.5、温度100〜370℃で湿式熱分解すること
を特徴とする硝酸アンモニウム含有廃水の処理方法。
(1) Necessary for ammonium nitrate-containing wastewater to be decomposed into N_2, H_2O, and CO_2 in the presence of a catalyst consisting of at least one of a noble metal, a noble metal ion, and a soluble noble metal compound. In the presence of less than the theoretical amount of oxygen, the pH is about 3~
11.5. A method for treating ammonium nitrate-containing wastewater, which comprises performing wet thermal decomposition at a temperature of 100 to 370°C.
(2)1<(NH_3−N)/(NO_3−N)≦5(
モル比)となる様にアンモニアを加えた硝酸アンモニウ
ム含有廃水を貴金属、貴金属イオン及び可溶性貴金属化
合物の少なくとも1種からなる触媒の存在下且つ廃水中
のアンモニア、有機性物質及び無機性物質をN_2、H
_2O及びCO_2にまで分解するに必要な理論酸素量
未満の酸素の存在下にpH約3〜11.5、温度100
〜370℃で湿式熱分解することを特徴とする硝酸アン
モニウム含有廃水の処理方法。
(2) 1<(NH_3-N)/(NO_3-N)≦5(
Ammonium nitrate-containing wastewater with ammonia added thereto in the presence of a catalyst consisting of at least one of a noble metal, a noble metal ion, and a soluble noble metal compound, and ammonia, organic substances, and inorganic substances in the wastewater were mixed with N_2, H
In the presence of less than the theoretical amount of oxygen required to decompose to _2O and CO_2, at a pH of about 3 to 11.5 and a temperature of 100
A method for treating ammonium nitrate-containing wastewater, characterized by wet pyrolysis at ~370°C.
JP60087304A 1985-04-23 1985-04-23 Method of treating wastewater containing ammonium nitrate Expired - Lifetime JPH0645027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087304A JPH0645027B2 (en) 1985-04-23 1985-04-23 Method of treating wastewater containing ammonium nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087304A JPH0645027B2 (en) 1985-04-23 1985-04-23 Method of treating wastewater containing ammonium nitrate

Publications (2)

Publication Number Publication Date
JPS61245883A true JPS61245883A (en) 1986-11-01
JPH0645027B2 JPH0645027B2 (en) 1994-06-15

Family

ID=13911085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087304A Expired - Lifetime JPH0645027B2 (en) 1985-04-23 1985-04-23 Method of treating wastewater containing ammonium nitrate

Country Status (1)

Country Link
JP (1) JPH0645027B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257290A (en) * 1985-05-08 1986-11-14 Osaka Gas Co Ltd Treatment of waste water containing ammonium nitrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645028A (en) * 1992-07-24 1994-02-18 Sanyo Electric Co Ltd Explosion-proof connecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645028A (en) * 1992-07-24 1994-02-18 Sanyo Electric Co Ltd Explosion-proof connecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61257290A (en) * 1985-05-08 1986-11-14 Osaka Gas Co Ltd Treatment of waste water containing ammonium nitrate

Also Published As

Publication number Publication date
JPH0645027B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
US4210628A (en) Removal of nitrogen oxides
US4654149A (en) Process for treating ammonium nitrate-containing waste water
JPH02172590A (en) Process for removing nitrite and nitrate from aqueous solution without leaving residue
JPS61257291A (en) Treatment of waste water containing ammonium nitrate
JPS61257292A (en) Treatment of waste water containing ammonium nitrate
JPS61245883A (en) Treatment of waste water containing ammonium nitrate
JP2000117272A (en) Waste water treatment
JP4187845B2 (en) Method for treating ammonia-containing water
JPS61245884A (en) Treatment of waste water containing ammonium nitrate
JPH0461987A (en) Treatment of waste water containing ammonium nitrate
JPS59115786A (en) Wet oxidation treatment of waste water
JPH0459094A (en) Treatment of waste water containing ammonium nitrate
JP2969477B2 (en) Treatment method for wastewater containing ammonium nitrate
JP2969467B2 (en) Treatment method for wastewater containing ammonium nitrate
JPS61222585A (en) Treatment of waste water containing ammonium nitrate
JP2969478B2 (en) Treatment method for wastewater containing ammonium nitrate
JPS61222588A (en) Treatment of waste water containing ammonium nitrate
JPS61222587A (en) Treatment of waste water containing ammonium nitrate
JPS61222589A (en) Treatment of waste water containing ammonium nitrate
JPS61222586A (en) Treatment of waste water containing ammonium nitrate
JP3693354B2 (en) Treatment method of wastewater containing nitrate
JPH0696151B2 (en) Treatment method of wastewater containing high concentration ammonium nitrate
JP3822520B2 (en) Nitrogen compound-containing water treatment method
JP2899719B2 (en) Treatment method for wastewater containing ammonium nitrate
Mandal Denitration of liquid waste

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term