JPS61255928A - Production of polyester of high degree of polymerization - Google Patents
Production of polyester of high degree of polymerizationInfo
- Publication number
- JPS61255928A JPS61255928A JP9810685A JP9810685A JPS61255928A JP S61255928 A JPS61255928 A JP S61255928A JP 9810685 A JP9810685 A JP 9810685A JP 9810685 A JP9810685 A JP 9810685A JP S61255928 A JPS61255928 A JP S61255928A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- polymerization
- polyester
- polymer
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
【発明の詳細な説明】
技術分野
本発明は高重合度ポリエステルの製造方法、%に従来の
固相重合法によらず、溶融重合法により高重合度の芳香
族ポリエステルを製造する方法に関するものである。[Detailed Description of the Invention] Technical Field The present invention relates to a method for producing a polyester with a high degree of polymerization, and a method for producing an aromatic polyester with a high degree of polymerization by a melt polymerization method instead of using the conventional solid phase polymerization method. be.
従来技術
芳香族二官能性カルボン酸成分とグリコール成分とから
得られるポリエステルはその数多い優秀な性質のため種
々の用途に使われており、特に繊維、フィルム、成形品
においては強度、耐熱性等がその問品的価値を高めてい
るが、これを耐久性の要求される依料、および産業用繊
維、特にタイヤコードおよび成型品、とりわけエンジニ
アプラスチックとして用いる場合にはさらに高い強度、
耐加水分解性等が要求される。PRIOR ART Polyester obtained from an aromatic difunctional carboxylic acid component and a glycol component is used for a variety of purposes due to its many excellent properties, especially in fibers, films, and molded products, such as strength and heat resistance. This increases its commercial value, but when it is used for materials that require durability, as well as for industrial fibers, especially tire cords and molded products, especially engineering plastics, it has even higher strength.
Hydrolysis resistance, etc. is required.
ところでポリエステルの強度を向上させるためKはその
重合度を一層高めること、耐加6、 水分解性を
向上させるためには末端カルボキシル基の含有量を低下
させることが有効であり、かかるポリエステルを製造す
る方法として同相重合法が適し℃いることは一般によく
知られている。By the way, in order to improve the strength of polyester, it is effective to further increase the polymerization degree of K, and to improve the water decomposition resistance, it is effective to reduce the content of terminal carboxyl groups. It is generally well known that the isophase polymerization method is suitable as a method for this purpose.
すなわち、固相重合は通常の溶融重合で得た中程度の分
子量のポリマーを冷却固化した後過当な大きさに細粒化
し、次にこれを融点下5〜60℃の温度において為真空
下あるいは不活性ガスを流してポリマーの重合度な高め
る方法であり、溶融重合法に比べて温度が低いため熱分
解反応等の鯛反応が少なく、高重合度で末端カルボキー
シル基の少ないポリエステルを得ることができる。That is, in solid phase polymerization, a medium molecular weight polymer obtained by ordinary melt polymerization is cooled and solidified, and then finely sized to an appropriate size, and then the particles are heated at a temperature of 5 to 60 degrees Celsius below the melting point under vacuum or under vacuum. This is a method of increasing the degree of polymerization of the polymer by flowing an inert gas, and since the temperature is lower than in the melt polymerization method, there are fewer reactions such as thermal decomposition reactions, and it is possible to obtain polyester with a high degree of polymerization and fewer terminal carboxyl groups. can.
しかし、かかる固相重合における温度は溶融重合に比べ
て約25〜95℃も低いため重合速度は極めて遅く、工
業的生産上重大な支障があった。However, since the temperature in such solid phase polymerization is about 25 to 95° C. lower than that in melt polymerization, the polymerization rate is extremely slow, which poses a serious problem in industrial production.
また、固相重合法の場合は、通常の溶融重合で得た中程
度の分子量のポリマーを冷却固化した後、適当な大きさ
に#1粒化したものを使用するため、細粒化プロセスを
経由することによるエネルギーロス、必要労働力等のた
めに゛も工業生産上重大な支障があった。In addition, in the case of the solid phase polymerization method, a medium molecular weight polymer obtained by ordinary melt polymerization is cooled and solidified, and then pulverized into #1 particles of an appropriate size. Due to the energy loss and labor required due to transit, there was also a serious hindrance to industrial production.
一方同相重合に代わり、溶融重合法忙より高重合度ポリ
エステルを得ようとする試みもある。しかし溶融重合法
によっては、特に高重合度域ではポリエステルの分解反
応が顕著となり、またこの結果固宵粘度〔ダ〕の上昇は
しなくなり更にポリマー中のカルボキシル末端濃度は上
昇し、ポリエステルとしての基本物性が損なわれる。On the other hand, there have been attempts to obtain polyesters with a high degree of polymerization by melt polymerization instead of in-phase polymerization. However, depending on the melt polymerization method, the decomposition reaction of polyester becomes noticeable, especially in the high polymerization degree range, and as a result, the solid viscosity does not increase, and the concentration of carboxyl terminals in the polymer increases, resulting in Physical properties are impaired.
発明の目的及び構成
本発明は以上の事情を背景として為されたものであり、
その目的とするところは、薄膜重合槽な用い分解を抑え
ながら高い反応速度を得て、品質良好な高重合度ポリエ
ステルを、溶融重合法により効率よく安価に製造しよう
とするものである。Purpose and Structure of the Invention The present invention has been made against the background of the above circumstances.
The objective is to obtain a high reaction rate while suppressing decomposition using a thin film polymerization tank, and to produce a high-polymerization degree polyester of good quality efficiently and inexpensively by a melt polymerization method.
本発明者らは1金運度の速いポリエステルの溶融重合法
により高重合度ポリエステルを製造する方法を鋭意研究
した結果、本発明に到達した。The present inventors have arrived at the present invention as a result of intensive research into a method for producing a high degree of polymerization polyester by a polyester melt polymerization method, which has a fast rate of success.
すなわち、本発明は連続溶融重合法によって高重合度ポ
リエステルを製造するにあたり、最M段の反応槽として
薄膜式重合槽を用い、該薄膜式重合槽の平均滞留時間(
υと反応内温(T℃)が次の関係式を満足するように運
転することを特徴とする高重合度ポリエステルの製造方
法である。That is, the present invention uses a thin film polymerization tank as the Mth stage reaction tank to produce a high polymerization degree polyester by a continuous melt polymerization method, and the average residence time of the thin film polymerization tank (
This is a method for producing a highly polymerized polyester, which is characterized in that the operation is performed so that υ and reaction internal temperature (T° C.) satisfy the following relational expression.
0≦480−1,5T
ただし 280≦T
本発明において言5献#高重合度ポリエステルは、テレ
フタル酸又はテレフタル酸ジアルキルエステル(アル中
ル基の炭素数は通常1〜41it )とエチレングリコ
ールとをエステル化又はエステル交換及び重縮合反応せ
しめて得られるポリエチレ/デン7夕ン一トを主たる対
象とするが、テレフタル酸又はテレフタル酸ジアルキル
エステルの一部(通常20モルチ以下)な例えばインフ
タル#!、フタル酸、ナフタリンジカルボン酸の如き芳
香族ジカルボン酸、アジピン酸、セパ千7酸の如き脂肪
族ジカルボン酸、4−(β−オキジエトキシ)安息香酸
の如きオキシカルボ/酸等のアルキルエステルで置き換
えても良く、またエチレングリコールの一部又は全部を
例えばプロピレングリコール、テトラメチレングリコー
ルの如きHO(CH* )nOH(nは3〜10)で表
わされるグリコールで置き換えてもよい。0≦480-1,5T However, 280≦T In the present invention, the high polymerization degree polyester is an ester of terephthalic acid or terephthalic acid dialkyl ester (the number of carbon atoms in the alkyl group is usually 1 to 41 it) and ethylene glycol. The main target is polyethylene/dene 7 polymers obtained by esterification or transesterification and polycondensation reactions, but terephthalic acid or a portion of terephthalic acid dialkyl ester (usually 20 mol or less), such as Inphthal #! , phthalic acid, aromatic dicarboxylic acids such as naphthalene dicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, sepa-17 acid, and alkyl esters such as oxycarbo/acids such as 4-(β-oxydiethoxy)benzoic acid. Alternatively, part or all of ethylene glycol may be replaced with a glycol represented by HO(CH*)nOH (n is 3 to 10), such as propylene glycol or tetramethylene glycol.
本発明においてエステル交換触媒としてマンガン化合物
、亜鉛化合物及びマグネシウム化合物等が用いられるが
、エステル交換能を有するものであれば特に制限する必
l!はなく、例えばハロゲン化物、#1化物の如き無機
化合物及び有機酸塩等であり、特に好ましいものとして
酢酸塩、プロピオン酸塩、サルチル酸塩、安息香酸塩等
の有機酸塩があげられる。In the present invention, manganese compounds, zinc compounds, magnesium compounds, etc. are used as transesterification catalysts, but as long as they have transesterification ability, they must be particularly limited! For example, halides, inorganic compounds such as #1 compounds, and organic acid salts are preferred, and organic acid salts such as acetates, propionates, salicylates, and benzoates are particularly preferred.
以下、本発明を図面に基いて更に詳しく説明する。第1
図は本発明を実施する概略工程図を示すもので、図にお
いてデl/7タル酸又はテレフタル酸ジフルキルエステ
ルとエチレングリコールはエステル化槽又はエステル交
換槽lによりl−&原料であるポリエステルの単量体及
び/又はその低重合体が製造される。Hereinafter, the present invention will be explained in more detail based on the drawings. 1st
The figure shows a schematic process diagram for carrying out the present invention. In the figure, del/7 talic acid or terephthalic acid difurkyl ester and ethylene glycol are converted into l-& raw material polyester in an esterification tank or transesterification tank 1. A monomer and/or a low polymer thereof is produced.
この重合原料は従法に従って初期重合槽2及び中期重合
槽3により中程度の分子量のポリマーが製造される。こ
の段階でのポリマーの固有粘度は0.3〜0.7である
。This polymerization raw material is used in an initial polymerization tank 2 and a middle polymerization tank 3 to produce a polymer having a medium molecular weight according to a conventional method. The intrinsic viscosity of the polymer at this stage is 0.3 to 0.7.
本発明の方法では、この後更に最終段の反応槽として薄
膜式重合槽4を用いることにより、溶融重合のまま直接
固有粘度0.8以上のポリマーを製造する。製造された
ポリマーは冷却固化した後切断機5によって適当な大き
さに細粒化されて衣料及び産業用繊維等に使用されるか
、あるいは細粒化を経ず紡糸装置6に送られ直接紡糸さ
れて上記の目的に使用される。In the method of the present invention, a thin film polymerization tank 4 is then used as the final stage reaction tank to directly produce a polymer having an intrinsic viscosity of 0.8 or more as it is by melt polymerization. After the produced polymer is cooled and solidified, it is finely granulated into appropriate sizes by a cutting machine 5 and used for clothing, industrial fibers, etc., or it is sent to a spinning device 6 without being granulated and directly spun. and used for the above purposes.
尚、従来法では初期重合槽2及び中期重合槽3ft経た
ポリマーは一旦測粒化された後、固相重合反応槽に移さ
れ、ここで細粒化された状態のまま0.001 gap
〜10 ′m’H9(1) X 9下及び/又は窒素
ガス流通下で固相重合反応が行われる。In addition, in the conventional method, the polymer that has passed through the initial polymerization tank 2 and the intermediate polymerization tank 3 ft is once granulated and then transferred to the solid phase polymerization reaction tank, where it remains finely granulated at 0.001 gap.
The solid phase polymerization reaction is carried out under ~10'm'H9(1)X9 and/or under nitrogen gas flow.
ここで、本発明においては最終段の反応槽として薄膜式
の重合槽を用いることが必要であり、その具体的例とし
て第2〜5図に数種の概略図を示す。第2図は櫂!11
2に沿ってポリマーを流下させて薄膜!?を形成させる
濶壁反応槽11であり、第3図は反応槽130円周方向
に同心円状に撹拌翼14を配置し、これを@転させるこ
とKよりポリマー分配装置15から周方向に供給される
ポリマーを薄膜状に形成させる装置の例である。第4図
は反応槽16の槽壁17に接触もしくは近接して周方向
に沿って移動する少くとも1つの円柱(円筒)体18を
遊星運動させて槽壁17に薄膜状にポリマーを形成する
ものであり、又第5図は薄膜方式の一変形として反応槽
19の上部に配した吐出ノズル20より細いストランド
状の多数の糸状体21としてポリマーを落下して表面積
を7ツプさせ、実質的に薄膜な形成させる場合と同一の
効果をもたらす装置の例である。これらのうち好ましく
は第3図、特に第4図に示すよ5な装置を利用するのが
効果的である。Here, in the present invention, it is necessary to use a thin film type polymerization tank as the final stage reaction tank, and several types of schematic diagrams are shown in FIGS. 2 to 5 as specific examples thereof. The second figure is a paddle! 11
2. Flow the polymer down to form a thin film! ? FIG. 3 shows a reaction tank 130 in which stirring blades 14 are arranged concentrically in the circumferential direction, and by rotating the stirring blades 14, the polymer is supplied in the circumferential direction from the polymer distribution device 15. This is an example of an apparatus for forming a polymer into a thin film. FIG. 4 shows that at least one cylindrical body 18 that moves along the circumferential direction in contact with or in close proximity to the tank wall 17 of the reaction tank 16 is moved in a planetary motion to form a thin film of polymer on the tank wall 17. FIG. 5 shows a modification of the thin film method in which the polymer is dropped as a large number of thin strand-like filaments 21 from the discharge nozzle 20 arranged at the upper part of the reaction tank 19, increasing the surface area by 7. This is an example of an apparatus that provides the same effect as when forming a thin film. Among these devices, it is preferable to use the device shown in FIG. 3, particularly FIG. 4, which is effective.
これらの重合槽の特徴は薄膜(ストランド状を含む)K
することにより単位ポリマー容積あたりのエチレングリ
コール#発表面積を7ツプさせ、反応を大巾に促進させ
たものである。これらの薄膜重合槽を用い反応速度を大
幅に向上させた結果、ポリマーの滞留時間1に短くする
ことが可舵となり、ポリマーの分解が巡行しないうちに
製品化させるため、カルボキシ末端の少ない高重合度の
品質良好なポリマーを得ること゛が出来るのである。The characteristics of these polymerization tanks are thin films (including strands) K
By doing so, the ethylene glycol release area per unit polymer volume was increased by 7, and the reaction was greatly accelerated. As a result of greatly increasing the reaction rate using these thin film polymerization tanks, it has become possible to shorten the residence time of the polymer to 1, and in order to commercialize the polymer before it decomposes, it is possible to achieve high polymerization with fewer carboxy terminals. This makes it possible to obtain polymers of excellent quality.
又、カルボキシル末端を20・q/T以下の品質良好な
高重合度ポリエステルを得るためには反応内温(T″C
)と薄膜式重合槽の平均滞留時間(0分)が以下の関係
を満足する様に運転する必要がある。In addition, in order to obtain a high-quality polyester with a carboxyl terminal of 20 q/T or less, the reaction internal temperature (T″C
) and the average residence time (0 minutes) of the thin film polymerization tank must be operated so that the following relationship is satisfied.
0<θ≦480−1.5 T
ただし 280≦T
滞留時間がこの範四よりも長い場合は熱分解の影響か大
きくなり、製品のカルボキシル末端濃度を20 eq/
T以下に保つことが困難となり本発明の目的を達成する
ことが出来な〜。0<θ≦480-1.5 T However, 280≦T If the residence time is longer than this range, the effect of thermal decomposition will be large, and the carboxyl end concentration of the product will be reduced by 20 eq/
It becomes difficult to maintain the temperature below T, and the object of the present invention cannot be achieved.
尚、反応内温T℃は重合槽内のポリマーの平均温度とし
てよいが、具体的には重合槽下部(出口部)Kill留
するポリマーの温度とするのが好ましい。Incidentally, the reaction internal temperature T° C. may be the average temperature of the polymer in the polymerization tank, but specifically it is preferably the temperature of the polymer killed at the lower part (outlet part) of the polymerization tank.
以下1代表的な熱可塑性重合体であるポリエチレンテレ
フタレートについての実施例で本発明の方法な更に詳し
く説明するが、本発明はこの実施例に限定されるもので
はない。The method of the present invention will be explained in more detail below using an example using polyethylene terephthalate, which is a typical thermoplastic polymer, but the present invention is not limited to this example.
なお、〔η〕はオルンクooフェノールな溶媒とし35
℃で測定して得た粘度から求めた極限粘度である。In addition, [η] is a phenol solvent and 35
This is the intrinsic viscosity determined from the viscosity measured at °C.
実施例−1
テレフタル酸ジメチk(DMT)390部/hr及びエ
チレングリコール(EG) 280部/hrを酢酸マン
ガン0.05 mole %/ DMT 、酢酸亜鉛o
、o 1moleqb/DMTの触媒と共に第1図の連
続式エステル交換反応槽1に連続的に供給し、メタノー
ルを留去させながら150℃から250℃に加熱してエ
ステル交換反応させた。滞留時間は6時間にした。Example-1 Dimethyk terephthalate (DMT) 390 parts/hr and ethylene glycol (EG) 280 parts/hr were mixed with manganese acetate 0.05 mole%/DMT, zinc acetate O
, o 1 moleqb/DMT of the catalyst were continuously supplied to the continuous transesterification reactor 1 shown in FIG. 1, and the transesterification reaction was carried out by heating from 150° C. to 250° C. while distilling methanol off. The residence time was 6 hours.
次いで得られたエステル交換反応生成柳に亜すン酸0.
1モル%/DMT%史に重合触媒として三酸化7ンチモ
y O,03mole%/DMTを加えた後、初期重合
槽2に連続的にフィードし50℃mjig 、 26
0℃で1時間反応させ(w) = 0.15のポリマー
を得た。1にこれを溶融状態のまま1. 中期重
合槽3で5mHg、280℃で2時間反応させ、〔ダ)
=0.5のポリマーを得た。次にこれを第4図で示した
薄膜重合槽へ溶融状態のまま連続的罠フィートし1wx
M9. 300℃で20分間で反応させ(η) = 1
.0 、カルボキシル末l1ll!濃度13 eq/T
のポリマーを得た。Then, 0.0% of sonic acid was added to the resulting transesterification reaction product.
After adding 3 mole% of trioxide as a polymerization catalyst to 1 mole%/DMT%, it was continuously fed to the initial polymerization tank 2 and heated to 50°C mjig, 26
The reaction was carried out at 0°C for 1 hour to obtain a polymer with (w) = 0.15. Add this to 1 in a molten state. The reaction was carried out in medium-term polymerization tank 3 at 5 mHg and 280°C for 2 hours.
=0.5 polymer was obtained. Next, this was continuously trap-feeded in a molten state to the thin film polymerization tank shown in Figure 4 at 1 wx.
M9. React at 300°C for 20 minutes (η) = 1
.. 0, carboxyl end l1ll! Concentration 13 eq/T
of polymer was obtained.
実施例−2
実施例−1と同様のプロセス(第1図)を用い、iIL
終重合槽のみ第3図で示した薄膜重合槽を用い0.5襲
1g、300℃で25分かげて反応サセ、〔η) =
1.0 、カルボキシル末端濃度17eq/Tのポリマ
ーを得た。Example-2 Using the same process as Example-1 (Fig. 1), iIL
Only the final polymerization tank was a thin film polymerization tank shown in Figure 3, and the reaction was carried out at 300°C for 25 minutes using 0.5 to 1 g, [η) =
1.0 and a carboxyl terminal concentration of 17 eq/T was obtained.
比較例−1
実施例−1と同様のブaセス(第1図)を用いたが、固
相重合に供すべく中期1合槽3を出たところで細粒化し
、(q) = 0.5のチップを得た。Comparative Example-1 The same bath (Fig. 1) as in Example-1 was used, but the particles were made into fine particles upon exiting the middle stage 1 mixing tank 3 for use in solid phase polymerization, and (q) = 0.5 got a tip.
このチップをタンブラ−に回分式で仕込み230℃、
1m■9の条件下で反応させた。〔り〕=1.0を得
るのに23時間を要し、また得られたカルボキシル基末
端濃度は25eq/Tであった。Place the chips in a tumbler batchwise at 230°C.
The reaction was carried out under the condition of 1 m29. It took 23 hours to obtain [ri]=1.0, and the obtained terminal carboxyl group concentration was 25 eq/T.
比較例−2
実施例−1と同様のブクセス(第1図)を用いたが、最
終重合槽として、従来聾の横#l醇融重合槽を用い0.
5 tm’d9 、 300℃で1.5時間かげて反応
させた。得られたポリマーは〔η〕=0.8.カルボキ
シル末端濃度は45eq/Tであり、〔η〕が上昇しな
いのみならす分解のためカルボキシル末端が上昇した。Comparative Example 2 The same Buxes (Fig. 1) as in Example 1 was used, but as the final polymerization tank, a conventional deaf horizontal #1 fusion polymerization tank was used.
5 tm'd9 and reacted in the dark at 300° C. for 1.5 hours. The obtained polymer had [η]=0.8. The carboxyl terminal concentration was 45 eq/T, and the carboxyl terminal increased due to decomposition without increasing [η].
比較例−3
実施例−1と同様に反応させたが、最終重合槽での運転
条件を3wM9. 300℃で40分間反応させた。Comparative Example-3 A reaction was carried out in the same manner as in Example-1, but the operating conditions in the final polymerization tank were changed to 3wM9. The reaction was carried out at 300°C for 40 minutes.
〔り〕は1.0のものが得られたが、温度に対して反応
時間が長かったためカルボキシル末端濃度は27・q/
Tであった。A value of 1.0 was obtained, but the carboxyl terminal concentration was 27·q/ because the reaction time was long relative to the temperature.
It was T.
発明の効果
本発明によれば、従来の固相重合法(よるものに較べ、
重合時間が大巾に減少出来、また−立線粒化する手間を
省け、エネルギー及び労力の面から大巾にコストタ゛ウ
ンな計ることが可能である。また生成重合体はカルボキ
シル末端濃度の低い品質良好な高重合度ポリエステルと
なり、繊維、フィルム、その他成型品素材として有用で
ある。Effects of the Invention According to the present invention, compared to the conventional solid phase polymerization method (based on
The polymerization time can be greatly reduced, and the trouble of forming vertical grains can be omitted, making it possible to significantly reduce costs in terms of energy and labor. The resulting polymer is a high-quality polyester with a low concentration of carboxyl terminals and is useful as a material for fibers, films, and other molded products.
第1図は本発明を実施する概略工程図、第2図〜第5図
はそれぞれ本発明に使用する薄膜式重合槽の概略説明図
である。
2・・・初期重合槽、3・・・中期重合槽、4・・・薄
膜式重合檀FIG. 1 is a schematic process diagram for carrying out the present invention, and FIGS. 2 to 5 are schematic illustrations of a thin film polymerization tank used in the present invention. 2... Initial polymerization tank, 3... Mid-term polymerization tank, 4... Thin film polymerization tank
Claims (1)
造するにあたり、最終段の反応槽として薄膜式重合槽を
用い、該薄膜式重合槽の平均滞留時間(θ)と反応内温
(T℃)が次の関係式を満足するように運転することを
特徴とする高重合度ポリエステルの製造方法。 0<θ≦480−1.5T ただし 280≦T 2、薄膜式重合槽が円周方向に同心円状に配した攪拌翼
を有しており、該攪拌翼の回転により槽壁に沿つて流下
するポリマーの薄膜を形成する特許請求の範囲第1項記
載の高重合度ポリエステルの製造方法。 3、薄膜式重合槽が円柱もしくは円筒形のローラ状攪拌
翼を1以上有し、該攪拌翼を槽壁に沿つて円周方向に遊
星運動させることによつて槽壁に薄膜状に流下するポリ
マー層を形成する特許請求の範囲第1項記載の高重合度
ポリエステルの製造方法。[Claims] 1. In producing a polyester with a high degree of polymerization by a continuous melt polymerization method, a thin film polymerization tank is used as the final stage reaction tank, and the average residence time (θ) of the thin film polymerization tank is A method for producing a highly polymerized polyester, which is characterized in that the operation is performed so that the internal reaction temperature (T° C.) satisfies the following relational expression. 0<θ≦480-1.5T However, 280≦T 2. The thin film polymerization tank has stirring blades arranged concentrically in the circumferential direction, and the rotation of the stirring blades causes the flow to flow down along the tank wall. A method for producing a highly polymerized polyester according to claim 1, which comprises forming a thin polymer film. 3. The thin film polymerization tank has one or more cylindrical or cylindrical roller-shaped stirring blades, and the stirring blades are caused to move planetarily in the circumferential direction along the tank wall, so that the polymerization tank flows down to the tank wall in the form of a thin film. A method for producing a high degree of polymerization polyester according to claim 1, which comprises forming a polymer layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9810685A JPS61255928A (en) | 1985-05-10 | 1985-05-10 | Production of polyester of high degree of polymerization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9810685A JPS61255928A (en) | 1985-05-10 | 1985-05-10 | Production of polyester of high degree of polymerization |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61255928A true JPS61255928A (en) | 1986-11-13 |
Family
ID=14211073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9810685A Pending JPS61255928A (en) | 1985-05-10 | 1985-05-10 | Production of polyester of high degree of polymerization |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61255928A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110272535A (en) * | 2013-04-26 | 2019-09-24 | 希乐克公司 | Processing hydroxycarboxylic acids into polymers |
WO2021192962A1 (en) * | 2020-03-26 | 2021-09-30 | 東洋紡株式会社 | Polyester resin and method for producing blow molded body formed of polyester resin |
-
1985
- 1985-05-10 JP JP9810685A patent/JPS61255928A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110272535A (en) * | 2013-04-26 | 2019-09-24 | 希乐克公司 | Processing hydroxycarboxylic acids into polymers |
WO2021192962A1 (en) * | 2020-03-26 | 2021-09-30 | 東洋紡株式会社 | Polyester resin and method for producing blow molded body formed of polyester resin |
CN115335430A (en) * | 2020-03-26 | 2022-11-11 | 东洋纺株式会社 | Polyester resin and process for producing blow-molded article made of polyester resin |
CN115335430B (en) * | 2020-03-26 | 2023-07-28 | 东洋纺株式会社 | Polyester resin and method for producing blow-molded article made of polyester resin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3161710A (en) | Polymerization process for polyester films | |
US4124566A (en) | Process for preparing polyesters | |
JPH0597981A (en) | Production of polyester having enhanced electrical conductivity | |
US3167531A (en) | Continuous process for the manufacture of bis(2-hydroxyethyl) terephthalate and low molecular weight polymers thereof | |
JPH0967445A (en) | Production of granular material for solid-phase polymerization of polycarbonate | |
JPS61157526A (en) | Production of high-molecular weight polyester | |
KR100942881B1 (en) | Method for Increasing Solid State Polymerization Rate of Polyester Polymers | |
JPH0553815B2 (en) | ||
JP2002293903A (en) | Method for producing cyclic polyester oligomer and method for producing polyester | |
WO1996030428A1 (en) | Process for preparing polyesters | |
US4115362A (en) | Process for preparing polyesters | |
WO2004035284A1 (en) | Processes for producing very low iv polyester resin | |
JP4576644B2 (en) | Aromatic liquid crystalline polyester and method for producing the same | |
JP3241731B2 (en) | Manufacture of branched polyester | |
JPS61255928A (en) | Production of polyester of high degree of polymerization | |
JP2672878B2 (en) | Method for producing high degree of polymerization polybutylene terephthalate | |
EP0810250B1 (en) | Improved process for the production of polyester resins | |
US11001694B1 (en) | Modification of polyester resins after melt polymerization | |
JPH042604B2 (en) | ||
JP3210250B2 (en) | Polybutylene terephthalate and method for producing the same | |
US4008206A (en) | Solid state polymerization | |
US10899881B1 (en) | Polyester modification method | |
JP2758521B2 (en) | Method for producing high polymerization degree polyester | |
JPH11106498A (en) | Continuous production of polyester | |
JPS6361334B2 (en) |