[go: up one dir, main page]

JPS6125256B2 - - Google Patents

Info

Publication number
JPS6125256B2
JPS6125256B2 JP54045294A JP4529479A JPS6125256B2 JP S6125256 B2 JPS6125256 B2 JP S6125256B2 JP 54045294 A JP54045294 A JP 54045294A JP 4529479 A JP4529479 A JP 4529479A JP S6125256 B2 JPS6125256 B2 JP S6125256B2
Authority
JP
Japan
Prior art keywords
base
emitter
transistor
capacitance
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54045294A
Other languages
Japanese (ja)
Other versions
JPS55137716A (en
Inventor
Yukio Suga
Jiro Tanuma
Naoji Akutsu
Shunryo Motoki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP4529479A priority Critical patent/JPS55137716A/en
Publication of JPS55137716A publication Critical patent/JPS55137716A/en
Publication of JPS6125256B2 publication Critical patent/JPS6125256B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Networks Using Active Elements (AREA)
  • Amplifiers (AREA)

Description

【発明の詳細な説明】 本発明はトランジスタを用いたレベルシフト回
路の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in level shift circuits using transistors.

第1図は従来のレベルシフト回路を示す回路図
である。第1図において、υは入力電圧、ν
は入力電圧、Qはトランジスタ、R1は基準抵
抗、R2は倍率抵抗である。
FIG. 1 is a circuit diagram showing a conventional level shift circuit. In Figure 1, υ 1 is the input voltage, ν 2
is the input voltage, Q is the transistor, R 1 is the reference resistor, and R 2 is the multiplier resistor.

前記構成のレベルシフト回路は直流的には基準
抵抗R1を流れる電流が(υBE/R1)となり、一
定である(なお前記υBEはトランジスタQのベー
ス・エミツタ間電圧である)。トランジスタQの
ベース電流は小さいので無視すると、入力電圧υ
と出力電圧υの差すなわちレベルシフト電圧
υsは下記(1)式で示すことができる。
In the level shift circuit having the above configuration, the current flowing through the reference resistor R 1 is (υ BE /R 1 ), which is constant in terms of direct current (υ BE is the base-emitter voltage of the transistor Q). Since the base current of transistor Q is small, if it is ignored, the input voltage υ
The difference between the output voltage υ 1 and the output voltage υ 2 , that is, the level shift voltage υ s , can be expressed by the following equation (1).

υs=(R1+R2)・υBE/R (1) したがつて前記(1)式中の基準抵抗R1および倍
率抵抗R2を適当な値にすれば所望電圧をレベル
シフトできる。
υ s = (R 1 + R 2 )・υ BE /R 1 (1) Therefore, by setting the reference resistance R 1 and multiplier resistance R 2 in equation (1) to appropriate values, the level of the desired voltage can be shifted. .

また第2図は前記第1図に示す従来のレベルシ
フト回路の等価回路を示す図であり、第1図と同
一要素には同一符号を付す。第2図において、r
xはベース拡がり抵抗、rπはベース・エミツタ
抵抗rθはコレクタ抵抗、Cμはコレクタ・ベー
ス間容量、gnυcπは前記ベース・エミツタ間容
量Cπによる従属電流源、Z1はこの等価回路のイ
ンピーダンスである。
FIG. 2 is a diagram showing an equivalent circuit of the conventional level shift circuit shown in FIG. 1, and the same elements as in FIG. 1 are given the same reference numerals. In Figure 2, r
x is the base spreading resistance, rπ is the base-emitter resistance, rθ is the collector resistance, Cμ is the collector-base capacitance, g n υ c π is the dependent current source due to the base-emitter capacitance Cπ, and Z 1 is the equivalent circuit of It is impedance.

前記構成のうちベース拡がり抵抗rxはベー
ス・エミツタ抵抗rπより極めて小さいので省略
でき、またコレクタ抵抗rθは前記基準抵抗R1
および倍率抵抗R2に比べて極めて大きいので省
略できるので、前記第2図に示す等価回路は第3
図に示すようにさらに簡略化することができる。
Of the above configurations, the base spreading resistance r
and the multiplier resistor R2 are extremely large compared to R2 , so they can be omitted, so the equivalent circuit shown in FIG.
It can be further simplified as shown in the figure.

したがつてインピーダンスZ1は下記(2)で示すこ
とができる。
Therefore, impedance Z 1 can be expressed as (2) below.

Z1=α・(S+ω)/(S+ω)(S+ω
)(2) ただし前記(2)式において、α,ω,ωおよ
びωは下記(3)〜(6)式に示すようになる。なお前
記(4)式と(6)式中の“RP”はR1・rπ/(R1+r
π)”である。
Z 11・(S+ω 1 )/(S+ω 2 )(S+ω
3 ) (2) However, in the above equation (2), α, ω 1 , ω 2 and ω 3 are as shown in the following equations (3) to (6). Note that “R P ” in equations (4) and (6) above is R 1・rπ/(R 1 +r
π)”.

α=Cμ+Cπ/Cμ+Cπ (3) ω=R+R/R・R(Cμ+Cπ)(4
) ω=1/R・Cμ (5) ω=1+gm・R/R・C (6) 前記(2)式に示すインピーダンスZ1の絶対値の周
波数特性は概略第4図に示す形となる。なお第4
図において、はそれぞれω1/2
π,ω2/2π,ω3/2πとなり、また実線はω
ωの場合、破線はωの場合を示している。し
たがつて、例えば前記第1図に示す従来のレベル
シフト回路の入出力間におけるゲインの周波数特
性をフラツトにするには、前記(4)式と(5)式が等し
くなるようにして前記インピーダンスZ1がα1/(S
+ω)となるようにすればよい訳である。このた
めには倍率抵抗R2を変えるか、トランジス
タQを変えることによりコレクタ・ベース間帰還
容量Cμ、ベース・エミツタ間容量Cπ、ベー
ス・エミツタ抵抗rπなどを変えればよいが、前
記の方法は直流特性が変化する欠点があり、ま
た前記の方法では適当なトランジスタを見出す
のに手間がかかる欠点がある。特にLSI中に前記
レベルシフト回路を組込む場合個々のトランジス
タについて特性を変えるのでは設計、製造が大変
なので前記の方法は実施できなかつた。このた
め前記従来のレベルシフト回路では所望の周波数
特性が得られない欠点があつた。
α 1 = Cμ+Cπ/Cμ+Cπ (3) ω 1 =R P +R 2 /R P・R 2 (Cμ+Cπ)(4
) ω 2 =1/R 2・Cμ (5) ω 3 =1+gm・R P /R P・C P (6) The frequency characteristics of the absolute value of the impedance Z 1 shown in the above equation (2) are roughly shown in Figure 4. The shape is shown in . Furthermore, the fourth
In the figure, 1 , 2 , and 3 are each ω1/2
π, ω2/2π, ω 3 /2π, and the solid line is ω 1 <
In the case of ω 2 , the dashed line indicates the case of ω 2 . Therefore, for example, in order to flatten the frequency characteristic of the gain between the input and output of the conventional level shift circuit shown in FIG. Z 1 is α 1 /(S
3 ). To do this, the collector-base feedback capacitance Cμ, the base-emitter capacitance Cπ, the base-emitter resistance rπ, etc. can be changed by changing the multiplier resistor R 2 or by changing the transistor Q. However, the method described above There is a drawback that the characteristics change, and the method described above also has the drawback that it takes time and effort to find a suitable transistor. In particular, when incorporating the level shift circuit into an LSI, changing the characteristics of each transistor would be difficult to design and manufacture, so the above method could not be implemented. For this reason, the conventional level shift circuit has the disadvantage that desired frequency characteristics cannot be obtained.

本発明は前記欠点を除去するため、トランジス
タのコレクタ・ベース・間およびベース・エミツ
タ間の少なくとも一方にコンデンサを接続するも
ので、以下図面にしたがい詳細に説明する。
In order to eliminate the above-mentioned drawbacks, the present invention connects a capacitor to at least one of the collector-base and base-emitter of the transistor, and will be described in detail below with reference to the drawings.

第5図は本発明に係る一実施例を示す回路図、
第6図は第5図に示す実施例の周波数特性を示す
図であり、第1図、第2図および第3図と同一要
素には同一符号を付す。第5図および第6図にお
いて、C1はトランジスタQのコレクタ・ベース
間に接続するコンデンサの容量(以下第一コンデ
ンサ容量という)、Z2はインピーダンスである。
FIG. 5 is a circuit diagram showing an embodiment according to the present invention,
FIG. 6 is a diagram showing the frequency characteristics of the embodiment shown in FIG. 5, and the same elements as in FIGS. 1, 2, and 3 are given the same reference numerals. In FIGS. 5 and 6, C 1 is the capacitance of the capacitor connected between the collector and base of the transistor Q (hereinafter referred to as the first capacitor capacitance), and Z 2 is the impedance.

前記構成の実施例のレベルシフト電圧υsは前
記(1)式で求めることができ、したがつて基準抵抗
R1と倍率抵抗R2の値を選択して所望電圧にレベ
ルシフトできる。またインピーダンスZ2は前記(3)
式〜(5)式中のコレクタ・ベース帰還容量Cμを
(C1+Cμ)に置還することにより計算でき、下
記(7)式に示すようになる。
The level shift voltage υ s of the embodiment with the above configuration can be obtained from the above equation (1), and therefore the reference resistance
The level can be shifted to a desired voltage by selecting the values of R 1 and multiplier resistor R 2 . Also, the impedance Z 2 is as described in (3) above.
It can be calculated by replacing the collector-base feedback capacitance Cμ in equations (5) to (C 1 +Cμ), as shown in equation (7) below.

Z2=α・(S+ω)/(S+ω)(S+ω
)(7) ただし、前記(7)式においてωは前記(6)式に示
すようになり、α、ωおよびωは下記(8)式
〜(9)式に示すようになる。なおRP=R1・rπ/(R1
+rπ)である。
Z 22・(S+ω 4 )/(S+ω 5 )(S+ω
3 ) (7) However, in the above equation (7), ω 3 becomes as shown in the above equation (6), and α 2 , ω 4 and ω 5 become as shown in the following equations (8) to (9). Become. Note that R P =R 1・rπ/(R 1
+rπ).

α=C+Cμ+Cπ/(C+Cμ)・Cπ
(8) ω=R+R/R・R・(C+Cμ+
Cπ)(9) ω=1/R・(C+Cμ) (10) またベース・エミツタ間容量Cμは前記コレク
タ・ベース間容量Cμより極めて大きいので、前
記第一コンデンサ容量C1を前記ベース・エミツ
タ間容量Cπに比べて十分小さくすることにより ω≒ωとなる。したがつて第一コンデンサ
容量C1を変えることにより前記(10)式に示すω
のみを変えることができ、例えばω=ωとな
る容量を選択すれば第6図の実線に示すように周
波数までフラツトな周波数特性を得ることが
できる。この際の第一コンデンサ容量C1は下記
(11)式となる。
α 2 =C 1 +Cμ+Cπ/(C 1 +Cμ)・Cπ
(8) ω 4 =R P +R 2 /R P・R 2・(C 1 +Cμ+
Cπ) (9) ω 5 =1/R 2・(C 1 +Cμ) (10) Also, since the base-emitter capacitance Cμ is much larger than the collector-base capacitance Cμ, the first capacitor capacitance C 1 is By making it sufficiently smaller than the base-emitter capacitance Cπ, ω 4 ≒ω 1 . Therefore, by changing the first capacitor capacitance C 1 , ω 5 shown in the above equation (10) can be changed.
For example, by selecting a capacitance such that ω 45 , a flat frequency characteristic up to frequency 3 can be obtained as shown by the solid line in FIG. The first capacitor capacity C 1 in this case is as follows
(11) is obtained.

C1=R/RCπ−Cμ (11) したがつて前記実施例はRP・Cπ>R2・Cμ
となる場合(第6図破線)に有効である。
C 1 =R P /R 2 Cπ−Cμ (11) Therefore, the above embodiment has R P・Cπ>R 2・Cμ
It is effective when (broken line in Figure 6).

第7図は本発明に係る他の実施例を示す回路
図、第8図は第7図に示す回路の周波数特性を示
す図であり、第1図〜第6図と同一要素には同一
符号を付す。第7図および第8図において、C2
はトランジスタQのベース・エミツタ間に接続す
るコンデンサの容量(以下第二コンデンンサ容量
という)、Z3はインピーダンスである。
FIG. 7 is a circuit diagram showing another embodiment according to the present invention, and FIG. 8 is a diagram showing the frequency characteristics of the circuit shown in FIG. 7. The same elements as in FIGS. Attach. In Figures 7 and 8, C 2
is the capacitance of the capacitor connected between the base and emitter of the transistor Q (hereinafter referred to as the second capacitor capacitance), and Z3 is the impedance.

前記構成の実施例は、RP・Cπ<R2・Cμと
なる場合(第8図破線)に有効であり、第5図に
示す実施例が前記(3)式〜(5)式中のコレクタ・ベー
ス間帰還容量Cμを(C1+Cμ)に置換してい
るのに対してベース・エミツタ間容量Cπを
(C2+Cπ)に置換する点に差異がある。この場
合第二コンデンサ容量C2を下記(12)式の値にした
とき、下記(13)式に示す周波数までフラツト
な周波数特性を得ることができる。
The embodiment of the above configuration is effective when R P・Cπ<R 2・Cμ (broken line in FIG. 8), and the embodiment shown in FIG. 5 satisfies the above equations (3) to (5). The difference is that the collector-base feedback capacitance Cμ is replaced with (C 1 +Cμ), while the base-emitter capacitance Cπ is replaced with (C 2 +Cπ). In this case, when the second capacitor capacitance C 2 is set to the value of the following equation (12), a flat frequency characteristic can be obtained up to frequency 6 shown in the following equation (13).

C2=R/RCμ−Cπ (12) =Cπ/Cπ+C (13) なお、前記第5図に示す実施例は第一コンデン
サ容量が極めて小さい値(数PFのオーダ)で済
むことが多い。このため例えば前記第5図に示す
実施例を1ナツプのICにすることができるし、
また第9図に示す変復調回路に実施すれば該変復
調回路をLSIにするとき外付けコンデンサを必要
とせず、その端子も不要となるなどの利点があ
る。前記第9図においてQ1〜Q15はトランジス
タ、R3〜R16は抵抗、C3〜C5はコンデンサ、VR
は可変抵抗、T1〜T14は端子、1は直流増幅回
路、2は乗算回路、3はレベルシフト回路であ
り、前記端子T1およびT2から入力した被変復調
信号を直流増幅回路1で増幅した後、レベルシフ
ト回路3で直流電位を下げて乗算回路2へ出力
し、端子T13およびT14から入力されたキヤリヤ
信号と前記被変復調信号を前記乗算回路2で乗算
することにより端子T11およびT12に変復調出力
を得るように結線されている。
C 2 =R 2 /R P Cμ−Cπ (12) 6 =Cπ/Cπ+C 23 (13) In the embodiment shown in FIG. 5, the first capacitor capacity is extremely small (on the order of several PF). This is often enough. Therefore, for example, the embodiment shown in FIG. 5 can be made into a 1-nap IC, and
Further, if the present invention is implemented in the modulation/demodulation circuit shown in FIG. 9, there is an advantage that when the modulation/demodulation circuit is made into an LSI, no external capacitor is required, and its terminals are also not required. In FIG. 9, Q 1 to Q 15 are transistors, R 3 to R 16 are resistors, C 3 to C 5 are capacitors, and VR
is a variable resistor, T 1 to T 14 are terminals, 1 is a DC amplifier circuit, 2 is a multiplier circuit, and 3 is a level shift circuit. After amplification, the level shift circuit 3 lowers the DC potential and outputs it to the multiplier circuit 2. The multiplier circuit 2 multiplies the modulated and demodulated signal by the carrier signal input from the terminals T13 and T14 . 11 and T12 to obtain modulation and demodulation output.

なお、本発明は前記実施例に限らず、例えばト
ランジスタのコレクタ・ベース間とベース・エミ
ツタ間にそれぞれコンデンサを接続してフラツト
な周波数特性を得ることもできるし、また仕様に
応じてフラツト以外の所望の周波数特性にするこ
ともできる。
Note that the present invention is not limited to the above-mentioned embodiments; for example, it is also possible to obtain a flat frequency characteristic by connecting capacitors between the collector and base and between the base and emitter of the transistor, or to obtain a frequency characteristic other than flat depending on the specifications. It is also possible to obtain desired frequency characteristics.

以上、詳細に説明したように、本発明によれば
トランジスタのコレクタ・ベース間およびベー
ス・エミツタ間の少なくとも一方に小容量のコン
デンサを接続するだけなので、直流特性を変える
ことなく所望の周波数を得ることができる効果が
ある。
As explained above in detail, according to the present invention, a small capacitor is simply connected between the collector and base and at least one between the base and emitter of the transistor, so the desired frequency can be obtained without changing the DC characteristics. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレベルシフト回路を示す回路
図、第2図は第1図に示すレベルシフト回路の等
価回路図、第3図は第2図に示す等価回路を簡略
化した簡略等価回路図、第4図は第1図に示すレ
ベルシフト回路の周波数特性を示す図、第5図は
本発明に係る一実施例を示す回路図、第6図は第
5図に示す実施例の周波数特性を示す図、第7図
は本発明に係る他の実施例を示す回路図、第8図
は第7図に示す回路の周波数特性を示す図、第9
図は本発明に係る実施例を用いた変復調回路を示
す回路図である。 υ……入力電圧、υ……出力電圧、Q,
Q1〜Q15……トランジスタ、R1……基準抵抗、R2
……倍率抵抗、R3〜R16……抵抗、Z1,Z2,Z3
…インピーダンス、C……コレクタ端子、B……
ベース端子、E……エミツタ端子、rx……ベー
ス拡がり抵抗、rπ……ベース・エミツタ抵抗、
p……コレクタ抵抗、Cμ……コレクタ・ベー
ス間帰還容量、Cπ……ベース・エミツタ間容
量、gmυcπ……従属電流源、υBE……ベース・
エミツタ間電圧、C3〜C5……コンデンサ、VR…
…可変抵抗、T1〜T14……端子。1……直流増幅
回路、2……乗算回路、3……レベルシフト回
路。
Figure 1 is a circuit diagram showing a conventional level shift circuit, Figure 2 is an equivalent circuit diagram of the level shift circuit shown in Figure 1, and Figure 3 is a simplified equivalent circuit diagram of the equivalent circuit shown in Figure 2. , FIG. 4 is a diagram showing the frequency characteristics of the level shift circuit shown in FIG. 1, FIG. 5 is a circuit diagram showing an embodiment of the present invention, and FIG. 6 is a diagram showing the frequency characteristics of the embodiment shown in FIG. 5. 7 is a circuit diagram showing another embodiment of the present invention, FIG. 8 is a diagram showing frequency characteristics of the circuit shown in FIG. 7, and FIG. 9 is a diagram showing frequency characteristics of the circuit shown in FIG.
The figure is a circuit diagram showing a modulation/demodulation circuit using an embodiment according to the present invention. υ 1 ... Input voltage, υ 2 ... Output voltage, Q,
Q 1 ~ Q 15 ... Transistor, R 1 ... Reference resistance, R 2
...Magnification resistance, R 3 ~ R 16 ... Resistance, Z 1 , Z 2 , Z 3 ...
...Impedance, C...Collector terminal, B...
Base terminal, E... emitter terminal, r x ... base spread resistance, rπ... base emitter resistance,
r p ... Collector resistance, Cμ... Collector-base feedback capacitance, Cπ... Base-emitter capacitance, gmυ c π... Dependent current source, υ BE ... Base...
Voltage between emitters, C 3 to C 5 ... Capacitor, VR...
…variable resistance, T 1 to T 14 …terminals. 1... DC amplifier circuit, 2... Multiplier circuit, 3... Level shift circuit.

Claims (1)

【特許請求の範囲】 1 トランジスタのコレクタ・ベース間およびベ
ース・エミツタ間にそれぞれ抵抗R2および抵抗
R1を接続した2端子回路網によるレベルシフト
回路において、前記トランジスタのコレクタ・ベ
ース間あるいはベース・エミツタ間の少なくとも
一方にそれぞれ対応して次式の値を有するコンデ
ンサC1あるいはコンデンンサC2を接続したこと
を特徴とするレベルシフト回路、 ここで C1=R・rπ/R+rπ・Cπ/R−Cμ C2=R+rπ/R・rπ・R2Cμ−Cπ ただし rπ:トランジスタのベース・エミツタ抵抗 Cπ:トランジスタのベース・エミツタ間容量 Cμ:トランジスタのコレクタ・ベース間容量。
[Claims] 1. A resistor R 2 and a resistor between the collector and base and between the base and emitter of the transistor, respectively.
In a level shift circuit using a two-terminal network connected to R 1 , a capacitor C 1 or a capacitor C 2 having a value of the following formula is connected to at least one of the collector and base or base and emitter of the transistor, respectively. A level shift circuit characterized in that: C 1 =R 1 ·rπ/R 1 +rπ·Cπ/R 2 −Cμ C 2 =R 1 +rπ/R 1 ·rπ·R 2 Cμ−Cπ where rπ: Transistor base-emitter resistance Cπ: Transistor base-emitter capacitance Cμ: Transistor collector-base capacitance.
JP4529479A 1979-04-16 1979-04-16 Level shift circuit Granted JPS55137716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4529479A JPS55137716A (en) 1979-04-16 1979-04-16 Level shift circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4529479A JPS55137716A (en) 1979-04-16 1979-04-16 Level shift circuit

Publications (2)

Publication Number Publication Date
JPS55137716A JPS55137716A (en) 1980-10-27
JPS6125256B2 true JPS6125256B2 (en) 1986-06-14

Family

ID=12715286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4529479A Granted JPS55137716A (en) 1979-04-16 1979-04-16 Level shift circuit

Country Status (1)

Country Link
JP (1) JPS55137716A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767421U (en) * 1980-10-11 1982-04-22
US5587679A (en) * 1995-05-08 1996-12-24 Yokogawa Electric Corporation Pulse generator including slew rate controller without complementary transistors

Also Published As

Publication number Publication date
JPS55137716A (en) 1980-10-27

Similar Documents

Publication Publication Date Title
JPS6155806B2 (en)
JPH0834393B2 (en) Transconductance amplifier
JPS6125256B2 (en)
EP0196883A2 (en) Active filter circuits
JP3411988B2 (en) Variable voltage-current converter
JP2809856B2 (en) Feedback emphasis circuit
JPH02889B2 (en)
US4937534A (en) Band-pass amplifier
JPS6230324Y2 (en)
JPH0671190B2 (en) Integrated variable capacitive reactance circuit
JP3116544B2 (en) Delay circuit
JPH0148697B2 (en)
JP2508378B2 (en) Variable conductance circuit
JPS6238333Y2 (en)
JPS593606Y2 (en) Complementary differential amplifier circuit
JPH031845B2 (en)
JPH0114726B2 (en)
JPH0348686B2 (en)
JPH05315888A (en) Phase shift circuit
JP2655443B2 (en) Frequency multiplier
JPH0154884B2 (en)
JPH077894B2 (en) Voltage controlled amplifier
JPS60153612A (en) Current inverting circuit
JP3161233B2 (en) Filter circuit
JPS593607Y2 (en) complementary differential amplifier