[go: up one dir, main page]

JPS61234990A - Process for setting quantity of air to be fed to aeration tank - Google Patents

Process for setting quantity of air to be fed to aeration tank

Info

Publication number
JPS61234990A
JPS61234990A JP60075071A JP7507185A JPS61234990A JP S61234990 A JPS61234990 A JP S61234990A JP 60075071 A JP60075071 A JP 60075071A JP 7507185 A JP7507185 A JP 7507185A JP S61234990 A JPS61234990 A JP S61234990A
Authority
JP
Japan
Prior art keywords
air
aeration tank
amount
oxygen
coefft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60075071A
Other languages
Japanese (ja)
Inventor
Kiyomi Saito
斉藤 清美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60075071A priority Critical patent/JPS61234990A/en
Publication of JPS61234990A publication Critical patent/JPS61234990A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To stabilize purifying function of activated sludge and to enable production of treated water having good quality by setting the quantity of air to be fed to an aeration tank basing on an oxygen feeding coefft. corresponding to the water temp. in an aeration tank which is stabilized following to oxygen respiration activity which is changed depending on temp., etc. CONSTITUTION:If purification function of activated sludge is stabilized using oxygen feeding coefft. L which expresses conveniently the proportion of the quantity of oxygen in the air fed by a blower to the necessary quantity of oxygen consumed continuously per 1m<3> aeration tank, the value of the coefft. L changes meteorologically and biologically along 8 character shaped locus for through one year for all kinds of substrate with respect to the relation between the water temp. in the aeration tank to the coefft. L. The quantity of the air to be fed is set utilizing this fact, and the value of L is operated by an operator after sensing daily mean water temp., air temp., electroconductivity, and aeration time with sensors. The air quantity is decided so as to match the operated value to the values of the graph for daily water temp. of the aeration tank, coefft. L, and annual time series graph.

Description

【発明の詳細な説明】 (イ)産業上の利用分舒 この発明は活性汚泥法における曝気槽へ供給する空気量
の設定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application This invention relates to a method for setting the amount of air supplied to an aeration tank in an activated sludge method.

(ロ) 従来の技術 曝気槽に供給する空気量の設定は、従来設計値に基づい
た空気量をブロワーにより送風し、各種の管理指針等で
規定されている通り曝気槽内り。
(b) Conventional technology The amount of air supplied to the aeration tank is set by blowing the amount of air based on the conventional design value into the aeration tank as stipulated by various management guidelines.

をO,zwq/L以上〜2. o rag/Lの範囲内
にあるように人手による流量弁絞り操作によって経験工
学的に行われていた。又、省エネルギーを主目的として
曝気槽内に単一あるいは複数のDoメータを設置する場
合でも、曝気槽内DO濃度をなるべく低い任意の一定濃
度となるよう、DOメータからの出力信号を主要出力と
して、利用し、空気流量弁開度及び回転数制御等により
曝気槽内空気量を調節設定していた。この為、曝気槽内
供給空気量り設定に関してDO濃度以外でも極めて影響
の大きい季節による水温の変化、活性汚泥の呼吸活性、
1日当りの実曝気時間等の複数の因子の変化を考慮した
、多変量的制御を行うまでには至っていない。
O,zwq/L or more ~2. This was done empirically by manually restricting the flow rate valve so that it was within the range of o rag/L. In addition, even if a single or multiple Do meters are installed in the aeration tank with the main purpose of saving energy, the output signal from the DO meter should be used as the main output so that the DO concentration in the aeration tank is kept at an arbitrary constant concentration as low as possible. The amount of air in the aeration tank was adjusted and set by controlling the air flow rate valve opening and rotation speed. For this reason, seasonal changes in water temperature, respiratory activity of activated sludge, and
Multivariate control that takes into account changes in multiple factors such as actual aeration time per day has not yet been performed.

(/1 発明が解決しようとする問題点曝気槽に供給す
るプーワーからの空気量は各種法令に基く設計基準並び
に構造基準等により計算設定されているが、所定量のM
LSS量を保持している曝気槽へ連続的に設計空気量を
供給していると、水温及び気温による物理化学的影響を
受けて夏場は正常量であっても、だんだん冬場になると
過剰量となる。従って余分の空気を逃したり流量弁の絞
り調節が不可決となり大規模施設では、ブロワ−の台数
制御や稼働率制御を行う必要が生じていた。さらに、春
期から夏期へ又、秋期から冬期への急激な温度変化をも
たらす移行期においては、生物界特有の共通現象として
、活性汚泥処理相の不安定化が起りいわゆる夏支度、冬
支度現象が観察され、当該移行期の浄化機能を安定させ
る為の空気設定量を明確にする必要があった。また曝気
槽の必要空気量と、自然気象条件による温度との関係に
ついて、その空気設定量を定量化しようと試みて、総括
酸素移動容量係数と温度との関係を用いて、曝気槽に対
する空気量増減設定運転を行っても信頼性の高い安定し
た活性汚泥処理を行う事が困難であった。加うるに当該
式中に除去BOD量の項があり、その測定に長時間を要
するので、現場的には経験的判断と曝気槽内溶存酸素濃
度を測定する等の他に排水基質毎の実用的な空気設定方
法が少かった。
(/1 Problem to be solved by the invention The amount of air supplied from the puller to the aeration tank is calculated and set based on design standards and structural standards based on various laws and regulations.
If the design air volume is continuously supplied to the aeration tank that maintains the LSS volume, even if it is normal in the summer due to the physicochemical effects of water temperature and air temperature, it will gradually become excessive in the winter. Become. Therefore, it has become impossible to release excess air or adjust the throttle of the flow valve, making it necessary to control the number of blowers and the operating rate in large-scale facilities. Furthermore, during the transition period that brings about rapid temperature changes from spring to summer and from autumn to winter, a common phenomenon unique to the biological world is that the activated sludge treatment phase becomes unstable, resulting in the so-called summer preparation and winter preparation phenomena. It was necessary to clarify the set amount of air to stabilize the purification function during the transition period. In addition, with regard to the relationship between the amount of air required for the aeration tank and the temperature determined by natural weather conditions, we attempted to quantify the set air amount, and using the relationship between the overall oxygen transfer capacity coefficient and temperature, we calculated the amount of air for the aeration tank. It was difficult to perform highly reliable and stable activated sludge treatment even when increasing and decreasing settings were performed. In addition, there is a term for the amount of BOD removed in the formula, and it takes a long time to measure it, so in addition to empirical judgment and measuring the dissolved oxygen concentration in the aeration tank, it is necessary to make practical decisions for each wastewater substrate. There were few ways to set the atmosphere.

に)問題点を解決する為の手段 日本の地理的条件における気温と曝気槽水温の逆転逆電
は1年間に2回(4月〜5月中10月〜11月)観察さ
れる事は気象科学的に証明されているが、このような現
象に基く曝気槽内における酸素の供給特性について、簡
易な方法で、かつ水質管理上実効ある特性値として表す
事が出来るように次式に示したような酸素供給係数(L
)を考案した。
2) Measures to solve the problem Under Japan's geographical conditions, reverse electricity in the air temperature and aeration tank water temperature is observed twice a year (from April to May and from October to November). Although it has been scientifically proven, the oxygen supply characteristics in the aeration tank based on this phenomenon are expressed in the following equation in a simple way and as effective characteristic values for water quality management. The oxygen supply coefficient (L
) was devised.

但し−=酸素供給係数 (f)=気温補正された空気1rPl中の酸素量(01
m3fA5Cs−電気伝導度計により塩素イオン補正さ
れた飽和溶存酸素濃度(f/d) CL=溶存酸素計により測定された曝気槽内溶存酸素濃
度(η梢 に=MLSS混合液中のMLVSSの含有比の逆数ここ
で旧は曝気槽l−肖たり、1時間に連続して消費されて
いる酸素量に対して、ブロワ−から供給されている空気
中に含有されている酸素量の絶対量が何倍に相当するか
を表すものである。即ち、活性汚泥に供給する基質分解
速度や、基質中油分濃度、散気設備の効率及び水温、気
温、廃水毎の電気伝導度のちがいによって異る飽和溶存
酸素量等の影響を総合的に反映する特性値となる。従っ
て、一定量の活性汚泥を管理するプロセフ、において、
曝気槽内に流入する基質量が平均的な施設に一定条件の
散気設備、空気量を供給していても自然気象条件におけ
る気温、排水温度の影響を不可避的に受ける結果となる
ので、活性汚泥浄化機能を安定させ、良好な処理水を得
るためには第1図に示した温度依存等による酸素呼吸活
性に追随安定するような曝気槽水温に対応する酸素供給
係数に基づいて空気量を設定する事により可能となる。
However, -=Oxygen supply coefficient (f)=Amount of oxygen in 1rPl of air corrected for temperature (01
m3fA5Cs - Saturated dissolved oxygen concentration (f/d) corrected for chlorine ions by an electrical conductivity meter CL = Dissolved oxygen concentration in the aeration tank measured by a dissolved oxygen meter (η Top = Content ratio of MLVSS in the MLSS mixture The reciprocal of here is the absolute amount of oxygen contained in the air supplied from the blower, relative to the amount of oxygen continuously consumed per hour in the aeration tank. In other words, the saturation rate varies depending on the substrate decomposition rate supplied to activated sludge, the oil concentration in the substrate, the efficiency of the aeration equipment, the water temperature, the air temperature, and the electrical conductivity of each wastewater. It is a characteristic value that comprehensively reflects the influence of the amount of dissolved oxygen, etc. Therefore, in the process of managing a certain amount of activated sludge,
Even if a facility with an average amount of substrate flowing into the aeration tank is supplied with aeration equipment and air volume under certain conditions, it will inevitably be affected by the air temperature and wastewater temperature under natural weather conditions. In order to stabilize the sludge purification function and obtain good treated water, the amount of air must be adjusted based on the oxygen supply coefficient corresponding to the aeration tank water temperature so that it follows and stabilizes the oxygen respiration activity due to temperature dependence as shown in Figure 1. This is possible by setting.

本発明によると、曝気槽水温の平均値及び酸素供給係数
の平均値を中心に位置するようにy軸及びy軸を設け1
年間における毎日平均並びに毎月平均値及び季節毎の平
均酸素供給係数を水温に対して描くと、その時系列は必
ず80字軌跡をとる事が確認されており、その80字パ
ターンは、廃水基質や処理施設特有の形で表される事が
フンヒーーター解析により判明している。
According to the present invention, the y-axis and the y-axis are provided so as to be centered on the average value of the aeration tank water temperature and the average value of the oxygen supply coefficient.
It has been confirmed that when the annual average daily, monthly, and seasonal average oxygen supply coefficients are plotted against water temperature, the time series always follows an 80-character trajectory, and the 80-character pattern is based on the wastewater substrate and treatment. Hung heater analysis has revealed that it is expressed in a facility-specific manner.

以上のような原理を応用して、曝気槽内に供給する空気
量の設定は毎日の平均的な曝気槽内水温計、Doメータ
、気温計、飽和溶存酸素濃度を補正する為の電気伝導度
計及び曝気時間を、測定する為の水量計からの入力とに
より、演算装置で、酸素供給係数を算出して、基準8の
字パターンを設定しである比較演算装置との比較変換響
からの出力によって、グラフ上の曝気槽水温、酸素供給
係数軌跡を進行するように毎日の供給空気量を設定する
。又、自動運転は毎月30日間の軌跡を各月間の軌跡を
時系列関数により等分移動するようにして、当該決定空
気量に基づくブロワ一台数並びにブpワー稼働率及びブ
pワー回転数となるような最終出力信号を得て行う。
Applying the above principles, the amount of air supplied to the aeration tank can be set using the daily average water temperature meter, Do meter, thermometer, and electrical conductivity to correct the saturated dissolved oxygen concentration. Based on the input from the water meter for measuring the aeration time and the aeration time, the calculation device calculates the oxygen supply coefficient, sets the standard figure-of-eight pattern, and compares and converts the aeration time with the comparison calculation device. Based on the output, the daily supply air amount is set so that the aeration tank water temperature and oxygen supply coefficient trajectory on the graph progresses. In addition, the automatic operation moves the trajectory for 30 days every month in equal parts using a time series function, and calculates the number of blowers, blower operation rate, and blower rotation speed based on the determined air amount. This is done by obtaining a final output signal that looks like this.

(ホ)作用 日本の地理的条件における酸素供給係数但は、気温と水
温の逆転する時期に平均的な酸素供給係数■が存在し、
各種の下水、汚水、産業廃水について、個有の値をもっ
ている。例えば、設計空気量において平均酸素供給係数
を求めると都市下水では60〜1201浄化槽では20
〜60、産業廃水のそれでは10〜350に達するもの
もある。因に、どのような基質においても、その活性汚
泥プロセスにおいて一定量の活性汚泥量を保有管理して
いる曝気槽内の酸素供給係数山)は、夏場の7月〜8月
を高すターン期として最高に達し、18〜2月の低すタ
ーン期に最底となる。ある産業廃水の1例を示すと表−
1に示した通りである。
(e) Effect: Oxygen supply coefficient under Japan's geographical conditions However, an average oxygen supply coefficient ■ exists during the period when air temperature and water temperature are reversed.
Each type of sewage, sewage, and industrial wastewater has its own unique value. For example, the average oxygen supply coefficient for the design air volume is 60 to 1200 for urban sewage, and 20 for septic tanks.
~60, and some industrial wastewater can reach 10-350. Incidentally, no matter what kind of substrate is used, the oxygen supply coefficient in the aeration tank (which maintains and manages a certain amount of activated sludge in the activated sludge process) increases during the summer period from July to August. It reaches its highest peak in 2018, and bottoms out in the low turn period from 2018 to February. The table below shows an example of industrial wastewater.
As shown in 1.

表−1酸素供給係数の変化 このように酸素供給係数りは、温度が活性汚泥増殖に直
接的に作用する結果、酸素呼吸活性が相対変動率で冬場
の約50%から夏場の約160%に大きく変化するもの
である。従って各種、設計基準に基づく設計風量を15
0%に換算して曝気槽内に供給する空気設定量の概算を
行うと、冬場は約50%に低減し、春と秋は100%と
する。そして、活性汚泥の夏支度期に該当する春の5月
〜7月にかけては、8月〜10月に移行する秋支度期よ
りも平均20%の増加量を設定し、10月〜12月の冬
支度期に該当する時期は、2月〜4月の春支度期よりも
平均20%の増加量を設定すれば良い。
Table 1: Changes in the oxygen supply coefficient As shown above, the oxygen supply coefficient is a result of the direct effect of temperature on activated sludge growth, resulting in a relative fluctuation rate of oxygen respiration activity from approximately 50% in winter to approximately 160% in summer. It changes a lot. Therefore, the design air volume based on various design standards is 15
If we calculate the set amount of air to be supplied into the aeration tank by converting it to 0%, it will be reduced to about 50% in winter and 100% in spring and autumn. In the spring from May to July, which corresponds to the summer preparation period for activated sludge, an average increase of 20% is set compared to the autumn preparation period, which moves from August to October. For the period corresponding to the preparation period, it is sufficient to set an average increase of 20% compared to the spring preparation period from February to April.

(へ)発明の効果 近年において、散気管の改良や省エネルギーの時代的要
請から活性汚泥処理プロセスにおける曝気槽内に供給す
る設定空気量は過剰量よりも必要かつ最少限の設定空気
量において、活性汚泥法を成立させようとする技術の理
念に転換されて来ており、本発明では、曝気槽内に設置
されたDOメータのみならず複数の因子の変化を反映し
ており活性汚泥処理水の機能安定を主要な効果として発
揮させうるものである。即ち、曝気槽内活性汚泥保有量
が正常に運転管理されている曝気槽において、毎日の流
入BOD負荷量の変動率が約20%程度の平均的な範囲
内であれば、Doメータを主要人力とする空気量設定方
式に比較して、本法は、より安定した処理水を得る事が
出来る。また水力ではディヒーザーを用いる事を基本と
しているが曝気槽内に供給する空気量に大きな変動が生
じた場合は設定空気量の、手動操作によりブロワ−操作
盤上に表示された設定空気量を改善した後、自動運転と
する。このように本方法による曝気槽内供給空気量の設
定化は、従来専門技術者により空気量増減の技術的判断
がなされていた場合の有効な数量化手段として利用され
るものである。そして、本法では演算装置が内蔵されて
おりブpワー操作盤のパネル上に曝気槽の実条件に基づ
いた酸素供給係数から演算された設定空気量が表示され
80字軌跡上の現在地が表示されるので専門的技術者を
必要とせず、ブロワ−からの空気供給操作を無人化する
事が可能である。加えて、当該8の字軌跡上の供給空気
量によって消費節約される動力費は約35%である。
(f) Effects of the invention In recent years, due to the improvement of aeration pipes and the current demands for energy conservation, the set amount of air supplied to the aeration tank in the activated sludge treatment process has been changed to the necessary and minimum set amount of air, rather than an excessive amount. The concept of technology has been changed to establish the sludge method, and the present invention reflects changes in not only the DO meter installed in the aeration tank but also multiple factors, and the activated sludge treatment water Functional stability can be achieved as a main effect. In other words, in an aeration tank where the amount of activated sludge held in the aeration tank is normally operated and managed, if the fluctuation rate of the daily inflow BOD load is within the average range of about 20%, the Do meter should be operated by the main human operator. Compared to the air amount setting method, this method can obtain more stable treated water. In addition, although hydraulic power plants generally use a deheater, if there is a large change in the amount of air supplied to the aeration tank, the set air amount displayed on the blower control panel can be improved by manual operation. After that, it will automatically operate. In this way, setting the amount of air supplied to the aeration tank by this method can be used as an effective means of quantifying when the technical judgment of increasing or decreasing the amount of air has conventionally been made by a professional engineer. In this method, a calculation device is built in, and the set air amount calculated from the oxygen supply coefficient based on the actual conditions of the aeration tank is displayed on the blower control panel, and the current location on the 80-character trajectory is displayed. Therefore, the air supply operation from the blower can be automated without requiring a professional engineer. In addition, the power cost saved by the amount of air supplied on the figure-eight trajectory is about 35%.

【図面の簡単な説明】[Brief explanation of the drawing]

図はX軸が曝気槽内水温、y軸が酸素供給係数(ト)を
表わし、各年平均値を原点とする80字上にある数字は
、時系列パターン上に存在する毎月平均酸素供給係数(
L)である。又、矢印は酸素供給係数(L)が毎日移行
変化する軌跡の方向を示している。
In the figure, the X-axis represents the water temperature in the aeration tank, and the Y-axis represents the oxygen supply coefficient (T).The number above the 80th character with each year's average value as the origin is the monthly average oxygen supply coefficient that exists on the time series pattern. (
L). Further, the arrow indicates the direction of the trajectory in which the oxygen supply coefficient (L) changes every day.

Claims (1)

【特許請求の範囲】[Claims] 曝気槽内に連続的に消費されている曝気槽1m^3当た
りの必要酸素量Rr(O_2・g/m^3・時間)に対
して、ブロワーから送風されている1時間当りの空気中
に含有されている酸素量Qc(O_2・g/h)が何倍
供給されているかを簡便に表す酸素供給係数(L)を応
用して、活性汚泥浄化機能を安定させると、どのような
基質においても曝気槽内水温と(L)の関係は、第1図
に示した通り気象学的、生物学的に1年間の間(L)は
8の字軌跡を経て循還する事を利用して空気供給量を設
定し、毎日の平均水温、気温、電気伝導度及び曝気時間
をセンサーにより検出後、演算装置にて酸素供給係数(
L)を算出し、毎日これをグラフ上の曝気槽水温、酸素
供給係数(L)及び年間時系列グラフ上に適合させるよ
うに空気供給量を決定し、当該決定空気量に基づくブロ
ワー台数並びにブロワー稼働率及びブロワー回転数とな
るように出力信号を得る事を特徴とする曝気槽内に毎日
供給する空気量の設定方法
In contrast to the required oxygen amount Rr (O_2・g/m^3・hour) per 1m^3 of the aeration tank that is continuously consumed in the aeration tank, the amount of oxygen in the air per hour blown from the blower is If the activated sludge purification function is stabilized by applying the oxygen supply coefficient (L), which simply expresses how many times the contained oxygen amount Qc (O_2・g/h) is supplied, in what kind of substrate can the activated sludge purification function be stabilized? The relationship between the water temperature in the aeration tank and (L) is based on the fact that, meteorologically and biologically, (L) circulates through a figure-eight trajectory during one year, as shown in Figure 1. After setting the air supply amount and detecting the daily average water temperature, air temperature, electrical conductivity, and aeration time using a sensor, a calculation device calculates the oxygen supply coefficient (
L) is calculated, and the air supply amount is determined each day to match this to the aeration tank water temperature, oxygen supply coefficient (L), and annual time series graph on the graph, and the number of blowers and blowers are determined based on the determined air amount. A method for setting the amount of air supplied daily into an aeration tank, characterized by obtaining an output signal that corresponds to the operating rate and the number of rotations of the blower.
JP60075071A 1985-04-08 1985-04-08 Process for setting quantity of air to be fed to aeration tank Pending JPS61234990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075071A JPS61234990A (en) 1985-04-08 1985-04-08 Process for setting quantity of air to be fed to aeration tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075071A JPS61234990A (en) 1985-04-08 1985-04-08 Process for setting quantity of air to be fed to aeration tank

Publications (1)

Publication Number Publication Date
JPS61234990A true JPS61234990A (en) 1986-10-20

Family

ID=13565591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075071A Pending JPS61234990A (en) 1985-04-08 1985-04-08 Process for setting quantity of air to be fed to aeration tank

Country Status (1)

Country Link
JP (1) JPS61234990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960709B1 (en) 1993-08-25 2005-11-01 Dekalb Genetics Corporation Method for altering the nutritional content of plant seed

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960709B1 (en) 1993-08-25 2005-11-01 Dekalb Genetics Corporation Method for altering the nutritional content of plant seed

Similar Documents

Publication Publication Date Title
CN107986428B (en) Sewage treatment accurate aeration method
CN108569756B (en) New intelligent sewage treatment process control method (EBIS)
US7335305B2 (en) Sequential batch reactor and wastewater treatment process
CN110482686B (en) Consumption-reducing and efficiency-improving system and method suitable for biological denitrification of oxidation ditch
Zipper et al. Development of a new system for control and optimization of small wastewater treatment plants using oxidation-reduction potential (ORP)
CN105439285B (en) A kind of regulation method of sewage treatment
CN106277299B (en) Aeration control system and method based on oxygen consumption rate tester
CN106277383A (en) A kind of aeration control system based on oxygen consumption rate analyzer and method
CN106082430A (en) A kind of aeration control system and aeration control method
CN109205808A (en) A kind of accurate aeration control method based on water outlet ammonia nitrogen and dissolved oxygen
CN113044973A (en) Sewage treatment control system and effluent TN control method
CN110436609B (en) Intelligent sewage treatment aeration control method with self-learning function
JP6655975B2 (en) Aeration control device and aeration control method
Sorensen et al. Optimization of a nitrogen‐removing biological wastewater treatment plant using on‐line measurements
CN104355477A (en) Chemical phosphorus removal automatic control device of sewage treatment plant and control method thereof
JP2016007576A (en) Water treatment plant
CN109542150B (en) A method for adjusting the influent load of rural domestic sewage treatment facilities
JPS61234990A (en) Process for setting quantity of air to be fed to aeration tank
CN207877400U (en) A kind of sewage treatment aeration system
CN113620528A (en) An intelligent oxygen supply sewage treatment device
Libra et al. Comparison of the efficiency of large-scale ceramic and membrane aeration systems with the dynamic off-gas method
CN112487603B (en) Method and system for determining the change of oxygenation capacity of blast aeration system based on big data
CN207845269U (en) constant DO control system based on real-time OUR
CN113277687B (en) A control system and method for reducing energy consumption of small-scale domestic sewage treatment
CN216662629U (en) Accurate dosing system in high-efficient type carbon source