[go: up one dir, main page]

JPS61222216A - Manufacture of superlattice semiconductor device - Google Patents

Manufacture of superlattice semiconductor device

Info

Publication number
JPS61222216A
JPS61222216A JP6209085A JP6209085A JPS61222216A JP S61222216 A JPS61222216 A JP S61222216A JP 6209085 A JP6209085 A JP 6209085A JP 6209085 A JP6209085 A JP 6209085A JP S61222216 A JPS61222216 A JP S61222216A
Authority
JP
Japan
Prior art keywords
semiconductor
superlattice
dimensional
semiconductor layer
superlattice semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6209085A
Other languages
Japanese (ja)
Inventor
Takao Yonehara
隆夫 米原
Katsuji Takasu
高須 克二
Masafumi Sano
政史 佐野
Hisanori Tsuda
津田 尚徳
Yutaka Hirai
裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6209085A priority Critical patent/JPS61222216A/en
Publication of JPS61222216A publication Critical patent/JPS61222216A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To provide a two-dimensional or three-dimentional superlattice semicon ductor which can expect a quantum effect more prominent than a one-dimen tional superlattice semiconductor, by manufacturing than using very minute process and selective epitaxial techniques. CONSTITUTION:A two-dimentional or three-dimentional superlattice semiconductor is manufactured using very minute process and selective epitaxial techniques. For example, on a crystal substrate 1, a first semiconductor layer 2 is epitaxial- grown, on which a second semiconductor layer 3 is epitacial-grown. The first semiconductor layer 2 and second semiconductor layer 3 are laminated alternately and repeatedly into a given number of layers. Next, photo resist 4 is coated on the surface of the formed semiconductor layers, and is exposed through a line or lattice shape mask having utilized laser holography by using very minute process techniques such as X-ray exposure. In this way, by a excellent directional etching method using a mask of developed photo resist of a lattice shape, trenches are digged from the film surface to the substrate interface, providing a two-dimentional superlattice semiconductor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超格子半導体の作製方法に係夛、特に二次元又
は三次元超格子半導体の作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a superlattice semiconductor, and particularly to a method for manufacturing a two-dimensional or three-dimensional superlattice semiconductor.

〔従来技術〕[Prior art]

近年、半導体層を周期的に繰シ返し積層して。 In recent years, semiconductor layers have been repeatedly stacked periodically.

その量子効果により従来得られなかった電気的・光学的
特徴を有する超格子半導体素子の研究開発が盛んにな夛
つつある。前記超格子半導体素子を実現するには精密膜
厚制御技術、相互拡散の起こらない原子尺度で急峻な接
合界面を実現できる作製技術1組成の異なる材料の切り
換えが瞬時に行える作製技術等が要求されるが、超高真
空を用いた分子線エピタキシャル成長(MBE ) 、
或いは有機金属ガスを用いた気相分解法(MOCVT)
 )等が実現°されたため21層状に周動的な薄膜形成
が可能とまってきた。具体的な応用例としては1周期的
超格子4テンシャルを形成する事により、に空間のブリ
リアンゾーンにミニバンドを形成して負性抵抗素子を実
現しようというもの(US Pat@ntφ3.626
,257  Leo−Esaki ) 、量子井戸を設
ける事によシ半導体レーザーの発振波長を変化させよう
とするもの等がある。又前記超格子半導体素子によシ人
工的にエネルギーバンドの装飾をする事が現実となりつ
つある。例えば半導体レーザーは通常直接遷移屋半導体
であるGaAs等の化合物半導体で作製造れるが、単元
素半導体81.G・或いは5i−G・混晶の様な間接遷
移型半導体でも、超格子構造を用いそのに空間の伝導帯
構造を変化させれば、これら間接遷移型半導体を用いて
もレーザー発振ができる可能性がある。しかしながら1
以上の超格子半導体は一次元構造であり、二次元構造及
び三次元構造の超格子半導体は実現されていなかった。
Due to the quantum effect, research and development of superlattice semiconductor devices that have electrical and optical characteristics not previously available are becoming more and more popular. In order to realize the superlattice semiconductor device, precise film thickness control technology, manufacturing technology that can realize a steep bonding interface on an atomic scale without interdiffusion, 1. Manufacturing technology that can instantly switch between materials with different compositions, etc. are required. However, molecular beam epitaxial growth (MBE) using ultra-high vacuum,
Or gas phase decomposition method using organometallic gas (MOCVT)
) etc., it has become possible to form a 21-layer thin film in a circumferential manner. A specific example of application is to create a negative resistance element by forming a mini-band in the brilliant zone of the space by forming a 1-periodic superlattice 4 tensile (US Pat@ntφ3.626).
, 257 Leo-Esaki), and others that attempt to change the oscillation wavelength of a semiconductor laser by providing a quantum well. Also, it is becoming a reality to artificially decorate energy bands in the superlattice semiconductor device. For example, a semiconductor laser is usually made of a compound semiconductor such as GaAs, which is a direct transition semiconductor, but a single element semiconductor 81. Even with indirect transition type semiconductors such as G or 5i-G mixed crystals, if the conduction band structure of the space is changed using a superlattice structure, it is possible to generate laser oscillation using these indirect transition type semiconductors. There is sex. However, 1
The above superlattice semiconductors have one-dimensional structures, and superlattice semiconductors with two-dimensional and three-dimensional structures have not been realized.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記従来技術の状況を鑑み、二次元又は
三次元構造をもつ超格子半導体の作製方法を提供し、−
次元超格子半導体よりも更に顕著な量子効果が期待でき
る二次元又は三次元超格子半導体を提供する事にある。
In view of the above-mentioned state of the prior art, an object of the present invention is to provide a method for manufacturing a superlattice semiconductor having a two-dimensional or three-dimensional structure,
The object of the present invention is to provide a two-dimensional or three-dimensional superlattice semiconductor that can be expected to have a more significant quantum effect than a dimensional superlattice semiconductor.

上記の目的は二次元又は三次元超格子半導体を超微細加
工技術と選択エピタキシャル技術とを用いて作製した事
を特徴とする本発明の超格子半導体の作製方法によって
達成される。
The above object is achieved by the method for producing a superlattice semiconductor of the present invention, which is characterized in that a two-dimensional or three-dimensional superlattice semiconductor is produced using an ultrafine processing technique and a selective epitaxial technique.

〔実施例〕〔Example〕

以下1本発明の実施例全図面を用いて詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to all the drawings.

第1図は本発明の二次元の超格子半導体の作製方法を示
す斜視図であり 、 (、)は−次元超格子半導体の斜
視図であり、(b)は超微細加工を行った一次元超格子
半導体の斜視図であり、(C)は(b)の−次元超格子
半導体に選択エピタキシャル成長させて構成した二次元
超格子半導体の斜視図である。第1図(a) において
1は結晶基板であり1例えばGaAsest、c・等の
単結晶基板あるいは810□、 81.N4゜アモルフ
ァスSj等の非単結晶基板等である。2は第1の半導体
層で1例えばGaAa * 5Lz−Ga1−。
FIG. 1 is a perspective view showing the method for manufacturing a two-dimensional superlattice semiconductor of the present invention, (,) is a perspective view of a -dimensional superlattice semiconductor, and (b) is a one-dimensional ultrafinely processed one-dimensional superlattice semiconductor. It is a perspective view of a superlattice semiconductor, and (C) is a perspective view of a two-dimensional superlattice semiconductor made to selectively epitaxially grow the -dimensional superlattice semiconductor of (b). In FIG. 1(a), reference numeral 1 denotes a crystal substrate, such as a single crystal substrate such as GaAsest, c., or 810□, 81. It is a non-single crystal substrate such as N4° amorphous Sj. 2 is the first semiconductor layer 1, for example GaAa*5Lz-Ga1-.

GaAs e 811−Gel −)Ce P型Si 
、 Go等である。3は第2の半導体層で1例えばGa
AtAs 、 N型S1あるいはG・等である。
GaAs e 811-Gel-)Ce P-type Si
, Go et al. 3 is the second semiconductor layer 1, for example Ga
AtAs, N-type S1 or G.

まず、 MBE 、 MOCVD等のエピタキシャル成
長装置を用いて、結晶基板1上に第1の半導体層をエピ
タキシャル成長させ、その上に第2の半導体層をエピタ
キシャル成長させる。この第1の半導体層と第2の半導
体層とを交互に繰シ返し任意の数の層だけ積層させる。
First, using an epitaxial growth apparatus such as MBE or MOCVD, a first semiconductor layer is epitaxially grown on a crystal substrate 1, and a second semiconductor layer is epitaxially grown thereon. The first semiconductor layer and the second semiconductor layer are alternately and repeatedly stacked in an arbitrary number of layers.

次に作製した半導体層の表面にフォトレジストを塗付し
、レーザーのホログラフィを用いた線状或は、格子状の
マスクを用意し、それを介してX線露光或は直接描画可
能なイオンビーム、電子線リングラフィ等の超微細加工
技術を用いて、上記フォトレジストを露光する。
Next, a photoresist is applied to the surface of the fabricated semiconductor layer, a linear or lattice mask is prepared using laser holography, and an ion beam that can be used for X-ray exposure or direct drawing is applied through the mask. The photoresist is exposed using ultrafine processing technology such as electron beam phosphorography.

レーザーを用いた場合、ホログラフィクリソグラフィに
よる周期(P、)はレーデ−波長(λ)の半分まで理論
的に可能である。
When using lasers, holographic lithographic periods (P, ) of up to half the Lede wavelength (λ) are theoretically possible.

P=−τ− 2suθ θはレーザーの入射角である。例としてArレーデ−を
用いた場合は1000X〜2000Xの周期の格子のマ
スクが作製可能である。電子線或いはイオン線の7オト
レジスト上の直接描画によれか、更に微細な1000オ
ングストローム以下の格子をフォトレジスト上に形成す
ることができる。
P=-τ-2suθ θ is the incident angle of the laser. For example, when an Ar radar is used, a mask with a grating having a period of 1000X to 2000X can be produced. Even finer gratings of 1000 angstroms or less can be formed on the photoresist by direct writing of electron beams or ion beams on the photoresist.

露光、現偉した格子状のフォトレジストをマスクとして
方向性の高いエツチング方法1例えば。
For example, a highly directional etching method 1 using an exposed and exposed lattice-shaped photoresist as a mask.

四塩化炭素ガスを用いた反応性イオンエツチングによっ
て膜表面から基板界面まで溝を掘る。
Grooves are dug from the film surface to the substrate interface by reactive ion etching using carbon tetrachloride gas.

第1図(b)はエツチング終了後の一次元超格子半導体
の斜視図であシ、4はフォトレジストである。
FIG. 1(b) is a perspective view of the one-dimensional superlattice semiconductor after etching, and 4 is a photoresist.

このフォトレジスト4を取シ去り、側面の付着物或いは
イオンによる損傷領域を除去した後MBE 。
After removing the photoresist 4 and removing deposits on the side surfaces or areas damaged by ions, MBE is performed.

MOCVD等を用いて、その間げきにのみ所望の半導体
材料を選択的にエピタキシャル成長させる。第1図(e
)において5は選択エピタキシャル成長させた第3の半
導体層である。第3の半導体層の構成材料は例えばGa
AtAs # 81zGe1−1 x 81 、 Go
等である。
A desired semiconductor material is selectively epitaxially grown only in those spaces using MOCVD or the like. Figure 1 (e
), 5 is a third semiconductor layer grown selectively epitaxially. The constituent material of the third semiconductor layer is, for example, Ga.
AtAs #81zGe1-1 x 81, Go
etc.

選択エピタキシャル成長に際しては、最終層である半導
体層3の上部表面を核成長の少ない或いは全く起こらな
い、例えば8102. Si、N4層等で覆う必要があ
る。
During selective epitaxial growth, the upper surface of the semiconductor layer 3, which is the final layer, is coated with a layer that causes little or no nucleation, for example 8102. It is necessary to cover it with a Si, N4 layer, etc.

又、堆積中にHCl等のエツチングガスを混入すること
も有効である。これらの層はフォトレジスト塗付の前段
階で被覆し、半導体層を格子状にエツチングする際同時
に除去し、溝以外の半導体層上部に残す。
It is also effective to mix an etching gas such as HCl during deposition. These layers are applied prior to applying the photoresist and removed at the same time as the semiconductor layer is etched in a grid pattern, leaving them on top of the semiconductor layer except in the trenches.

以上、超微細加工技術と選択エピタキシャル成長を用a
た二次元超格子半導体について記載したが、同様にして
三次元超格子半導体を作製する事ができる。
The above uses ultrafine processing technology and selective epitaxial growth.
Although a two-dimensional superlattice semiconductor has been described, a three-dimensional superlattice semiconductor can be produced in the same manner.

第2図は本発明の三次元の超格子半導体の作製方法を示
す斜視図であ!D 、 (1)は超微細加工を行った一
次元超格子半導体の斜視図であり、(b)は(a)の−
次元超格子半導体に選択エピタキシャル成長させた三次
元超格子半導体の斜視図である。三次元超格子半導体の
作製方法は二次元超格子半導体の作製で法と同様である
ので、ここでは省略する。
FIG. 2 is a perspective view showing the method for manufacturing a three-dimensional superlattice semiconductor of the present invention! D, (1) is a perspective view of a one-dimensional superlattice semiconductor subjected to ultrafine processing, and (b) is a - of (a).
FIG. 2 is a perspective view of a three-dimensional superlattice semiconductor grown selectively epitaxially on a three-dimensional superlattice semiconductor. The method for manufacturing a three-dimensional superlattice semiconductor is the same as the method for manufacturing a two-dimensional superlattice semiconductor, and therefore will not be described here.

この様に超微細加工技術と選択エピタキシャル成長を用
いた二次元超格子半導体又は三次元超格子半導体におい
ては、第3図に示すように、エネルギー状態密度D(E
)の分布は(1)の従来の一次元超格子半導体が階段状
の値をとるのに比して、(b)の二次元超格子半導体は
周期的に離散的i値を取り 、 (e)の三次元超格子
半導体はさらにシャープな周期的な8関数列となる。こ
れらの周期的に離散的なエネルギー状態密度D(E)を
有する超格子半導体の光学的特性は吸収発光に際してよ
りシャーシなスペクトルとなり得る。
In this way, in two-dimensional superlattice semiconductors or three-dimensional superlattice semiconductors using ultrafine processing technology and selective epitaxial growth, the energy state density D (E
) The distribution of (e ) is a three-dimensional superlattice semiconductor with an even sharper series of eight periodic functions. The optical properties of these superlattice semiconductors having a periodically discrete density of energy states D(E) can result in a more robust spectrum upon absorption and emission.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように1本発明の超格子半導体の作
製方法によれば、二次元超格子半導体又は三次元超格子
半導体を簡易な作製方法で作製する事ができる。
As explained in detail above, according to the method for manufacturing a superlattice semiconductor of the present invention, a two-dimensional superlattice semiconductor or a three-dimensional superlattice semiconductor can be manufactured by a simple manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の二次元の超格子中°導体の作製方法を
示す斜視図であり、(a)は−次元超格子半導体の斜視
図であ−D 、 (b)は超微細加工を行った一次元超
格子半導体の斜視図であり、(C)は(b)の−次元超
格子半導体に選択エピタキシャル成長をさせて構成した
二次元超格子半導体の斜視図である。 第2図は本発明の三次元の超格子半導体の作製方法を示
す斜視図であり 、(alは超微細加工を行りた一次元
超格子半導体の斜視図であり、(b)は(&)の−次元
超格子半導体に選択エピタキシャル成長させた三次元超
格子半導体の斜視図である。 第3図はエネルギー状態密度分布図を示し、それぞれ(
a)は従来の一次元超格子半導体、(b)は三次元超格
子半導体、(c)は三次元超格子半導体のエネルギー状
態密度分布図を示す。 1・・・結晶基板、2・・・第1の半導体層、3・・・
第2の半導体層、4・・・フォトレジスト、5・・・第
3の半導体層。 。
FIG. 1 is a perspective view showing the method for manufacturing a two-dimensional superlattice medium conductor of the present invention, (a) is a perspective view of a -dimensional superlattice semiconductor, and (b) is a perspective view of a -D superlattice semiconductor. FIG. 10C is a perspective view of a one-dimensional superlattice semiconductor obtained by the above-mentioned method, and FIG. FIG. 2 is a perspective view showing the method for manufacturing a three-dimensional superlattice semiconductor of the present invention, (al is a perspective view of a one-dimensional superlattice semiconductor subjected to ultrafine processing, and (b) is a perspective view of a one-dimensional superlattice semiconductor that has undergone ultrafine processing. ) is a perspective view of a three-dimensional superlattice semiconductor selectively epitaxially grown on a -dimensional superlattice semiconductor of (
A) shows energy state density distribution diagrams of a conventional one-dimensional superlattice semiconductor, (b) a three-dimensional superlattice semiconductor, and (c) a three-dimensional superlattice semiconductor. DESCRIPTION OF SYMBOLS 1... Crystal substrate, 2... First semiconductor layer, 3...
2nd semiconductor layer, 4... photoresist, 5... third semiconductor layer. .

Claims (1)

【特許請求の範囲】[Claims] 二次元又は三次元超格子半導体を超微細加工技術と選択
エピタキシャル技術とを用いて作製した事を特徴とする
超格子半導体の作製方法。
A method for producing a superlattice semiconductor, characterized in that a two-dimensional or three-dimensional superlattice semiconductor is produced using ultrafine processing technology and selective epitaxial technology.
JP6209085A 1985-03-28 1985-03-28 Manufacture of superlattice semiconductor device Pending JPS61222216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6209085A JPS61222216A (en) 1985-03-28 1985-03-28 Manufacture of superlattice semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6209085A JPS61222216A (en) 1985-03-28 1985-03-28 Manufacture of superlattice semiconductor device

Publications (1)

Publication Number Publication Date
JPS61222216A true JPS61222216A (en) 1986-10-02

Family

ID=13190006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6209085A Pending JPS61222216A (en) 1985-03-28 1985-03-28 Manufacture of superlattice semiconductor device

Country Status (1)

Country Link
JP (1) JPS61222216A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225175A (en) * 1988-03-03 1989-09-08 Nec Corp field effect transistor
JPH0328831A (en) * 1989-06-26 1991-02-07 Matsushita Electric Ind Co Ltd Nonlinear optical thin film
JPH03116822A (en) * 1989-09-29 1991-05-17 Natl Res Inst For Metals How to form a quantum well box
JPH04125966A (en) * 1990-09-17 1992-04-27 Nec Corp Semiconductor device and manufacture thereof
US5534444A (en) * 1994-06-22 1996-07-09 France Telecom Process for producing an electrically controllable matrix of vertically structured quantum well components
US6780711B2 (en) 1998-11-16 2004-08-24 Matrix Semiconductor, Inc Vertically stacked field programmable nonvolatile memory and method of fabrication
US6841813B2 (en) 2001-08-13 2005-01-11 Matrix Semiconductor, Inc. TFT mask ROM and method for making same
US6843421B2 (en) 2001-08-13 2005-01-18 Matrix Semiconductor, Inc. Molded memory module and method of making the module absent a substrate support
US6853049B2 (en) 2002-03-13 2005-02-08 Matrix Semiconductor, Inc. Silicide-silicon oxide-semiconductor antifuse device and method of making
US6881994B2 (en) 2000-08-14 2005-04-19 Matrix Semiconductor, Inc. Monolithic three dimensional array of charge storage devices containing a planarized surface
US6888750B2 (en) 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6897514B2 (en) 2001-03-28 2005-05-24 Matrix Semiconductor, Inc. Two mask floating gate EEPROM and method of making
US6940109B2 (en) 2002-06-27 2005-09-06 Matrix Semiconductor, Inc. High density 3d rail stack arrays and method of making
US7005730B2 (en) 2002-02-19 2006-02-28 Matrix Semiconductor, Inc. Memory module having interconnected and stacked integrated circuits
US7352199B2 (en) 2001-02-20 2008-04-01 Sandisk Corporation Memory card with enhanced testability and methods of making and using the same
US9478495B1 (en) 2015-10-26 2016-10-25 Sandisk Technologies Llc Three dimensional memory device containing aluminum source contact via structure and method of making thereof

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225175A (en) * 1988-03-03 1989-09-08 Nec Corp field effect transistor
JPH0328831A (en) * 1989-06-26 1991-02-07 Matsushita Electric Ind Co Ltd Nonlinear optical thin film
JPH03116822A (en) * 1989-09-29 1991-05-17 Natl Res Inst For Metals How to form a quantum well box
JPH04125966A (en) * 1990-09-17 1992-04-27 Nec Corp Semiconductor device and manufacture thereof
US5534444A (en) * 1994-06-22 1996-07-09 France Telecom Process for producing an electrically controllable matrix of vertically structured quantum well components
US6780711B2 (en) 1998-11-16 2004-08-24 Matrix Semiconductor, Inc Vertically stacked field programmable nonvolatile memory and method of fabrication
US9214243B2 (en) 1998-11-16 2015-12-15 Sandisk 3D Llc Three-dimensional nonvolatile memory and method of fabrication
US8897056B2 (en) 1998-11-16 2014-11-25 Sandisk 3D Llc Pillar-shaped nonvolatile memory and method of fabrication
US7319053B2 (en) 1998-11-16 2008-01-15 Sandisk 3D Llc Vertically stacked field programmable nonvolatile memory and method of fabrication
US7157314B2 (en) 1998-11-16 2007-01-02 Sandisk Corporation Vertically stacked field programmable nonvolatile memory and method of fabrication
US7283403B2 (en) 1998-11-16 2007-10-16 Sandisk 3D Llc Memory device and method for simultaneously programming and/or reading memory cells on different levels
US7265000B2 (en) 1998-11-16 2007-09-04 Sandisk 3D Llc Vertically stacked field programmable nonvolatile memory and method of fabrication
US7190602B2 (en) 1998-11-16 2007-03-13 Sandisk 3D Llc Integrated circuit incorporating three-dimensional memory array with dual opposing decoder arrangement
US7160761B2 (en) 1998-11-16 2007-01-09 Sandisk 3D Llc Vertically stacked field programmable nonvolatile memory and method of fabrication
US6888750B2 (en) 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6881994B2 (en) 2000-08-14 2005-04-19 Matrix Semiconductor, Inc. Monolithic three dimensional array of charge storage devices containing a planarized surface
US8853765B2 (en) 2000-08-14 2014-10-07 Sandisk 3D Llc Dense arrays and charge storage devices
US10644021B2 (en) 2000-08-14 2020-05-05 Sandisk Technologies Llc Dense arrays and charge storage devices
US6992349B2 (en) 2000-08-14 2006-01-31 Matrix Semiconductor, Inc. Rail stack array of charge storage devices and method of making same
US10008511B2 (en) 2000-08-14 2018-06-26 Sandisk Technologies Llc Dense arrays and charge storage devices
US9559110B2 (en) 2000-08-14 2017-01-31 Sandisk Technologies Llc Dense arrays and charge storage devices
US7129538B2 (en) 2000-08-14 2006-10-31 Sandisk 3D Llc Dense arrays and charge storage devices
US9171857B2 (en) 2000-08-14 2015-10-27 Sandisk 3D Llc Dense arrays and charge storage devices
US8981457B2 (en) 2000-08-14 2015-03-17 Sandisk 3D Llc Dense arrays and charge storage devices
US7352199B2 (en) 2001-02-20 2008-04-01 Sandisk Corporation Memory card with enhanced testability and methods of making and using the same
US6897514B2 (en) 2001-03-28 2005-05-24 Matrix Semiconductor, Inc. Two mask floating gate EEPROM and method of making
US7615436B2 (en) 2001-03-28 2009-11-10 Sandisk 3D Llc Two mask floating gate EEPROM and method of making
US7525137B2 (en) 2001-08-13 2009-04-28 Sandisk Corporation TFT mask ROM and method for making same
US6843421B2 (en) 2001-08-13 2005-01-18 Matrix Semiconductor, Inc. Molded memory module and method of making the module absent a substrate support
US6841813B2 (en) 2001-08-13 2005-01-11 Matrix Semiconductor, Inc. TFT mask ROM and method for making same
US7250646B2 (en) 2001-08-13 2007-07-31 Sandisk 3D, Llc. TFT mask ROM and method for making same
US7432599B2 (en) 2002-02-19 2008-10-07 Sandisk 3D Llc Memory module having interconnected and stacked integrated circuits
US7005730B2 (en) 2002-02-19 2006-02-28 Matrix Semiconductor, Inc. Memory module having interconnected and stacked integrated circuits
US7329565B2 (en) 2002-03-13 2008-02-12 Sanddisk 3D Llc Silicide-silicon oxide-semiconductor antifuse device and method of making
US6853049B2 (en) 2002-03-13 2005-02-08 Matrix Semiconductor, Inc. Silicide-silicon oxide-semiconductor antifuse device and method of making
US6940109B2 (en) 2002-06-27 2005-09-06 Matrix Semiconductor, Inc. High density 3d rail stack arrays and method of making
US9478495B1 (en) 2015-10-26 2016-10-25 Sandisk Technologies Llc Three dimensional memory device containing aluminum source contact via structure and method of making thereof

Similar Documents

Publication Publication Date Title
JPS61222216A (en) Manufacture of superlattice semiconductor device
US5313484A (en) Quantum box or quantum wire semiconductor structure and methods of producing same
US6566595B2 (en) Solar cell and process of manufacturing the same
JPH02162717A (en) How to form quantum wires
JPS63155713A (en) Manufacturing method of semiconductor microstructure
US5258326A (en) Quantum device fabrication method
US5833870A (en) Method for forming a high density quantum wire
JP3013167B2 (en) Method for forming compound semiconductor quantum wires
JPS60113488A (en) Manufacture of element having effect of one-dimensional quantum size
Horikosh Migration-enhanced epitaxy for low-dimensional structures
JPH02101784A (en) Manufacture of quantum well fine wire and quantum well box and quantum well fine wire laser
JPH04105313A (en) Manufacture of quantum box
JP3082444B2 (en) Manufacturing method of semiconductor laser
JPH02163928A (en) How to form quantum wire or quantum box
KR100267261B1 (en) Forming method of quantum structure
KR20010054538A (en) fabrication method of semiconductor device for growth of self-aligned array of self-assembled quantum dots and current blocking structure
JPH0590612A (en) Formation of semiconductor fine wiring
JPH0358410A (en) Manufacture of semiconductor structure
JP2000183327A (en) Formation of quantum dots, quantum dot structure formed thereby and semiconductor quantum dot laser
JPH04317318A (en) Manufacture of three-dimensional lattice structure and crystal-burying method
JPS6114788A (en) Manufacture of two-dimensional quantum well structure
JPS62273791A (en) Manufacture of semiconductor quantum well laser
JP2662727B2 (en) How to make a planar superlattice
WO2005101470A1 (en) Method of three-dimensional microfabrication and high-density three-dimensional fine structure
JPS6098615A (en) Manufacture of multilayer film