JPH01225175A - field effect transistor - Google Patents
field effect transistorInfo
- Publication number
- JPH01225175A JPH01225175A JP63051062A JP5106288A JPH01225175A JP H01225175 A JPH01225175 A JP H01225175A JP 63051062 A JP63051062 A JP 63051062A JP 5106288 A JP5106288 A JP 5106288A JP H01225175 A JPH01225175 A JP H01225175A
- Authority
- JP
- Japan
- Prior art keywords
- phonon
- field effect
- effect transistor
- semiconductor
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/43—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 1D charge carrier gas channels, e.g. quantum wire FETs or transistors having 1D quantum-confined channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/81—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation
- H10D62/815—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW]
- H10D62/8161—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials of structures exhibiting quantum-confinement effects, e.g. single quantum wells; of structures having periodic or quasi-periodic potential variation of structures having periodic or quasi-periodic potential variation, e.g. superlattices or multiple quantum wells [MQW] potential variation due to variations in composition or crystallinity, e.g. heterojunction superlattices
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Junction Field-Effect Transistors (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電界効果トランジスタに関し、特に超格子構造
中のフォノン局在効果を利用した高移動度電界効果トラ
ンジスタに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor, and particularly to a high mobility field effect transistor that utilizes the phonon localization effect in a superlattice structure.
電界効果トランジスタの動作原理は、例えばツェ−(S
ze)による文献「フィジックス・オブ・セミコンダク
タ・デバイシズJ (Physics ofSemic
onductor Devices)、1981年、ジ
ョンズ・ウィリー・アンド・サンプ(Johns Wi
ley andSons)社に詳述されている。The operating principle of a field effect transistor is, for example, Tse (S
ze), “Physics of Semiconductor Devices J”
Johns Wiley & Sump, 1981
ley and Sons).
このトランジスタの特性を向上させる方法の一つに、上
記文献に記載されている様に、チャネル中における電子
の移動度を大きくすることがある。このことによりソー
スからドレインまでの電子の走行時間が短縮され、高速
性能が改善される。One method of improving the characteristics of this transistor is to increase the mobility of electrons in the channel, as described in the above-mentioned document. This reduces the transit time of electrons from source to drain, improving high-speed performance.
半導体の移動度を低下させる要因の一つに光学フォノン
散乱がある。この光学フォノン散乱を減少させるために
、従来、二種類の半導体を用いて交互の層構造をもつ超
格子を作成し、フォノン振動を一方の層中に局在させる
ことにより散乱を減少させ、移動度を高くする方法が提
案されていた。Optical phonon scattering is one of the factors that reduce the mobility of semiconductors. In order to reduce this optical phonon scattering, conventionally, two types of semiconductors are used to create a superlattice with an alternating layer structure, and phonon vibrations are localized in one layer, reducing scattering and moving. A method has been proposed to increase the degree of
訳本による文献「ジャーナル・オブ・フィジックスC:
ソリッド・ステイト・フィジックス(Journal
of Physics C:5olid 5tate
Physics)」1986年、第19巻、4956頁
に載揚の論文によると、フォノン振動の分散の異なる砒
化ガリウム(GaAs)と砒化アルミニウムガリウム(
Aj7GaAs)の交互の層構造をもつ超格子を作成し
、AJ?GaAs層の厚さを電子のドブロイ波長よりも
十分に短か<(〈数10人)すると、電子は超格子全体
に拡がる。一方、光学フォノン振動は、GaAsと^j
7 GaAsから成るヘテロ界面で振動の節ができ、A
e GaAs中に侵入することができず、GaAs中に
局在する。すなわち、長波長の光学フォノン振動は禁止
される。Translated literature “Journal of Physics C:
Solid State Physics (Journal
of Physics C:5olid 5tate
According to a paper published in ``Physics'', 1986, volume 19, page 4956, gallium arsenide (GaAs) and aluminum gallium arsenide (
A superlattice with an alternating layer structure of Aj7GaAs) is created and AJ? If the thickness of the GaAs layer is made sufficiently shorter than the electron de Broglie wavelength (several tens of people), the electrons will spread throughout the superlattice. On the other hand, optical phonon vibration is caused by GaAs and ^j
7 Vibration nodes are formed at the heterointerface made of GaAs, and A
e It cannot penetrate into GaAs and is localized in GaAs. That is, long wavelength optical phonon oscillations are prohibited.
第3図は従来の超格子構造における光学フォノン振動の
局在を説明するための断面模式図である。FIG. 3 is a schematic cross-sectional view for explaining the localization of optical phonon vibrations in a conventional superlattice structure.
GaAs層12と、電子のドブロイ波長よりも十分に薄
い層厚のAj? GaAs層13とが交互に積層されて
超格子が形成される。波長がGaAs層の厚さより短か
い光学フォノン振動AはバルクのGaAsの場合と同様
に起こる。半波長がGaAs層と等しい光学フォノン振
動Bは、実現されうる最長の波長をもつ振動である。光
学フォノン振動Cは、GaAs層12と AeGaAs
層13から成るヘテロ界面に振動の節がないために禁止
される。GaAs layer 12 and a layer thickness Aj? sufficiently thinner than the de Broglie wavelength of electrons. GaAs layers 13 are alternately stacked to form a superlattice. Optical phonon vibrations A whose wavelength is shorter than the thickness of the GaAs layer occur similarly to the case of bulk GaAs. The optical phonon vibration B, whose half wavelength is equal to that of the GaAs layer, is the vibration with the longest wavelength that can be realized. The optical phonon vibration C is caused by the GaAs layer 12 and the AeGaAs
This is prohibited because there are no vibration nodes at the heterointerface consisting of layer 13.
以上の説明から明らかな様に、上記構造の超格子におい
ては、実現される光学フォノンの振動モードに制限が加
わるためバルクのGaAsに比べて、光学フォノン散乱
が抑制されて高移動度電子輸送が起こる。本構造を電界
効果トンジスタのチャネルに採用することにより、高速
性能が改善される。As is clear from the above explanation, in the superlattice with the above structure, restrictions are placed on the vibrational mode of optical phonons that can be realized, so optical phonon scattering is suppressed and high-mobility electron transport is achieved compared to bulk GaAs. happen. By employing this structure in the channel of a field effect transistor, high-speed performance is improved.
しかし、この構造では三次元方向に実現される光学フォ
ノン振動モードのうち、ヘテロ界面に垂直な一次元方向
のみを変調するため、フ才、ノンの振動モード局在の効
果が小さい。However, in this structure, among the optical phonon vibration modes realized in three-dimensional directions, only the one-dimensional direction perpendicular to the hetero-interface is modulated, so the effect of localization of the vibration modes of free and non-contact is small.
本発明の目的は、二次元方向のフォノン振動を局在させ
、より高移動度のチャネルを得て高速動作する電界効果
トランジスタを提供することにある。An object of the present invention is to localize phonon vibration in two-dimensional directions, obtain a channel with higher mobility, and provide a field effect transistor that operates at high speed.
本発明の電界効果トランジスタは、フォノン振動の分散
関係の異なる二種類の半導体A、Bを用意し、半導体A
から成る層の断面方向の長さが電子のドブロイ波長程度
の一次元量子細線が断面二方向に細線一辺より十分に短
かい間隔を置いて規則的に並べられ、その間隔を半導体
Bの層が埋める様に配置されているチャネルを有するこ
とを特徴とする。In the field effect transistor of the present invention, two types of semiconductors A and B having different dispersion relationships of phonon oscillations are prepared, and semiconductor A
The one-dimensional quantum wires, whose length in the cross-sectional direction is about the de Broglie wavelength of an electron, are regularly arranged in two cross-sectional directions at intervals sufficiently shorter than one side of the wire, and the layers of semiconductor B It is characterized by having channels arranged so as to fill each other.
本発明では、フォノン振動の分散関係の異なる二種類の
半導体を用いて二次元方向のフォノン振動を局在させて
フォノン散乱を減少させることにより、高移動度の構造
を得、電界効果トランジスタのチャネルに用いて高速性
能の良いトランジスタを実現する。In the present invention, by localizing phonon vibration in two-dimensional directions and reducing phonon scattering using two types of semiconductors with different dispersion relationships of phonon vibration, a structure with high mobility is obtained, and the channel of a field effect transistor is It is used to realize transistors with good high-speed performance.
次に、本発明の実施例について図面を参照して説明する
。Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.
フォノンの分散関係の異なる二種類の半導体A、Bを用
い、半導体Aから成る層1断面方向の長さが電子のドブ
ロイ波長程度の一次元量子細線が断面二方向に細線一辺
より十分に短かい間隔を置いて規則的に並べられ、その
間隔を半導体Bの層2が埋める様に配置されている構造
の基板に、通常のプロセスを施して、ソース3.ドレイ
ン4、ゲート5を形成して電界効果トランジスタを得る
。Using two types of semiconductors A and B with different phonon dispersion relationships, a one-dimensional quantum wire whose length in the cross-sectional direction of the layer 1 made of semiconductor A is about the de Broglie wavelength of an electron is sufficiently shorter than one side of the thin wire in the two cross-sectional directions. A conventional process is applied to a substrate having a structure in which the semiconductor B layers 2 are arranged regularly at intervals, and the layers 2 of the semiconductor B are arranged so as to fill the intervals, and the sources 3. A drain 4 and a gate 5 are formed to obtain a field effect transistor.
本構造により二次元方向に光学フォノン振動が局在し、
移動度が改善されることを図面を用いて説明する。With this structure, optical phonon vibrations are localized in two-dimensional directions,
The improvement in mobility will be explained using the drawings.
第2図は二次元方向のフォノン振動が局在することを説
明するための断面模式図である。FIG. 2 is a schematic cross-sectional view for explaining that phonon vibrations in two-dimensional directions are localized.
図において、8.9は縦方向の短及び長波長光学フォノ
ン振動、10.11は横方向の短及び長波長光学フォノ
ン振動をそれぞれ表わす、前出の訳本の文献に記載され
ている様に、ヘテロ界面がフォノン振動の節でなければ
ならない。このなめ、短波長フォノン振動8,10は実
現されるが、長波長フォノン振動9.11は実現されな
い。すなわちフォノン振動は二次元方向に局在する。一
方、半導体B層2は電子ドブロイ波長よりも十分に薄く
、電子は基板全体に拡がっている。In the figure, 8.9 represents the short and long wavelength optical phonon vibrations in the longitudinal direction, and 10.11 represents the short and long wavelength optical phonon vibrations in the transverse direction, respectively, as described in the above-mentioned translation. , the heterointerface must be a node of phonon vibration. Due to this lick, short wavelength phonon vibrations 8 and 10 are realized, but long wavelength phonon vibrations 9 and 11 are not realized. In other words, phonon vibrations are localized in two-dimensional directions. On the other hand, the semiconductor B layer 2 is sufficiently thinner than the electron de Broglie wavelength, and the electrons are spread over the entire substrate.
従って、フォノン振動の二次元方向局在により、チャネ
ル中の移動度が大幅に増加し、トランジスタの高速特性
が改善される。Therefore, the two-dimensional localization of phonon vibrations significantly increases the mobility in the channel and improves the high-speed characteristics of the transistor.
尚、本実施例では細線の長さ方向にソース・ドレインを
設けているが、前出の文献に示されている様にフォノン
の局在している方向に垂直な方向の伝導のみが改善され
るのではなく、他の方向も改善させるので細線の断面方
向にソース・トレインを設けてもよい。In this example, the source and drain are provided in the length direction of the thin wire, but as shown in the above-mentioned literature, only the conduction in the direction perpendicular to the direction in which phonons are localized is improved. The source train may be provided in the cross-sectional direction of the thin wire, since it also improves other directions.
以上説明した様に本発明は、光学フォノン散乱を二次元
方向に局在させる構造をチャネルに採用したので高速性
能の良い電界効果トランジスタが得られるという効果を
有する。As explained above, the present invention employs a structure in which optical phonon scattering is localized in two-dimensional directions for the channel, so that it has the effect of providing a field effect transistor with good high-speed performance.
第1図は本発明の一実施例を示す斜視図、第2図は二次
元方向に光学フォノン振動が局在することを説明するた
めの断面図、第3図は従来の超格子構造における光学フ
ォノン振動の局在を説明するための断面模式図である。
1・・・半導体A層、2・・・半導体B層、3・・・ソ
ース、4・・・ドレイン、5・・・ゲート、8〜11・
・・光学フォノン振動、l 2−・−GaAs層、13
・−ke GaAs層。
代理人 弁理士 内 原 音
M57 図
月 Z 図
声 J 図Fig. 1 is a perspective view showing an embodiment of the present invention, Fig. 2 is a cross-sectional view to explain that optical phonon vibration is localized in two-dimensional directions, and Fig. 3 is an optical diagram of a conventional superlattice structure. FIG. 3 is a schematic cross-sectional diagram for explaining localization of phonon vibrations. DESCRIPTION OF SYMBOLS 1... Semiconductor A layer, 2... Semiconductor B layer, 3... Source, 4... Drain, 5... Gate, 8-11.
・・Optical phonon vibration, l 2−・−GaAs layer, 13
-ke GaAs layer. Agent Patent Attorney Oto Uchihara M57 Zuzuki Z Zusei J Dia
Claims (1)
Bを用意し、半導体Aから成る層の断面方向の長さが電
子のドブロイ波長程度の一次元量子細線が断面二方向に
細線一辺より十分に短かい間隔を置いて規則的に並べら
れ、その間隔を半導体Bの層が埋める様に配置されてい
るチャネルを有することを特徴とする電界効果トランジ
スタ。Two types of semiconductors A with different dispersion relationships of phonon vibrations,
B is prepared, one-dimensional quantum wires whose length in the cross-sectional direction of a layer made of semiconductor A is about the de Broglie wavelength of an electron are regularly arranged in two directions of the cross-section with an interval sufficiently shorter than one side of the wire; A field effect transistor characterized in that it has a channel arranged so that a layer of semiconductor B fills the gap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63051062A JPH01225175A (en) | 1988-03-03 | 1988-03-03 | field effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63051062A JPH01225175A (en) | 1988-03-03 | 1988-03-03 | field effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01225175A true JPH01225175A (en) | 1989-09-08 |
Family
ID=12876317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63051062A Pending JPH01225175A (en) | 1988-03-03 | 1988-03-03 | field effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01225175A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5289013A (en) * | 1991-10-02 | 1994-02-22 | Motorola, Inc. | Phonon and charge carrier separation in quantum wells |
US5811831A (en) * | 1992-10-31 | 1998-09-22 | Sony Corporation | Semiconductor device exploiting a quantum interference effect |
US5908306A (en) * | 1993-01-29 | 1999-06-01 | Sony Corporation | Method for making a semiconductor device exploiting a quantum interferences effect |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6174327A (en) * | 1984-09-14 | 1986-04-16 | エイ・ティ・アンド・ティ・コーポレーション | superlattice device |
JPS61222216A (en) * | 1985-03-28 | 1986-10-02 | Canon Inc | Manufacture of superlattice semiconductor device |
JPS62172712A (en) * | 1986-01-27 | 1987-07-29 | Hitachi Ltd | Manufacturing method of semiconductor substrate |
-
1988
- 1988-03-03 JP JP63051062A patent/JPH01225175A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6174327A (en) * | 1984-09-14 | 1986-04-16 | エイ・ティ・アンド・ティ・コーポレーション | superlattice device |
JPS61222216A (en) * | 1985-03-28 | 1986-10-02 | Canon Inc | Manufacture of superlattice semiconductor device |
JPS62172712A (en) * | 1986-01-27 | 1987-07-29 | Hitachi Ltd | Manufacturing method of semiconductor substrate |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5289013A (en) * | 1991-10-02 | 1994-02-22 | Motorola, Inc. | Phonon and charge carrier separation in quantum wells |
US5811831A (en) * | 1992-10-31 | 1998-09-22 | Sony Corporation | Semiconductor device exploiting a quantum interference effect |
US5908306A (en) * | 1993-01-29 | 1999-06-01 | Sony Corporation | Method for making a semiconductor device exploiting a quantum interferences effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3194941B2 (en) | Semiconductor device | |
US5357119A (en) | Field effect devices having short period superlattice structures using Si and Ge | |
US6753593B1 (en) | Quantum wire field-effect transistor and method of making the same | |
US9536965B2 (en) | Heat spreader on GaN semiconductor device | |
JPS6127681A (en) | Field effect transistor with superlattice structure channel part | |
JPH0732250B2 (en) | Semiconductor device | |
JPH01225175A (en) | field effect transistor | |
JP3046098B2 (en) | Heterojunction semiconductor device | |
JPS62256478A (en) | Compound semiconductor device | |
JPH0563005A (en) | Field effect transistor | |
JPS6240778A (en) | Complementary semiconductor device | |
JPH01187878A (en) | Two-dimensional hetero-junction element | |
JPH01241866A (en) | High mobility bipolar transistor using phonon localization effect | |
JPH05206173A (en) | Texture dope structure semiconductor device texture | |
JPS63288061A (en) | semiconductor negative resistance element | |
JPS5963769A (en) | high speed semiconductor device | |
JPS62219967A (en) | semiconductor equipment | |
JPS61156773A (en) | heterojunction semiconductor device | |
JP2710309B2 (en) | Heterojunction field effect transistor | |
JPH01256175A (en) | Complementary two-dimensional electron gas field effect transistor | |
JPS63124467A (en) | Semiconductor device | |
KR890003045A (en) | High Mobility Transistor | |
JPH1074943A (en) | Semiconductor device | |
JPH0243341B2 (en) | ||
JP2000133798A (en) | Field effect transistor with quantum wave interference layer |