JPS6122009B2 - - Google Patents
Info
- Publication number
- JPS6122009B2 JPS6122009B2 JP59164036A JP16403684A JPS6122009B2 JP S6122009 B2 JPS6122009 B2 JP S6122009B2 JP 59164036 A JP59164036 A JP 59164036A JP 16403684 A JP16403684 A JP 16403684A JP S6122009 B2 JPS6122009 B2 JP S6122009B2
- Authority
- JP
- Japan
- Prior art keywords
- consumable electrode
- slag
- arc
- melting
- graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002893 slag Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 26
- 238000002844 melting Methods 0.000 claims description 19
- 230000008018 melting Effects 0.000 claims description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 16
- 229910002804 graphite Inorganic materials 0.000 claims description 16
- 239000010439 graphite Substances 0.000 claims description 16
- 239000007787 solid Substances 0.000 claims description 12
- 239000000919 ceramic Substances 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 description 10
- 239000010959 steel Substances 0.000 description 10
- 210000002268 wool Anatomy 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 3
- 241000501667 Etroplus Species 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】
本発明はエレクトロスラグ溶解の操業開始(ス
タート)にあたり、固体状スラグを溶解炉中に装
填し、アークを発生させて固体状スラグを溶融さ
せるコールドスタート法の改良に係るものであ
る。[Detailed Description of the Invention] The present invention relates to an improved cold start method in which solid slag is loaded into a melting furnace and an arc is generated to melt the solid slag at the start of electroslag melting operations. It is something.
被溶解材料を一方の電極として、ジユール熱に
より加熱溶融されたスラグ中で溶融するエレクト
ロスラグ法は大気と遮断させて溶解できること、
スラグによる精錬が期待できること、一方向性凝
固が進み欠陥の少ない清浄な材料が得られること
などの利点があるために盛んに研究開発が進めら
れているが、操業開始にあたつてはいろいろと難
点が多い。 The electroslag method, in which the material to be melted is used as one electrode and melted in slag heated and melted by Joule heat, can be melted while being isolated from the atmosphere;
Research and development is actively underway due to the advantages of refining using slag and the ability to obtain clean materials with fewer defects due to unidirectional solidification, but there are various issues before starting operations. There are many difficulties.
一般にエレクトロスラグ溶解におけるスタート
法として別途の方法で予め溶融されたスラグを溶
解炉中に注入してから通電するホツトスタート法
と前述の如く固体状スラグを装填しておき消耗電
極と溶解炉の炉底の間にアークを発生させ、その
熱でスラグを溶融させてスラグプールを形成して
操業するコールドスタート法に大別される。ホツ
トスタート法は容易にスラグ通電を開始できる利
点はあるが、固体状スラグを溶解する炉が別途に
必要であり、設備的にも熱効率的にも不利な面が
多い。従つて、コールドスタート法は設備的にも
簡便であり、多く用いられる傾向にある。 In general, the starting method for electroslag melting is the hot start method, in which slag that has been pre-melted by a separate method is injected into the melting furnace and then energized, and the other is the hot start method, in which solid slag is loaded as described above, and the consumable electrode and the melting furnace are placed in the melting furnace. It is broadly divided into the cold start method, which operates by generating an arc between the bottoms and using the heat to melt the slag and form a slag pool. Although the hot start method has the advantage of being able to easily start energizing the slag, it requires a separate furnace for melting the solid slag, and has many disadvantages in terms of equipment and thermal efficiency. Therefore, the cold start method is simple in terms of equipment and tends to be widely used.
一方コールドスタート法としては溶解炉の炉底
と消耗電極間にスチールウールを充填するスチー
ルウール法、金属製の罐の中に低融点スラグと金
属切り粉とを充填して通電し、切り粉間に発生す
るアークによりスラグを溶融し、更に金属製の罐
および外部の固体状スラグを溶融していく罐スタ
ート法や溶解炉の炉底と消耗電極間に何も充填す
ることなく直接アークを発生させ、電極周囲に充
填したスラグをアークの熱により溶融するダイク
トスタート法などがある。 On the other hand, cold start methods include the steel wool method, in which steel wool is filled between the bottom of the melting furnace and the consumable electrode, and the low-melting-point slag and metal chips are filled in a metal can and energized, and the gap between the chips is The can start method uses the arc generated to melt the slag, and further melts the metal can and solid slag outside, and the can start method, which generates an arc directly without filling anything between the bottom of the melting furnace and the consumable electrode. There is a direct start method in which slag filled around the electrode is melted by the heat of an arc.
スチールウール法は、スチールウール間にアー
クを発生させるものであり、スチールウール自体
が発熱するために熱の放散がよく、周囲の固体状
スラグを効率よく溶融できるが、消耗電極と炉底
の間隔はアークを発生させるためには数ミリ程度
に限られるため、充填できるスチールウールの量
も限られ、短時間でスチールウールが消耗する。
従つてスチールウール法はその後はダイレクトス
タート法と変わらなくなる。ダイレクトスタート
法は補助材料等を必要とせず、最も簡便な方法で
はあるが、アークを発生させるには消耗電極と炉
底の間隔を厳密にコントロールする必要がある。
しかるにアークが発生すればその電極が消耗し、
その消耗に応じて電極の位置を絶えず調整する必
要があるのでその操作が非常に煩雑であり、ま
た、操作を誤るとアーク発生が停止したり消耗電
極が炉底に固着するなどの欠点がある。従つて、
Al2O3やCaOなどの主成分とする高融点スラグを
使用する場合などは、アーク発生時間を長く必要
とするため操作が困難である欠点がますます顕著
になる。罐スタート法は操作そのものは容易であ
るが罐内での発生アークの強度が弱く、そのため
に高融点スラグの使用には適さず、CaF2,
TiO2,MgOなどを主成分とする低融点スラグを
使用することになるが、還元されたスラグ中の
TiやMgなどの金属が溶解材質によつてはその溶
湯中に侵入し、材質的に悪影響を及ぼすことがあ
るなどの欠点がある。 The steel wool method generates an arc between steel wool, and the steel wool itself generates heat, which dissipates heat well and melts the surrounding solid slag efficiently. However, the distance between the consumable electrode and the bottom of the furnace Since the amount of steel wool that can be filled is limited to a few millimeters to generate an arc, the amount of steel wool that can be filled is also limited, and the steel wool is consumed in a short period of time.
Therefore, the steel wool method is no different from the direct start method thereafter. The direct start method does not require any auxiliary materials and is the simplest method, but in order to generate an arc it is necessary to strictly control the distance between the consumable electrode and the furnace bottom.
However, if an arc occurs, the electrode will be consumed,
The operation is very complicated as it is necessary to constantly adjust the position of the electrode according to its wear, and there are also drawbacks such as the arc generation stopping or the consumable electrode sticking to the bottom of the furnace if the operation is incorrect. . Therefore,
When using a high-melting point slag containing Al 2 O 3 or CaO as the main component, the disadvantage of difficult operation becomes even more apparent as it requires a long arc generation time. The can start method is easy to operate, but the strength of the arc generated inside the can is weak, and therefore it is not suitable for use with high melting point slag, and it is difficult to use with CaF 2 ,
Low melting point slag containing TiO 2 , MgO, etc. as main components will be used, but the
Depending on the molten material, metals such as Ti and Mg may enter the molten metal and have an adverse effect on the quality of the material.
本発明は以上の事情に鑑みてなられたものであ
り、消耗電極の近辺に黒鉛製またはシリコンカー
バイド、ランタンクロマイド、TiO−Sb2O3など
の様に常温で電導性があり、アーク発生が可能な
セラミツクス製の非消耗性電極部材を配置し、先
ず非消耗性電極部材と炉底との間にアークを安定
継続的に発生させ、固体状スラグが溶融して十分
な量のスラグプールが形成された時点で消耗電極
と炉底間にスラグプールを通じて通電し、通常の
操業を行うものである。非消耗性電極部材はアー
クによつて消耗することなく安定したアークを発
生させるものであり、従つて、非消耗性電極部材
と炉底間の距離は最初に設定すれば、アーク発生
中に調整する必要は全くない。そしてアークの熱
により周囲の固体状スラグが溶融し、除々にスラ
グプールが形成され、スラグプールの上面が上昇
して非消耗性電極部材に接触するとアークの発生
が止まる。そこで非消耗性電極部材を取り除いて
消耗電極をスラグプールと接触させて通常の操業
に入るが、非消耗性電極部材を取り除く方法とし
ては、非消耗性電極部材を消耗電極には固定する
ことなく、上方持ち上げ手段に固定しておき、ス
ラグプールが十分量形成された時点で非消耗性電
極部材を上方に取り去る方法がある。 The present invention has been developed in view of the above circumstances, and uses materials such as graphite, silicon carbide, lanthanum chromide, TiO-Sb 2 O 3 , etc. near the consumable electrode that are conductive at room temperature to prevent arcing. A non-consumable electrode member made of ceramics capable of Once this is formed, electricity is applied through the slag pool between the consumable electrode and the bottom of the furnace, and normal operation begins. The non-consumable electrode member generates a stable arc without being consumed by the arc. Therefore, if the distance between the non-consumable electrode member and the furnace bottom is set at the beginning, it can be adjusted during arc generation. There's no need to do that. Then, the surrounding solid slag melts due to the heat of the arc, gradually forming a slag pool, and when the upper surface of the slag pool rises and contacts the non-consumable electrode member, the generation of the arc stops. Therefore, normal operation begins by removing the non-consumable electrode member and bringing the consumable electrode into contact with the slag pool. There is a method in which the non-consumable electrode member is fixed to an upper lifting means and removed upward when a sufficient amount of slag pool is formed.
以下実施例により本発明を詳細に説明する。 The present invention will be explained in detail below with reference to Examples.
図において基台12に立設された支柱13の上
方には上面部材14が固着されている。上面部材
14と基台12の間は電極支持腕15用の案内棒
16と非消耗性電極部材17用の案内棒18が固
設されている。同じく基台12と上面部材14の
間に電極支持腕15および非消耗性電極部材17
を上下方向に移動させるためのねじ棒19および
ねじ棒20が軸心を中心として回転自在に設けら
れており、21および22はそれぞれねじ棒19
およびねじ棒20を回転させるためのモータであ
る。そして電極支持腕15および非消耗性電極部
材17はそれぞれねじ棒19およびねじ棒20と
螺合され、かつ案内棒16および案内棒18と摺
動自在に係合されている。従つて、モータ21お
よびモータ22の回転により電極支持腕15およ
び非消耗性電極部材17が上下動することができ
る。そして本実施例では黒鉛製部材7は消耗電極
5に固定されることなく、導電体からなる連結棒
23により、非消耗性電極部材17に連結されて
おり、消耗電極5と黒鉛製部材7とは独立に上下
動を行うことができる。黒鉛製部材7の形状は消
耗電極と干渉しなければとくに限定されないが、
溶解炉や電極の形状からして円環状が通常であ
る。電源8の一方の極は炉底2に接続され、他方
の極は切換スイツチ24を介して消耗電極5と黒
鉛製部材7に接続されている。 In the figure, an upper surface member 14 is fixed above a support 13 erected on a base 12. A guide rod 16 for the electrode support arm 15 and a guide rod 18 for the non-consumable electrode member 17 are fixedly provided between the upper surface member 14 and the base 12. Similarly, an electrode support arm 15 and a non-consumable electrode member 17 are arranged between the base 12 and the upper surface member 14.
A threaded rod 19 and a threaded rod 20 for vertically moving are provided rotatably around the axis, and 21 and 22 are respectively connected to the threaded rod 19.
and a motor for rotating the threaded rod 20. The electrode support arm 15 and the non-consumable electrode member 17 are threadedly engaged with a threaded rod 19 and a threaded rod 20, respectively, and are slidably engaged with a guide rod 16 and a guide rod 18. Therefore, the rotation of the motors 21 and 22 allows the electrode support arm 15 and the non-consumable electrode member 17 to move up and down. In this embodiment, the graphite member 7 is not fixed to the consumable electrode 5 but is connected to the non-consumable electrode member 17 by a connecting rod 23 made of a conductor, so that the consumable electrode 5 and the graphite member 7 are connected to each other by a connecting rod 23 made of a conductor. can move up and down independently. The shape of the graphite member 7 is not particularly limited as long as it does not interfere with the consumable electrode, but
Considering the shape of the melting furnace and electrodes, it is usually circular. One pole of the power source 8 is connected to the furnace bottom 2, and the other pole is connected to the consumable electrode 5 and the graphite member 7 via a changeover switch 24.
スタート方法はまず、炉底2に対して消耗電極
5と黒鉛製部材7を所定の高さに位置せしめる。
そして固体状スラグ9を装填し、冷却スイツチを
ジヤケツト4内に通じ、黒鉛製部材側が閉回路と
なる様に切換スイツチ24を操作してから通電
し、アークを発生させる。この後、アークは安定
して継続的に発生し、その間、黒鉛部材7の位置
を調節する必要は全くない。固体状スラグ9が溶
融し、十分なスラグプールが形成され、消耗電極
5の先端がスラグプールに浸漬されると切換スイ
ツチ24を切換えて、消耗電極側を閉回路として
通電し、スラグプール内にジユール熱を発生させ
通常の操業に移行する。この切換スイツチ24を
切換えたときに、黒鉛製部材7を上方へ移動させ
スラグプールから除去させる。この様に本実施例
では黒鉛製部材7が下方に落下して凝固金属中に
包含されることがないため、後にこれを除去する
必要がなく、また、黒鉛量によつて特性が大きく
変化する特殊鋼の場合などは、黒鉛製部材7の黒
鉛が溶湯中に侵入したり、セラミツクのスラグ中
への溶融によるスラグ成分の変動により溶湯特性
へ影響を与えることがないためとくに適してい
る。 The starting method is to first position the consumable electrode 5 and the graphite member 7 at a predetermined height relative to the furnace bottom 2.
Then, the solid slag 9 is loaded, the cooling switch is connected into the jacket 4, the changeover switch 24 is operated so that the graphite member side becomes a closed circuit, and then electricity is applied to generate an arc. After this, the arc is generated stably and continuously, and there is no need to adjust the position of the graphite member 7 during this period. When the solid slag 9 is melted and a sufficient slag pool is formed, and the tip of the consumable electrode 5 is immersed in the slag pool, the changeover switch 24 is switched to turn the consumable electrode side into a closed circuit and energize the slag pool. Generate Joule heat and resume normal operation. When the changeover switch 24 is switched, the graphite member 7 is moved upward and removed from the slag pool. In this way, in this example, the graphite member 7 does not fall downward and become included in the solidified metal, so there is no need to remove it later, and the characteristics change greatly depending on the amount of graphite. This method is particularly suitable for special steels because the graphite in the graphite member 7 does not enter the molten metal or the slag composition changes due to melting of the ceramic into the slag, which does not affect the properties of the molten metal.
以上説明した如く、本発明によれば固体状スラ
グからスタートするコールドスタート法において
アークを安定継続的に発生させることができ、電
極位置調整の手間もなく簡便にスタートできるも
のである。 As explained above, according to the present invention, an arc can be generated stably and continuously in the cold start method starting from solid slag, and the start can be easily performed without the need for adjusting the electrode position.
なお、実施例では黒鉛製の非消耗性電極部材の
例で説明したが、前述のごとくシリコンカーバイ
ド、ランタンクロマイド、TiO−Sb2O3などの様
に常温で電導性があり、アーク発生が可能なセラ
ミツクス製の非消耗性電極部材を使用しても同様
な結果が得られるのは当然である。 In addition, in the example, an example of a non-consumable electrode member made of graphite was explained, but as mentioned above, materials such as silicon carbide, lanthanum chromide, TiO-Sb 2 O 3 , etc. are conductive at room temperature and do not cause arcing. Of course, similar results can be obtained using non-consumable electrode members made of ceramics.
図は非消耗性電極部材を上方に除去する方法の
説明図を示す。
1……溶解炉炉体、2……炉底、5……消耗電
極、7……黒鉛製部材、8……電源、9……固体
状スラグ。
The figure shows an illustration of the method of upwardly removing the non-consumable electrode member. DESCRIPTION OF SYMBOLS 1... Melting furnace body, 2... Furnace bottom, 5... Consumable electrode, 7... Graphite member, 8... Power source, 9... Solid slag.
Claims (1)
スラグプールを形成する際に、黒鉛製または常温
でアーク発生の可能な比抵抗を持つたセラミツク
ス製の被消耗性電極部材と消耗電極とを、互いに
独立に上下動できるように溶解炉内に配置し、ま
ず該非消耗性電極部材と溶解炉炉底との間に通電
してアークを発生させ、十分なスラグ量が形成さ
れた時点で該消耗電極と該溶解炉炉底との間の通
電に切換え、該非消耗性電極部材を上方に移動し
去ることを特徴とするエレクトロスラグ溶解のコ
ールドスタート法。1 Generate an arc to melt the solid slag,
When forming a slag pool, consumable electrode members and consumable electrodes made of graphite or ceramics with a resistivity that can generate an arc at room temperature are placed in the melting furnace so that they can move up and down independently of each other. First, an electric current is applied between the non-consumable electrode member and the bottom of the melting furnace to generate an arc, and when a sufficient amount of slag is formed, the electric current is stopped between the consumable electrode and the bottom of the melting furnace. A cold start method of electroslag melting, characterized in that the non-consumable electrode member is moved upwardly and away.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59164036A JPS6063330A (en) | 1984-08-03 | 1984-08-03 | Cold starting method of electroslag melting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59164036A JPS6063330A (en) | 1984-08-03 | 1984-08-03 | Cold starting method of electroslag melting |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52154780A Division JPS6035414B2 (en) | 1977-12-21 | 1977-12-21 | Cold start method for electroslag melting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6063330A JPS6063330A (en) | 1985-04-11 |
JPS6122009B2 true JPS6122009B2 (en) | 1986-05-29 |
Family
ID=15785580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59164036A Granted JPS6063330A (en) | 1984-08-03 | 1984-08-03 | Cold starting method of electroslag melting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6063330A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6171900A (en) * | 1984-08-02 | 1986-04-12 | ヘルムート・エー・ジークマン | Method and device for particularly adjusting waste water sludge |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69818658T2 (en) | 1997-03-18 | 2004-08-12 | Zakrytoe Aktsionernoe Obschestvo "Elmet-Rol-Gruppa Medovara" | METHOD FOR COATING BY MEANS OF ELECTRIC SLAG METHOD |
-
1984
- 1984-08-03 JP JP59164036A patent/JPS6063330A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6171900A (en) * | 1984-08-02 | 1986-04-12 | ヘルムート・エー・ジークマン | Method and device for particularly adjusting waste water sludge |
Also Published As
Publication number | Publication date |
---|---|
JPS6063330A (en) | 1985-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3949208B2 (en) | Metal remelting method and apparatus used for manufacturing continuous casting | |
US6368375B1 (en) | Processing of electroslag refined metal | |
US6758259B1 (en) | Method and arangement for producing casting moulds from metal | |
US4450007A (en) | Process for electroslag remelting of manganese-base alloys | |
US3273212A (en) | Method of operating an electric furnace | |
JPS6122009B2 (en) | ||
US4612649A (en) | Process for refining metal | |
JPH0639635B2 (en) | Electroslag remelting method for copper and copper alloys | |
JPS6150065B2 (en) | ||
US3586749A (en) | Method for the electroslag welding and building up of metals and alloys | |
JP2614004B2 (en) | Method and apparatus for dissolving and injecting active metal | |
US3565994A (en) | Electrode slag melting method | |
JPS6035414B2 (en) | Cold start method for electroslag melting | |
RU2661322C2 (en) | Method for manufacture of bimetallic electrode by electroslag cladding | |
US3801153A (en) | Electroslag remelting apparatus for making metal ingots | |
JP5203680B2 (en) | Metal electroslag remelting process and ingot mold used therefor | |
US2464008A (en) | Continuous replenishment of electrodes in electric salt bath structures | |
JP6389679B2 (en) | Metal melting method | |
AU705587B2 (en) | Method and furnace for making a molten product | |
US2912731A (en) | Method for casting group iv metals | |
SU359964A1 (en) | Unit for electroslag remelting | |
JP2545169B2 (en) | DC arc furnace operation method | |
SU1569517A1 (en) | Device for obtaining alloy samples for spectral analysis | |
JPH04362144A (en) | Induction melting method | |
GB1583514A (en) | Electroslag refining process |