JPH04362144A - Induction melting method - Google Patents
Induction melting methodInfo
- Publication number
- JPH04362144A JPH04362144A JP3139048A JP13904891A JPH04362144A JP H04362144 A JPH04362144 A JP H04362144A JP 3139048 A JP3139048 A JP 3139048A JP 13904891 A JP13904891 A JP 13904891A JP H04362144 A JPH04362144 A JP H04362144A
- Authority
- JP
- Japan
- Prior art keywords
- crucible
- skull
- melting
- resistance layer
- heat resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002844 melting Methods 0.000 title claims abstract description 34
- 230000008018 melting Effects 0.000 title claims abstract description 33
- 230000006698 induction Effects 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052802 copper Inorganic materials 0.000 claims abstract description 30
- 239000010949 copper Substances 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 210000003625 skull Anatomy 0.000 claims abstract description 22
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- 150000002739 metals Chemical class 0.000 claims description 6
- 238000011978 dissolution method Methods 0.000 claims description 3
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 2
- 238000004090 dissolution Methods 0.000 claims 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims 1
- 230000001939 inductive effect Effects 0.000 claims 1
- 229910052750 molybdenum Inorganic materials 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- -1 titanium alloys Chemical class 0.000 claims 1
- 229910052721 tungsten Inorganic materials 0.000 claims 1
- 238000001816 cooling Methods 0.000 abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 6
- 239000011819 refractory material Substances 0.000 abstract 2
- 239000000155 melt Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 12
- 238000011109 contamination Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 235000019402 calcium peroxide Nutrition 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、活性金属あるいは高融
点金属等の材料を高純度で溶解する誘導溶解方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction melting method for melting materials such as active metals or high melting point metals with high purity.
【0002】0002
【従来の技術】活性金属あるいは高融点金属の溶解方法
として、従来、誘導溶解、プラズマ溶解、電子ビーム溶
解、真空アーク溶解等の方法が用いられているが、これ
らの方法に加え、近年、水冷分割銅ルツボを用いた誘導
溶解方法が研究され、実用化されつつある。この溶解法
は設備が比較的簡単で、作業性が良好で、均質な溶湯が
得られる等の多くの利点がある。[Prior Art] Conventionally, methods such as induction melting, plasma melting, electron beam melting, and vacuum arc melting have been used to melt active metals or high-melting point metals. An induction melting method using a split copper crucible has been researched and is being put into practical use. This melting method has many advantages, such as relatively simple equipment, good workability, and the ability to obtain homogeneous molten metal.
【0003】図2は従来の誘導溶解法の説明図で、(a
) は一体型の耐火物ルツボを使用したもので、(b)
は近年、研究され、実用化されつつある水冷分割銅ル
ツボ(水冷銅セグメント)を使用したものである。(a
) は誘導コイル1内に一体型の耐火物ルツボ5を配置
したもので、(b) は誘導コイル1内に、内部に冷却
水路8を有する複数本の銅セグメント2と、銅セグメン
ト2間のスリットに挿入された耐火物7より構成された
銅ルツボ6を配置し、この中で被溶解物を誘導溶解する
ものである。
誘導コイル1は高周波電源9に接続されている。図中の
3はスカル(凝固殻)、4は溶融金属を示す。FIG. 2 is an explanatory diagram of the conventional induction dissolution method.
) uses an integrated refractory crucible; (b)
This method uses a water-cooled segmented copper crucible (water-cooled copper segment), which has been researched and is being put into practical use in recent years. (a
) shows an integrated refractory crucible 5 placed inside the induction coil 1, and (b) shows the arrangement of a plurality of copper segments 2 with internal cooling channels 8 inside the induction coil 1, and the space between the copper segments 2. A copper crucible 6 made of a refractory 7 inserted into a slit is arranged, and the material to be melted is melted by induction therein. The induction coil 1 is connected to a high frequency power source 9. In the figure, 3 indicates a skull (solidified shell), and 4 indicates molten metal.
【0004】銅ルツボ6は縦方向に長い銅セグメント2
をスリット内に挿入された耐火物7を介して円筒状に連
結して構成されており、銅ルツボ6の上部は円周方向に
不連続の構造となっている。したがって、高周波電流を
誘導コイル1に流したとき、銅ルツボ6はスリットによ
り分断されているので、銅ルツボ6には誘導電流はほと
んど流れず、銅ルツボ6内の被溶解物に誘導電流が流れ
ることになり、被溶解物の効率的な溶解が可能になる。[0004] The copper crucible 6 has a vertically long copper segment 2.
are connected in a cylindrical shape via a refractory 7 inserted into a slit, and the upper part of the copper crucible 6 has a discontinuous structure in the circumferential direction. Therefore, when a high frequency current is passed through the induction coil 1, since the copper crucible 6 is divided by the slit, almost no induced current flows in the copper crucible 6, but an induced current flows in the material to be melted in the copper crucible 6. This makes it possible to efficiently melt the material to be melted.
【0005】銅ルツボ6内の溶融金属4は水冷されてい
る銅セグメント2の冷却効果により形成された溶融金属
のスカル(凝固殻)3内で溶融保持されることと、さら
に、溶融金属4は誘導コイル1からの電磁気力により攪
拌され(図中の矢印)、その上部は図2(b) に示す
ごとく、放物面状に保持されるので、銅ルツボ6と接触
せずに溶解されることとによって、図2(a) に示す
耐火物ルツボ5に比べ、ルツボからの耐火物汚は勿論、
銅ルツボ6からの汚染も少ない高純度溶解が可能である
。The molten metal 4 in the copper crucible 6 is held molten in a molten metal skull (solidified shell) 3 formed by the cooling effect of the water-cooled copper segment 2, and furthermore, the molten metal 4 is It is stirred by the electromagnetic force from the induction coil 1 (arrow in the figure), and its upper part is held in a parabolic shape as shown in Figure 2(b), so it is melted without contacting the copper crucible 6. Therefore, compared to the refractory crucible 5 shown in Fig. 2(a), the refractory dirt from the crucible is of course
High-purity melting with little contamination from the copper crucible 6 is possible.
【0006】[0006]
【発明が解決しようとする課題】しかし、上記した溶解
方法により得られた溶融金属は、原理上、スーパーヒー
ト量(溶融金属温度と溶融金属の融点との差)が十分に
得られないという欠陥がある。このことは、鋳造品を製
造する上で非常に問題となる。特に、薄肉複雑形状品を
鋳造する場合、融点近傍の温度しか持たない溶融金属は
粘性が高く、鋳造中に凝固してしまい、鋳型先端まで十
分に溶融金属が充填されないことがあり、数多くの鋳造
欠陥を生じることになる。また、このスカル部分が多い
と歩留りが下がり、コスト上昇にも直結する。[Problems to be Solved by the Invention] However, the molten metal obtained by the above-mentioned melting method has a defect in that, in principle, a sufficient amount of superheat (the difference between the molten metal temperature and the melting point of the molten metal) cannot be obtained. There is. This poses a serious problem when manufacturing cast products. In particular, when casting thin-walled products with complex shapes, molten metal with a temperature close to its melting point is highly viscous and solidifies during casting, resulting in the molten metal not being fully filled to the tip of the mold. This will result in defects. Moreover, if there are many skull parts, the yield will decrease and this will directly lead to an increase in cost.
【0007】本発明は、上記の諸問題を解決するために
なされたもので、スカルとルツボ間に熱抵抗層を入れる
ことにより、十分なスーパーヒート量を確保するととも
に、スカル量を低減する誘導溶解方法を提供することを
目的とする。The present invention has been made to solve the above-mentioned problems, and by inserting a heat resistance layer between the skull and the crucible, it is possible to secure a sufficient amount of superheat and to reduce the amount of skull. The purpose is to provide a dissolution method.
【0008】[0008]
【課題を解決するための手段】第1発明は、複数の棒状
水冷銅セグメントから構成される銅ルツボを使用するス
カル誘導溶解法において、チタン合金等の活性金属を溶
解する場合、スカルとルツボ間に熱抵抗層を形成して溶
解する誘導溶解方法である。[Means for Solving the Problems] The first invention provides a method for melting an active metal such as a titanium alloy in a skull induction melting method using a copper crucible composed of a plurality of rod-shaped water-cooled copper segments. This is an induction melting method in which a heat resistance layer is formed and melted.
【0009】第2発明は、熱抵抗層に、Y2O3、Hf
O2、CaO 、ZrO2、Ta、W 、Moの内から
選んだ1種類を使用する請求項1の誘導溶解方法である
。[0009] The second invention includes Y2O3 and Hf in the heat resistance layer.
2. The induction melting method according to claim 1, wherein one selected from O2, CaO2, ZrO2, Ta, W2, and Mo is used.
【0010】0010
【作用】熱抵抗層としては、高融点、低熱伝導率、活性
金属と反応しない化学的に安定な材料が求められ、被溶
解材に適したものが選ばれる。上記のY2O3、HfO
2、CaO、ZrO2、Ta、W 、Moはいずれも熱
抵抗層として満足のいくものである。因みに、これらの
融点はいずれも2400℃以上である。[Function] For the heat resistance layer, a chemically stable material is required that has a high melting point, low thermal conductivity, and does not react with active metals, and a material suitable for the material to be melted is selected. Above Y2O3, HfO
2. CaO, ZrO2, Ta, W2, and Mo are all satisfactory as heat resistance layers. Incidentally, all of these melting points are 2400°C or higher.
【0011】また、熱抵抗層の厚さは投入電力、冷却水
量、被溶解材量を考慮して決定される。熱抵抗層の効果
を大きくするためには、銅ルツボ、熱抵抗層、スカル間
の接触面を粗面にすることによって、接触面での熱伝達
率を小さくして熱抵抗を大きくすることが肝要である。
これにより、熱移動の伝導にあずかる要因が減少し、輻
射、対流にあずかる要因が増加しスーパーヒートが得や
すくなる。Further, the thickness of the thermal resistance layer is determined in consideration of the input power, the amount of cooling water, and the amount of material to be melted. In order to increase the effect of the thermal resistance layer, it is possible to make the contact surface between the copper crucible, the thermal resistance layer, and the skull rough to reduce the heat transfer coefficient at the contact surface and increase the thermal resistance. It is essential. As a result, the factors that participate in heat transfer conduction decrease, and the factors that participate in radiation and convection increase, making it easier to obtain superheat.
【0012】懸念される本熱抵抗層の溶融金属への汚染
は、溶解方法を工夫することにより解決される。すなわ
ち、図1に示すように、銅ルツボ6の底部に、中窪みの
熱抵抗層11を設置し、その上に、被溶解材であらかじ
め製作しておいたスカル12を設置する。この状態で、
被溶解材を銅ルツボ6内に装入して、誘導コイル1に高
周波電源9から高周波電流を流し溶解する。溶解開始と
ともにスカル12の上部は溶解し始めるが、熱的に平衡
状態になると、スカル12の溶解は停止し、スカル12
の下部は溶解することなく、溶融金属4の熱抵抗層11
からの汚染は防止できる。また、溶融金属4は誘導コイ
ル1からの電磁気力により攪拌され、その上部は放物面
状に保持されるので、銅ルツボ6と接触せずに溶解され
ることになる。The contamination of the molten metal of the thermal resistance layer, which is a concern, can be solved by devising a melting method. That is, as shown in FIG. 1, a hollow heat resistance layer 11 is placed on the bottom of the copper crucible 6, and a skull 12 made of a material to be melted is placed on top of the heat resistance layer 11. In this state,
The material to be melted is charged into a copper crucible 6, and a high frequency current is passed through the induction coil 1 from a high frequency power source 9 to melt it. The upper part of the skull 12 begins to melt as the melting begins, but when a thermal equilibrium state is reached, the melting of the skull 12 stops and the skull 12
The lower part of the heat resistance layer 11 of the molten metal 4 remains undissolved.
Contamination from can be prevented. Further, the molten metal 4 is stirred by the electromagnetic force from the induction coil 1, and the upper part thereof is held in a parabolic shape, so that it is melted without coming into contact with the copper crucible 6.
【0013】[0013]
【実施例】以下に、本発明の実施例を示す。溶解材にT
iおよびTi−37Al 20kgを用い、熱抵抗層の
ある場合と、ない場合について溶解を行った。熱抵抗層
にはY2O3粉末を用い、銅ルツボの低部に中窪み状に
敷き詰め、その上に、被溶解材で製作したスカルを設置
した。このときのスーパーヒート量、出湯量、溶存酸素
量を表1に示す。
なお、溶解炉は図1に示す誘導溶解炉を使用した。[Examples] Examples of the present invention are shown below. T for melting material
Using 20 kg of Ti and Ti-37Al, melting was performed with and without a heat resistance layer. Y2O3 powder was used for the heat resistance layer, and it was spread in the shape of a hollow in the lower part of the copper crucible, and a skull made of the material to be melted was placed on top of it. Table 1 shows the amount of superheat, amount of hot water, and amount of dissolved oxygen at this time. The induction melting furnace shown in FIG. 1 was used as the melting furnace.
【0014】[0014]
【表1】[Table 1]
【0015】表1から明らかなように、本発明の熱抵抗
層がある場合は、熱抵抗層がない場合に比べて、スーパ
ーヒート量は大きくなり、また、スカル量が減少し出湯
量も増加し、歩留りが向上している。さらに、酸素分析
の結果、熱抵抗層であるY2O3粉末からの溶湯への酸
素の汚染は認められなかった。As is clear from Table 1, when the heat resistance layer of the present invention is present, the amount of superheat is greater than when there is no heat resistance layer, and the amount of skull is reduced and the amount of hot water is increased. However, the yield has improved. Further, as a result of oxygen analysis, no oxygen contamination of the molten metal from the Y2O3 powder, which is the heat resistance layer, was observed.
【0016】[0016]
【発明の効果】本発明は、スカルとルツボ間に熱抵抗層
を入れることにより、十分なスーパーヒート量を確保す
るとともに、スカル量を低減する誘導溶解方法であって
、熱抵抗層をスカルとルツボ間に入れることによって、
スーパーヒート量を大きくすることによって、薄肉複雑
形状品の鋳造が可能となり、また、スカル量を減少して
出湯量を増加し、歩留りを向上することができるという
優れた効果を有するものである。Effects of the Invention The present invention is an induction melting method that secures a sufficient amount of superheat and reduces the amount of skull by inserting a heat resistance layer between the skull and the crucible. By placing it between the crucibles,
By increasing the amount of superheat, it becomes possible to cast thin-walled products with complex shapes, and it also has the excellent effect of reducing the amount of skull, increasing the amount of hot water coming out, and improving the yield.
【図1】本発明の誘導溶解法の説明図である。FIG. 1 is an explanatory diagram of the induction lysis method of the present invention.
【図2】従来の誘導溶解法の説明図である。FIG. 2 is an explanatory diagram of a conventional induction lysis method.
1…誘導コイル、2…銅セグメント、3…スカル、4…
溶融金属、5…耐火物ルツボ、6…銅ルツボ、7…耐火
物、8…冷却水路、9…高周波電源、11…熱抵抗層、
12…スカル。1...Induction coil, 2...Copper segment, 3...Skull, 4...
Molten metal, 5... Refractory crucible, 6... Copper crucible, 7... Refractory, 8... Cooling channel, 9... High frequency power supply, 11... Heat resistance layer,
12...Skull.
Claims (2)
される銅ルツボを使用するスカル誘導溶解法において、
チタン合金等の活性金属を溶解する場合、スカルとルツ
ボ間に熱抵抗層を形成して溶解することを特徴とする誘
導溶解方法。Claim 1: In a skull induction melting method using a copper crucible composed of a plurality of rod-shaped water-cooled copper segments,
When melting active metals such as titanium alloys, this induction melting method is characterized by forming a heat resistance layer between the skull and the crucible.
aO 、ZrO2、Ta、W 、Moの内から選んだ1
種類を使用することを特徴とする請求項1の誘導溶解方
法。[Claim 2] The heat resistance layer contains Y2O3, HfO2, C
1 selected from aO, ZrO2, Ta, W, Mo
2. The induction dissolution method according to claim 1, wherein a type of inductive dissolution is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3139048A JPH04362144A (en) | 1991-06-11 | 1991-06-11 | Induction melting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3139048A JPH04362144A (en) | 1991-06-11 | 1991-06-11 | Induction melting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04362144A true JPH04362144A (en) | 1992-12-15 |
Family
ID=15236255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3139048A Pending JPH04362144A (en) | 1991-06-11 | 1991-06-11 | Induction melting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04362144A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009085525A (en) * | 2007-10-01 | 2009-04-23 | Shinko Electric Co Ltd | Cold-crucible melting furnace |
CN102080931A (en) * | 2010-12-21 | 2011-06-01 | 黄喜锤 | High frequency induction aluminum melting furnace for die casting of aluminum |
CN106191482A (en) * | 2016-08-12 | 2016-12-07 | 张强 | The Intermatallic Ti-Al compound of high-cleanness, high and the induction fusion casting method of high-purity titanium alloy |
-
1991
- 1991-06-11 JP JP3139048A patent/JPH04362144A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009085525A (en) * | 2007-10-01 | 2009-04-23 | Shinko Electric Co Ltd | Cold-crucible melting furnace |
CN102080931A (en) * | 2010-12-21 | 2011-06-01 | 黄喜锤 | High frequency induction aluminum melting furnace for die casting of aluminum |
CN106191482A (en) * | 2016-08-12 | 2016-12-07 | 张强 | The Intermatallic Ti-Al compound of high-cleanness, high and the induction fusion casting method of high-purity titanium alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1329990C (en) | Method for induction melting reactive metals and alloys | |
US3775091A (en) | Induction melting of metals in cold, self-lined crucibles | |
CN101875106B (en) | Preparation method of directional solidification high-niobium TiAl-base alloy | |
EP0538024A1 (en) | Segmented cold-wall induction melting crucible | |
CN104889401A (en) | Method for preparing CuCr25 electrical contact | |
KR100564770B1 (en) | High melting efficiency electromagnetic continuous casting device | |
JP3646570B2 (en) | Silicon continuous casting method | |
KR101574247B1 (en) | Continuous casting equipment and method for high purity silicon | |
US5193607A (en) | Method for precision casting of titanium or titanium alloy | |
JPH04362144A (en) | Induction melting method | |
JPH05280871A (en) | Water-cooled divided copper crucible for induction melting service | |
US3100250A (en) | Zone melting apparatus | |
JP2541341B2 (en) | Precision casting method and precision casting apparatus for Ti and Ti alloy | |
JP2021526300A (en) | Levitation melting device and method using tilt induction unit | |
JP3160956B2 (en) | Cold wall melting equipment using ceramic crucible | |
JP5000149B2 (en) | Cold Crucible Induction Dissolver | |
JP3087277B2 (en) | Cold wall crucible melting device and melting method | |
CN212645345U (en) | A kind of crucible for induction melting titanium and titanium alloy | |
JP5203680B2 (en) | Metal electroslag remelting process and ingot mold used therefor | |
JP3972390B2 (en) | High frequency induction melting crucible furnace | |
JPH02179803A (en) | Pouring vessel for manufacturing flake for nd series permanent magnet | |
JPH0531571A (en) | Method and apparatus for manufacturing casting | |
CN217844710U (en) | Novel crucible with electromagnetic penetration and magnetic suspension capabilities | |
JP2005059015A (en) | Device for melting and casting metal | |
US2912731A (en) | Method for casting group iv metals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19990105 |