JPS61214523A - Plasma reaction processor - Google Patents
Plasma reaction processorInfo
- Publication number
- JPS61214523A JPS61214523A JP5455785A JP5455785A JPS61214523A JP S61214523 A JPS61214523 A JP S61214523A JP 5455785 A JP5455785 A JP 5455785A JP 5455785 A JP5455785 A JP 5455785A JP S61214523 A JPS61214523 A JP S61214523A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- processing
- plasma reaction
- microwave
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 27
- 238000012545 processing Methods 0.000 claims description 49
- 230000001902 propagating effect Effects 0.000 claims 2
- 239000007789 gas Substances 0.000 description 17
- 239000010408 film Substances 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 9
- 229910052814 silicon oxide Inorganic materials 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 8
- 238000005530 etching Methods 0.000 description 7
- 230000005684 electric field Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000012495 reaction gas Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 241000257465 Echinoidea Species 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔技術分野〕
本発明はプラズマ反応処理技術に関するもので、たとえ
ば、半導体装置の製造における半導体基板への薄膜の堆
積およびその薄膜の加工処理に利用して有効な技術忙関
する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to plasma reaction processing technology, and is effective for use in, for example, depositing a thin film on a semiconductor substrate and processing the thin film in the manufacture of semiconductor devices. related.
周知のように、半導体素子を製造する場合には窒化シリ
コン膜や酸化シリコン膜等の薄膜の堆積(生成)処理、
およびこれらの膜の加工(エツチング)処理が多用され
ている。As is well known, when manufacturing semiconductor devices, deposition (generation) processing of thin films such as silicon nitride films and silicon oxide films,
And processing (etching) of these films is frequently used.
従来、これらの反応処理手段として、熱を利用した加熱
反応処理が実施されていた。Conventionally, heating reaction treatment using heat has been implemented as a means for these reaction treatments.
近年はこれらの反応処理も低温処理、微細加工処理を目
的として、プラズマを利用したプラズマ反応処理が活用
されることが多くなっている。In recent years, plasma reaction processing using plasma has been increasingly utilized for the purpose of low-temperature processing and microfabrication processing.
従来、これらのプラズマ処理装置はたとえば1983年
3月1日付発行、の電子材料(工業調査会)の31頁以
降に記載されているように、真空中、平行平板電極間K
l 3.56 (MHz )の高周波電力を作用させ、
プラズマ反応処理物である半導体ウェハを両電極の片側
に接地させ、反応ガスを供給し、プラズマイオンエツチ
ング処理する。Conventionally, these plasma processing apparatuses have been used to process K between parallel plate electrodes in vacuum, as described in Electronic Materials (Industrial Research Association) published on March 1, 1983, starting from page 31.
l 3.56 (MHz) high frequency power is applied,
A semiconductor wafer, which is a plasma reaction product, is grounded to one side of both electrodes, a reaction gas is supplied, and plasma ion etching is performed.
上述方法ではプラズマ反応処理として、グロー放電を用
いているため、イオン化効率が低くなり、エツチング速
度等のプラズマ処理速度が遅くなる。Since the above-described method uses glow discharge as the plasma reaction treatment, the ionization efficiency is low and the plasma processing speed such as the etching rate is slow.
また、平行平板電極形状により、グロー放電状態が異な
りプラズマ処理の方向性が生じ、均一プラズマ処理がで
きない、
同時に、プラズマ処理中電極が加熱され、それに伴ない
反応処理物である半導体ウエノ1が加熱されるため、再
現性の良いプラズマ反応処理ができないことがわかった
。In addition, due to the shape of the parallel plate electrodes, the glow discharge state differs and the directionality of the plasma treatment occurs, making it impossible to perform uniform plasma treatment. It was found that plasma reaction treatment with good reproducibility was not possible because of the
本発明の目的は従来のプラズマ反応処理の欠点を排除し
、プラズマ反応処理速度を速め、かつ、均一性の高いプ
ラズマ反応処理を行なう処理方法とその装置を提供する
ことKある。An object of the present invention is to provide a processing method and apparatus for eliminating the drawbacks of conventional plasma reaction processing, increasing the speed of plasma reaction processing, and performing plasma reaction processing with high uniformity.
即ち、処理速度に関しては、薄膜の堆積の際忙は堆積速
度を速め、薄膜の加工の場合には加工速度を速める。That is, regarding the processing speed, when thin films are being deposited, the deposition speed is increased, and when thin films are processed, the processing speed is increased.
また、均一性に関しては、堆積膜厚バラツキあるいは加
工深さ、加工幅のバラツキの少ないプラズマ処理を行な
う装置を提供することにある。Regarding uniformity, it is an object of the present invention to provide an apparatus that performs plasma processing with less variation in deposited film thickness, processing depth, and processing width.
本発明の前記目的と新規な特徴は本明細書の記述および
添付図面から明らかになるであろう。The above objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.
本願において、開示される発明のうち代表的なものの概
要を簡単忙説明すれば下記の通りである。A brief summary of typical inventions disclosed in this application is as follows.
即ち、プラズマ反応処理領域にマイクロ波等の電磁波を
高密度な電磁波として集中伝播させる一方、強磁界を作
用させ、上述電磁波の電子運動の活性化を高める。That is, while electromagnetic waves such as microwaves are concentratedly propagated as high-density electromagnetic waves in the plasma reaction treatment region, a strong magnetic field is applied to increase activation of the electron movement of the electromagnetic waves.
この領域に反応ガスと被処理物を供給し、反応カスのプ
ラズマイオン化効率を高め、プラズマ反応処理速度を高
める、
また、プラズマ反応処理の均一性を高める手段として、
マイクロ波伝播電極から、反応ガスを分散して、被処理
物に供給すると同時に電極あるいは被処理物を回転させ
ながら、プラズマ反応処理を行ない、被処理物に作用す
るプラズマ反応イオンが均等に作用するよ5にする。As a means of supplying the reaction gas and the object to be processed to this region, increasing the plasma ionization efficiency of the reaction residue, increasing the plasma reaction processing speed, and increasing the uniformity of the plasma reaction processing,
Reactant gas is dispersed from the microwave propagation electrode and supplied to the object to be treated. At the same time, the electrode or the object to be treated is rotated to perform plasma reaction treatment, and the plasma reaction ions acting on the object to be treated are evenly distributed. I'll give it a 5.
他に、均一プラズマ反応処理手段として、マイクロ波伝
播電極によって構成されるマイクロ波電界強度分布を可
変制御し、被処理物に作用するプラズマイオン量を均等
圧し、均一処理を行なう。In addition, as a uniform plasma reaction treatment means, the microwave electric field intensity distribution constituted by the microwave propagation electrode is variably controlled, the amount of plasma ions acting on the object to be treated is equalized, and uniform treatment is performed.
なお、マイクロ波電界強度分布制御手段としては、マイ
クロ波伝送回路中に反射板の可動量が制御可能な反射終
端を設け、この反射板を可動させることKより、マイク
ロ波電界強度分布を制御する。As the microwave electric field strength distribution control means, a reflection terminal capable of controlling the movable amount of a reflection plate is provided in the microwave transmission circuit, and the microwave electric field strength distribution is controlled by moving this reflection plate. .
また、プラズマ反応の再現性を得るためKはプラズマ反
応処理の因子として、マイクロ波、強磁界、反応ガスの
みとなるよ5&C被処理物を接触面積の少なくなる方法
で保持するか、被処理物を温度制御可能な支持台で接地
支持し、所定温度に保ちながらプラズマ反応処理する。In addition, in order to obtain reproducibility of the plasma reaction, K is the only factor in the plasma reaction treatment, such as microwave, strong magnetic field, and reaction gas. is supported on the ground on a temperature-controllable support stand, and plasma reaction treatment is performed while maintaining it at a predetermined temperature.
〔実施例1〕
第1図は本発明の一実施による半導体ウェハ製造におけ
る半導体ウェハ上の酸化シリコン膜をエツチング処理す
るプラズマエツチング処理装置の要部断面図である。[Embodiment 1] FIG. 1 is a sectional view of a main part of a plasma etching processing apparatus for etching a silicon oxide film on a semiconductor wafer in semiconductor wafer manufacturing according to an embodiment of the present invention.
装置構成から説明すると、処理部導波管1にはマイクロ
波を透過する石英製のサセプタ2があり、サセプタ2内
には電子冷熱3により一足温度忙保たれた水4が供給さ
れており、サセプタ2は一定温度に保たれている。To explain the device configuration, the processing section waveguide 1 has a susceptor 2 made of quartz that transmits microwaves, and water 4 whose temperature is maintained by an electronic cooling device 3 is supplied into the susceptor 2. The susceptor 2 is kept at a constant temperature.
このサセプタ2上に、エツチングすべきパターンがレジ
ストによりマスクされた酸化シリコン膜5が生成されて
いるウニ八6が置かれている。このウェハ6上方には歯
形遅波電極7が構成され、マイクロ波が伝播された時、
サセプタ2と歯形遅波電極7間に集中電磁界が構成され
る。On this susceptor 2 is placed a sea urchin 6 on which a silicon oxide film 5 is formed, the pattern to be etched being masked by a resist. A tooth-shaped slow wave electrode 7 is constructed above the wafer 6, and when microwaves are propagated,
A concentrated electromagnetic field is formed between the susceptor 2 and the tooth-shaped slow wave electrode 7.
一方、歯、形遅波電極7には複数のカス供給口8が設け
られており、ガス供給部9から供給された反応ガス10
が処理ウニ八6に均等圧供給される。On the other hand, the tooth-shaped slow wave electrode 7 is provided with a plurality of waste supply ports 8, and a reaction gas 10 supplied from a gas supply section 9 is provided.
is supplied to the processing sea urchin 8 6 at equal pressure.
処理部導波管1の外周には磁石11が設置されており、
処理部導波管l内に強磁界が作用する。A magnet 11 is installed on the outer periphery of the processing section waveguide 1.
A strong magnetic field acts within the processing section waveguide l.
また、処理部導波管10両側にはマイクロ波を通過し、
気密を保つための真空シールド板12があり、排気部1
3により真空排気され、処理部導波管1内は真空状態に
保たれている。Further, microwaves are passed through both sides of the processing section waveguide 10,
There is a vacuum shield plate 12 to maintain airtightness, and the exhaust section 1
3, the inside of the processing section waveguide 1 is kept in a vacuum state.
一方、マイクロ波がマイクロ波発生部15より発生され
、サーキュレータ16を通り、処理部導波管1に伝播さ
れ、歯形遅波電極部7下で集中マイクロ波17として構
成される。On the other hand, microwaves are generated by the microwave generating section 15, passed through the circulator 16, propagated to the processing section waveguide 1, and configured as concentrated microwaves 17 under the tooth-shaped slow wave electrode section 7.
なお、プラズマ反応処理に関与しないマイクロ波は反射
終端部18に構成された反射板1’lCより反射され、
前述の逆方向に伝播し、サーキュレータ16により、ダ
ミーロード20に導ひかれ、熱変換され消滅する。特に
前述反射板19はIJ。Note that microwaves that are not involved in the plasma reaction process are reflected by the reflection plate 1'lC configured in the reflection termination section 18,
The light propagates in the opposite direction, is guided by the circulator 16 to the dummy load 20, is converted into heat, and disappears. In particular, the aforementioned reflector 19 is IJ.
ア駆動モータ21により左右動される。It is moved left and right by a drive motor 21.
全体制御部22ではマイクロ波発生部15より発生され
るマイクロ波出力量の制御をはじめ、サセプタ2を温度
調節する電子冷熱3の制御、反射板19の移動量の制御
、ガス供給部9から供給するガス種の分類およびガス量
の制御を行なう。The overall control section 22 controls the amount of microwave output generated by the microwave generation section 15, controls the electronic cooling/heating device 3 that adjusts the temperature of the susceptor 2, controls the amount of movement of the reflection plate 19, and supplies gas from the gas supply section 9. Classifies the gas types and controls the gas amount.
次に、この装置によってウェハ6上に形成された酸化シ
リコン膜5をエツチング処理する方法について説明する
。サセプタ2上にエツチングすべき、パターンがレジス
ト膜等でマスクされた酸化シリコン[5が形成されたウ
ェハ6をセットし、排気部13により、処理部導波管1
内を高真空にする。この高真空状態でマイクロ波発生部
15からマイクロ波を発生すると、歯形遅波電極7下で
集中マイクロ波17が生じる、
同時に磁石11による強磁界の作用により、マイクロ波
中の電子がサイクロイド運動し、励起される。この領域
にガス供給部9から反応ガス10を供給すると、励起さ
れた電子と反応ガス10分子が激しく衝突し、反応ガス
分子がイオン化されプラズマ状態になる。このプラズマ
化されたプラズマイオン忙より、酸化シリコン膜がエツ
チング加工される。Next, a method of etching the silicon oxide film 5 formed on the wafer 6 using this apparatus will be explained. A wafer 6 on which a pattern of silicon oxide [5] to be etched is masked with a resist film or the like to be etched is set on the susceptor 2, and an exhaust section 13 is used to guide the processing section waveguide 1.
Create a high vacuum inside. When microwaves are generated from the microwave generator 15 in this high vacuum state, concentrated microwaves 17 are generated under the tooth-shaped slow-wave electrode 7. At the same time, due to the action of the strong magnetic field from the magnet 11, the electrons in the microwaves undergo cycloidal movement. , excited. When a reactive gas 10 is supplied from the gas supply section 9 to this region, the excited electrons and the reactive gas 10 molecules collide violently, and the reactive gas molecules are ionized and become a plasma state. The silicon oxide film is etched by the plasma ions.
なお、このプラズマエツチング加工を均等に行ナウタめ
にリニアパルスモータ2により、反射板19を可動させ
、処理ウェハ6に作用する集中マイクロ波17強度分布
を可変し、プラズマイオンが被処理物である酸化シリコ
ン膜5上を均等に作用させ、均一なエツチング加工をさ
せる。The reflection plate 19 is moved by the linear pulse motor 2 to uniformly perform this plasma etching process, and the intensity distribution of the concentrated microwave 17 acting on the processing wafer 6 is varied, so that the plasma ions are the object to be processed. The etching process is performed uniformly on the silicon oxide film 5 to perform a uniform etching process.
なお、集中マイクロ波を発生させる手段は第1図の歯形
遅波電極に限定されることな(、第2図11C示fマイ
クロストリップ線路や第3図に示すアンテナ対で構成し
ても良い。Note that the means for generating concentrated microwaves is not limited to the tooth-shaped slow-wave electrode shown in FIG. 1 (it may also be configured with a microstrip line shown in FIG. 2, 11C, and f) or an antenna pair shown in FIG. 3.
第2図を簡単に説明すると、マイクロ波23が同軸ケー
ブル24の中心導体25を伝搬し、多段ストリット26
が設けであるマイクロストリップ線路27に伝わり、中
心導体28から、同軸ケーブル29に伝わる。この間、
マイクロストリップ線路27近傍に集中マイクロ波が発
生する。Briefly explaining FIG. 2, the microwave 23 propagates through the center conductor 25 of the coaxial cable 24,
is transmitted to the microstrip line 27 provided, and is transmitted from the center conductor 28 to the coaxial cable 29. During this time,
Concentrated microwaves are generated near the microstrip line 27.
第3図は回転する上アンテナ30に分散したガス供給口
31を設け、反応ガス32を供給する。In FIG. 3, a rotating upper antenna 30 is provided with distributed gas supply ports 31 to supply a reactive gas 32. In FIG.
一方、下アンテナ33に同様に分散した形で排気口34
が設けてあり、処理空間を真空排気する。On the other hand, exhaust ports 34 are similarly distributed in the lower antenna 33.
is provided to evacuate the processing space.
なお、マイクロ波35は上アンテナ30から下アンテナ
33へと集中伝播する。Note that the microwave 35 propagates in a concentrated manner from the upper antenna 30 to the lower antenna 33.
一方、処理ウェハ36は石英等のマイクロ波を透過する
材質で作られた支持台37上忙゛接触面積が少なくなる
状態で保持している。On the other hand, the processed wafer 36 is held on a support base 37 made of a material that transmits microwaves, such as quartz, in a state where the contact area is reduced.
(1) 本発明は高真空下忙おいてGH2周波数帯の
マイクロ波を集中伝播する高密度な電界領域に強磁界を
作用させ、電磁波中の電子運動の活性化を図り、その領
域に反応ガスと、被処理物を供給することから、反応ガ
スと電子との衝突確立が高くなり、プラズマイオン化効
率が極めて高くなり、プラズマ反応処理速度を速めるこ
とができる。(1) The present invention applies a strong magnetic field to a high-density electric field region in which microwaves in the GH2 frequency band propagate intensively under high vacuum, activates the electron movement in the electromagnetic waves, and applies a reactive gas to that region. Since the object to be processed is supplied, the probability of collision between the reaction gas and electrons increases, plasma ionization efficiency becomes extremely high, and the plasma reaction processing speed can be increased.
(2)上述(1)項のように周波数が極めて高いマイク
セ波により、プラズマイオンが導ひかれるため、小さな
電界強度で、プラズマ反応処理が行なわれるため、被処
理物へのプラズマイオンの衝突力が弱まり、ダメージが
少なくなる。(2) As mentioned in item (1) above, plasma ions are guided by extremely high-frequency microphone waves, so plasma reaction processing is performed with a small electric field strength, so the impact force of plasma ions on the object to be processed increases. will be weakened and damage will be reduced.
(3)被処理物に作用するマイクロ波電界強度分布を可
変制御できることから、第価的に被処理物に作用するプ
ラズマイオン量を制御でき、均等にプラズマイオン量を
作用できることから、均一性の高いプラズマ処理ができ
る。(3) Since the microwave electric field intensity distribution acting on the object to be processed can be variably controlled, the amount of plasma ions acting on the object to be processed can be controlled in terms of quantity, and the amount of plasma ions can be applied evenly, resulting in improved uniformity. Capable of high-quality plasma processing.
以上、本発明の実施例に基づいて、具体的に説明したが
、本発明は上記実施例に限定されるものではなく、その
l!旨を逸脱しない範囲で程々に変形が可能であること
はいうまでもない。Although the present invention has been specifically explained above based on the embodiments, the present invention is not limited to the above embodiments. It goes without saying that moderate modifications can be made without departing from the spirit.
なお、本発明はプラズマ反応処理に関するものであり、
種々の膜の堆積あるいは、それらの膜の加工が可能であ
るプラズマ反応処理装置を提供する。Note that the present invention relates to plasma reaction treatment,
A plasma reaction processing apparatus capable of depositing various films or processing these films is provided.
また、マイクロ波ビームアンテナを利用することにより
、マイクロ波をビーム状(スポット状)に集中照射する
ことが可能であり、被処理物の局所部分のプラズマ処理
も可能である、
また、ラダー・リッジ回路電極により、被処理物の表面
のみにマイクロ波集中領域を構成してもよい。In addition, by using a microwave beam antenna, it is possible to irradiate microwaves in a beam (spot) in a concentrated manner, and it is also possible to perform plasma treatment on localized areas of the object to be treated. A microwave concentration region may be formed only on the surface of the object to be processed by the circuit electrode.
以上の説明では主として、本発明者忙よってなされた発
明をその背景となった利用分野である半導体素子製造に
おける半導体ウェハ上に形成された酸化シリコン膜をエ
ツチングするプラズマエツチング処理装置忙適用した場
合について説明したが、これに限定されるものではなく
、たとえば、半導体材料やその他プラズマ反応処理可能
な全ての物質のプラズマ処理方法に適用可能である。The above explanation will mainly relate to the case where the invention made by the present inventor is applied to a plasma etching processing apparatus for etching a silicon oxide film formed on a semiconductor wafer in semiconductor device manufacturing, which is the field of application in which the invention was made by the present inventor. Although described above, the invention is not limited to this, and can be applied to, for example, a plasma processing method for semiconductor materials and all other substances that can be subjected to plasma reaction processing.
たとえば、プラズマ気相成長処理装置(CVD装置)、
プラズマ重合処理装置、プラズマ現像処理装置、プラズ
マアッシャ装置等をはじめ、あらゆる分野におけるプラ
ズマ処理装置に応用することができる。For example, plasma vapor deposition processing equipment (CVD equipment),
It can be applied to plasma processing equipment in all fields, including plasma polymerization processing equipment, plasma development processing equipment, plasma asher equipment, etc.
第1図は実施例1によるプラズマエツチング処理装置の
要部断面図、
第2図はマイクロストリップ線路、
第3図はアンテナ対による集中マイクロ波発生する電極
の構造図である。
1・・・処理部導波管、2・・・サセプタ、3・・・電
子冷熱、4・・・水、5・・・酸化シリコン膜、6・・
・ウェハ、7・・・歯形遅波回路電極、8・・・ガス供
給口、9・・・ガス供給部、10・・・反応ガス、11
・・・磁石、12・・・真空シールド板、13・・・排
気部、14・・・排気、15・・・マイクロ波発生部、
16・・・サーキュレータ、17・・・集中マイクロ波
、18・・・反射終端部、19・・・反射板、20・・
・ダミーロード、21・・・lJニアパルスモータ、2
2・・・全体制御部、23・・・マイクロ波、24・・
・同軸ケーブル、25・・中心導体、26・・・多段ス
リット、27・・・マイクロストリップ線路、28・・
・中心導体、29・・・同軸ケーブル、30・・・上ア
ンテナ、31・・・ガス供給口、32・・・反応ガス、
33・・・下アンテナ、34・・・排気口、35・・・
マイクロ波、36・・・ウェハ、37・・・支持台。FIG. 1 is a sectional view of a main part of a plasma etching processing apparatus according to Example 1, FIG. 2 is a microstrip line, and FIG. 3 is a structural diagram of an electrode for generating concentrated microwaves by an antenna pair. DESCRIPTION OF SYMBOLS 1... Processing part waveguide, 2... Susceptor, 3... Electron cooling, 4... Water, 5... Silicon oxide film, 6...
- Wafer, 7... tooth-shaped slow wave circuit electrode, 8... gas supply port, 9... gas supply section, 10... reaction gas, 11
...Magnet, 12...Vacuum shield plate, 13...Exhaust section, 14...Exhaust, 15...Microwave generation section,
16...Circulator, 17...Concentrated microwave, 18...Reflection termination section, 19...Reflection plate, 20...
・Dummy load, 21...lJ near pulse motor, 2
2... Overall control unit, 23... Microwave, 24...
・Coaxial cable, 25... Center conductor, 26... Multi-stage slit, 27... Microstrip line, 28...
- Center conductor, 29... Coaxial cable, 30... Upper antenna, 31... Gas supply port, 32... Reactive gas,
33... Lower antenna, 34... Exhaust port, 35...
Microwave, 36... wafer, 37... support stand.
Claims (1)
る電磁波出射手段と、前記電磁波を限定した方向に、集
中伝播させる手段と、 前述真空処理部内に、プラズマ反応ガスを供給するガス
供給部と、被処理物体を供給しする被処理物体供給部と
を具備することを特徴とするプラズマ反応処理装置。[Claims] 1. A vacuum processing section, an electromagnetic wave emitting means for propagating electromagnetic waves in the vacuum processing section, a means for intensively propagating the electromagnetic waves in a limited direction, and a plasma reactive gas in the vacuum processing section. A plasma reaction processing apparatus comprising: a gas supply section for supplying gas; and a processing object supply section for supplying a processing object.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5455785A JPS61214523A (en) | 1985-03-20 | 1985-03-20 | Plasma reaction processor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5455785A JPS61214523A (en) | 1985-03-20 | 1985-03-20 | Plasma reaction processor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61214523A true JPS61214523A (en) | 1986-09-24 |
Family
ID=12973987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5455785A Pending JPS61214523A (en) | 1985-03-20 | 1985-03-20 | Plasma reaction processor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61214523A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02308530A (en) * | 1989-05-24 | 1990-12-21 | Hitachi Ltd | Method and device for plasma treatment |
JP2011035327A (en) * | 2009-08-05 | 2011-02-17 | Mitsubishi Heavy Ind Ltd | Vacuum processing apparatus |
-
1985
- 1985-03-20 JP JP5455785A patent/JPS61214523A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02308530A (en) * | 1989-05-24 | 1990-12-21 | Hitachi Ltd | Method and device for plasma treatment |
JP2011035327A (en) * | 2009-08-05 | 2011-02-17 | Mitsubishi Heavy Ind Ltd | Vacuum processing apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100498584B1 (en) | Plasma Treatment Equipment and Plasma Treatment Methods | |
US4877509A (en) | Semiconductor wafer treating apparatus utilizing a plasma | |
KR970058391A (en) | Plasma processing equipment | |
US5686796A (en) | Ion implantation helicon plasma source with magnetic dipoles | |
JP2002280196A (en) | Plasma generating device using microwave | |
JP2006324551A (en) | Plasma generator and plasma processing apparatus | |
JP2002170818A (en) | Plasma processing apparatus | |
JPH06506084A (en) | High-density plasma deposition and etching equipment | |
KR19990006564A (en) | Plasma processing equipment | |
JP2570090B2 (en) | Dry etching equipment | |
JPH06283470A (en) | Plasma processing device | |
JPH03191073A (en) | Microwave plasma treating device | |
KR0174070B1 (en) | Microwave Plasma Processing Apparatus And Method | |
JPH11288798A (en) | Plasma generator | |
JPH0319332A (en) | Microwave plasma treatment device | |
JP3085021B2 (en) | Microwave plasma processing equipment | |
JPH03191074A (en) | Microwave plasma treating device | |
JPS61214523A (en) | Plasma reaction processor | |
KR100785960B1 (en) | Plasma processing apparatus | |
JPH07135093A (en) | Plasma processing apparatus and processing method | |
JPH01184922A (en) | Plasma processor useful for etching, ashing, film formation and the like | |
JPH10247598A (en) | Plasma source, ion source using the same, and plasma processing apparatus | |
JPH0368771A (en) | Microwave plasma treating device | |
JPH0281434A (en) | Plasma treatment apparatus | |
JP3156492B2 (en) | Plasma processing apparatus and plasma processing method |